首页 / 国际专利分类库 / 电学 / 电通信技术 / 无线通信网络 / 监督、监控或测试装置 / 使用数字分布式天线系统的手机定位的系统和方法

使用数字分布式天线系统的手机定位的系统和方法

申请号 CN201080004462.0 申请日 2010-01-11 公开(公告)号 CN102282897B 公开(公告)日 2015-07-22
申请人 ADC长途电讯有限公司; 发明人 P.M.瓦拉; D.扎瓦斯基;
摘要 提供了在数字分布式天线系统(DAS)内的手机 定位 的方法和系统。在一个实施方案中,该方法包括:接收来自位于数字DAS内用户单元的定位业务 请求 ,该数字DAS包括传输一个或多个调制 信号 的数字化RF信号的第一带宽分区和传输IP格式数据的以太网管道的第二带宽分区;将该定位业务请求路由到用户定位器中心;指示该数字DAS的地理区域内的定位器接收机以倾听来自该用户单元的信号;在第一定位器接收机处倾听该信号;当观察到该信号时,记录接收该信号的时间并生成用户单元测距数据;将用户单元测距数据以IP格式消息通过该以太网管道传回到该用户定位器中心。
权利要求

1.一种数字分布式天线系统的远程单元,该远程单元包括:
至少一个数模转换射频收发器模,用于从一个或多个用户单元所接收到的模拟射频信号生成数字射频信号
接收该模拟射频信号的定位器接收机,该定位器接收机从该模拟射频信号为该一个或多个用户单元中选择的第一用户单元生成用户单元测距数据,其中该定位器接收机将该用户单元测距数据输出作为互联网协议(IP)格式的数据;和
串行射频模块,耦合以接收来自该至少一个数模转换射频收发器模块的数字射频信号,该串行射频模块进一步包括用来从该定位器接收机接收该IP格式数据的接口
其中该串行射频模块将串行信号流输出给主机单元,该串行信号流包括具有将该数字射频信号传输给该主机单元的第一分区和实施将该用户单元测距数据传输给该主机单元的以太网管道的第二分区的带宽。
2.如权利要求1所述的远程单元,其中该定位器接收机格式化该用户单元测距数据,以在互联网协议(IP)网络上路由到用户定位器中心。
3.如权利要求1所述的远程单元,其中基于通过该以太网管道从用户定位器中心接收到的指令,该选择的第一用户单元由该定位器接收机选择。
4.一种数字分布式天线系统的远程单元,该远程单元包括:
至少一个数模转换射频收发器模块,用于从一个或多个用户单元所接收到的模拟射频信号生成数字射频信号;
串行射频模块,耦合以接收来自该至少一个数模转换射频收发器模块的数字射频信号;和
定位器接收机,耦合该串行射频模块,并从该串行射频模块接收该数字射频信号的环回,该定位器接收机从该数字射频信号生成该一个或多个用户单元的选择的第一用户单元的用户单元测距数据,其中该定位器接收机将该用户单元测距数据输出给该串行射频模块,作为互联网协议(IP)格式的数据;
其中该串行射频模块将串行信号流输出给主机单元,该串行信号流包括具有将该数字射频信号传输给该主机单元的第一分区和实施将该用户单元测距数据传输给该主机单元的以太网管道的第二分区的带宽。
5.如权利要求4所述的远程单元,其中该数字射频信号是基带数字射频信号。
6.如权利要求4所述的远程单元,其中该数字射频信号是降频变换的中频(IF)数字射频信号。
7.如权利要求4所述的远程单元,该串行射频模块进一步包括从该定位器接收机处接收该IP格式数据的接口。
8.如权利要求7所述的远程单元,其中从该定位器接收机处接收该IP格式数据的接口包括8位置8触点模块的插件
9.一种数字分布式天线系统的主机单元,该主机单元包括:
串行射频模块,从耦合该串行射频模块的多个远程单元接收多个串行信号流,该多个串行信号流中的每一个传输数字化的射频样本,其中该串行射频模块将该多个串行信号流合并,以产生到数模转换射频收发器模块的输出用于到基站收发信台的传输;和定位器接收机,耦合该串行射频模块并处理来自该多个远程单元的第一远程单元的数字化射频样本,用来为与该第一远程单元通信中的选择的用户单元生成用户单元测距数据,其中该定位器接收机调整该用户单元测距数据,以补偿与该第一远程单元相关的传播延迟时间;
其中该定位器接收机将该用户单元测距数据输出为互联网协议(IP)格式的数据,以路由到用户定位器中心。
10.如权利要求9所述的主机单元,其中该定位器接收机将该用户单元测距数据输出给该串行射频模块,作为互联网协议(IP)格式的数据。
11.如权利要求10所述的主机单元,其中该串行射频模块通过以太网管道将该用户单元测距数据输出给该基站收发信台。
12.如权利要求9所述的主机单元,其中该定位器接收机从该串行射频模块接收降频变换的中频(IF)数字射频信号。
13.如权利要求9所述主机单元,其中该定位器接收机从该串行射频模块接收基带数字射频信号。

说明书全文

使用数字分布式天线系统的手机定位的系统和方法

[0001] 相关申请的交叉引用
[0002] 本申请要求2009年1月13日提交的第61/144,257号美国临时申请的权益,其通过引用全部并入本文。
[0003] 本申请涉及2009年1月13日提交的标题为“在分布式天线系统传输上IP通信的系统和方法”的第61/144,255号美国临时申请,代理人案号100.1080USPR,其通过引用全部并入本文。
[0004] 本申请涉及2009年9月9日提交的标题为“在分布式天线系统传输上IP通信的系统和方法”的第12/555,912号美国专利申请,代理人案号100.1080US01,其通过引用全部并入本文。

背景技术

[0005] 分布式天线系统,或DAS,是通过在地理区域或结构内提供无线业务的传输介质而连接到共用节点的空间上分散的天线节点的网络。共用无线通信系统配置使用主机单元作为该共用节点,其位于中心位置(例如,在无线业务提供方所控制的设施处)。该天线节点和相关广播和接收设备,所在位置远离该主机单元(例如,在非该无线业务提供方所控制的设施或站点处),也被称作为“远程单元”。在该主机单元和一个或多个远程单元之间通信射频(RF)信号。在这样的DAS中,该主机单元通常通信地耦合一个或多个基站(例如,通过有线连接或通过无线连接),该基站允许在该DAS业务区域内的无线用户单元和通信网络之间的双向通信,该通信网络是例如但不限于,移动电话网络,公共交换电话网络(PSTN)和互联网。
[0006] 但是出现了与无线通信系统的紧急事件(如911)响应系统实施相关的问题,由于不像每一个与物理地址相关的基于地面的电话,呼入以报告紧急事件的手机电话号码未覆盖该呼叫发起的位置。在无线定位算法和系统存在以及分布式天线系统存在时,在分布式天线系统所服务区域内使用无线定位算法导致由于多天线站点的定位模糊。
[0007] 为了对于那些本领域技术人员在阅读和理解本说明书后将会认识到的上述原因和下述其他原因,在本领域需要用于在分布式天线系统内无线定位系统的系统和方法。附图说明
[0008] 能够更容易理解本发明的实施方案以及进一步更轻易认识到其优先和用处,当接合该优选实施方案和下列附图的说明来考虑时,其中:
[0009] 图1是本发明的一个实施方案的分布式天线系统(DAS)的方框图
[0010] 图2是本发明的一个实施方案的远程单元的方框图;
[0011] 图3是本发明的一个实施方案的方法的流程图
[0012] 图4A是本发明的一个实施方案的远程单元的方框图;
[0013] 图4B是本发明的一个实施方案的远程单元的方框图;和
[0014] 图5是本发明的一个实施方案的主机单元的方框图。
[0015] 依照惯例,该各种所述特征未按尺寸绘图但被绘出以突出与本发明相关的特征。标记符号标注了贯穿图和文本中的相同元件。
[0016] 发明概述
[0017] 提供了在数字分布式天线系统(DAS)内的手机定位的方法和系统。在一个实施方案中,在数字分布式天线系统内收集定位数据的方法包括:接收来自位于数字分布式天线系统内用户单元的定位业务请求,该数字分布式天线系统包括传输一个或多个调制信号的数字化射频(RF)信号的第一带宽分区,该数字分布式天线系统进一步包括传输互联网协议(IP)格式数据的以太网管道的第二带宽分区;将该定位业务请求路由到用户定位器中心;指示该数字分布式天线系统的地理区域内多个定位器接收机以倾听来自该用户单元的信号;在该多个定位器接收机的第一定位器接收机处倾听来自该用户单元的信号;当该第一定位器接收机观察到该信号时,记录接收该信号的时间并生成用户单元测距数据;将用户单元测距数据以IP格式消息通过该数字分布式天线系统所提供的以太网管道传回到该用户定位器中心。
[0018] 发明详述
[0019] 在下列具体说明中,对组成本文件一部分的附图作出标记,通过可能实施本发明于其中的特定描述性实施方案的方式在所述附图中示出。以充分的细节来描述这些实施方案以使得本领域技术人员能够实现本发明,应当理解,可使用其他实施方案以及可作出逻辑上、机械上和电子上的变化而未背离本发明的范围。以下具体说明因此不作为限制意义。
[0020] 图1是本发明的一个实施方案的分布式天线系统(DAS)100的方框图。DAS 100包括主机单元102和多个远程单元106。在该物理层,主机单元102和远程单元106如图1所示通过光纤互连以形成包括多个在130处所示的点对点通信链路的双向通信链路网络。可选地,主机单元102和远程单元106可通过同轴电缆,或同轴电缆和光纤二者的组合进行互连。远程单元106每一个容纳用于无线传送和接收通过天线107与一个或多个移动用户单元108进行调制射频(RF)通信的电子装置和系统。主机单元102耦合到至少一个通常被称为基站的基站收发信台(BTS)110。BTS 110在该各个主机单元102和较大通信网络之间通过耦合电话系统网络122(例如,该公共交换电话网络和/或无线业务提供方网络)和如互联网的互联网协议(IP)网络124的网关124来通信语音和其他数据信号。在一个实施方案中,DAS 100包括移动电话网络的一部分且用户单元108是移动电话。
[0021] 在该主机单元102处从该BTS 110接收到下行链路RF信号,该主机单元102使用其以生成一个或多个下行链路传输信号以传送给该远程单元106的一个或多个。每一个这样的远程单元106接收到至少一个下行链路传输信号并从该下行链路传输信号处重新构建该下行链路RF信号以及使得该重新构建的下行链路RF信号从耦合到或包括于该远程单元106中的远程天线107处被播送。在该上行链路方向中实施类似的步骤。在一个或多个远程单元106处从用户108接收到的上行链路RF信号用以生成从该各个远程单元106传送到该主机单元102的各个上行链路传输信号。该主机单元102接收并合并从该多个远程单元106处传送的上行链路传输信号。该主机单元102将该合并的上行链路RF信号在宽带介质上发送到该BTS 110。
[0022] DAS 100包括数字DAS传输意义,即通过分别数字化该下行链路和上行链路RF信号来生成在通信链路130上在主机单元102和远程单元106之间传送的该下行链路和上行链路传输信号。换句话说,该下行链路和上行链路信号不是模拟RF信号而是作为替换地展现调制RF信号的数字RF样本的数字数据信号。例如,如果预定传送到用户单元108的特定通信信号是在该900MHz频段中的调制RF信号,则主机单元102将从BTS 110处生成该调制900MHz RF信号的基带数字样本,其随后由主机单元102分配给该远程单元106。可替换地,全数字BTS可直接生成基带数字样本。在该远程单元处,将该调制RF信号的数字样本从数字转变成模拟RF信号以被无线地从该天线107处播送。在该上行链路中,对在该远程单元106处接收到的模拟RF信号采样以生成该上行链路传输信号的RF数字样本。BTS110、主机单元102和远程单元106每一个同时提供多频段通信信号处理和多种调制方案。
[0023] 本领域应当理解,通常以中频(IF)或基带来传输RF信号。因此,在本申请文件的上下文中,将术语“数字RF”、“数字RF信号”、“数字RF样本”和“数字RF信号”理解为包括转变成IF和基带频率的信号。
[0024] 作为传送该下行链路和上行链路传输RF信号的补充,在主机单元102和每一个远程单元106之间的数字传输包括充足带宽(即,超过用来传输该数字化RF数据样本的必要带宽)以实施在每一个远程单元106和该主机单元102之间的以太网管道用来将用户单元测距数据传送给与主机单元102通过BTS 110通信的用户定位器中心(SLC)140。在一个实施方案中,该以太网管道提供了至少100M比特/秒的带宽。通过利用该DAS 100内的分布式天线位置,SLC 140能够从区域内的多个位置处采集用户单元测距数据并确定e911紧急事件业务或其他应用的用户单元的精确位置。在一个实施方案中,SLC 140使用多点定位技术,也被称为双曲线定位,来确认该用户单元,其中能够通过计算多个远程单元106所接收信号的到达时间差(TDOA)来精确定位用户单元。即,当用户单元108传送RF信号时,该RF信号将在不同时间到达DAS 100内的不同天线107,基于该用户单元106和该天线之间在距离。该TDOA是在第一天线处正接收RF信号和在第二天线处正接收RF信号之间在时间上的差。考虑到两天线的现有公知定位,以及该两天线之间的TDOA测量,能够将该用户单元108的位置放置在双曲线的表面上。来自附加天线位置的附加TDOA测量允许该用户单元108的位置进一步窄下来,基于多个双曲线的交叉。通常地,在三个天线之间的两个TDOA测量足以用户单元定位,尽管附加TDOA测量和天线将提高该计算的精确度。
[0025] 图2是本发明的一个实施方案的远程单元200的方框图,如参照图1所讨论的远程单元106。远程单元200包括串行射频(SeRF)模220,数模转换射频收发器(DART)模块208,远程DART接口板(RDI)224,线性电源放大器210,天线212,复用器211,低噪声放大器214和定位器接收机(LR)216。在一个实施方案中,使用FPGA、ASIC、数字信号处理器(DSP)板或类似装置来实现此处所述的SeRF模块和DART模块以及定位器接收机。
[0026] DART模块208为在主机单元102和远程单元106之间所传送的下行链路和上行链路传输信号提供了在模拟RF信号和数字取样RF之间的双向转换。在该上行链路中,DART模块208接收了来自用户单元108处的即将到来的模拟RF信号并对该模拟RF信号取样以生成SeRF模块220所使用的数字数据信号。天线212接收了来自用户108处的无线RF信号,其通过低噪声放大器214将该RF信号传递给DART模块208。
[0027] 在该下行链路方向,DART模块208接收了来自SeRF模块220的数字取样RF数据,向上将该取样RF数据转换成广播频率,并将该数字RF样本转换成模拟RF用作无线传送。在DART模块208将信号转换成模拟RF信号后,将该模拟RF信号发送到线性电源放大器210用作通过天线212进行广播。线性电源放大器210将从DART模块208处接收到的RF信号放大用于通过复用器211输出到天线212。复用器211提供了将对于连接到共用天线212而发送和接收信号所必须的信号复用。在一个实施方案中,低噪声放大器214被集成到复用器211中。
[0028] 在远程单元中的DART模块指定给特殊频段。单个DART模块在已定义频段上运行时不考虑正在使用的调制技术。因此可通过使用覆盖不同频段的DART模块替代覆盖一个频段的DART模块来作出远程单元中频段的调整。例如,设计DART模块208用来发送850MHz蜂窝传输。作为另一个实施例,DART模块208发送1900MHz PCS信号。DART模块208的一些其他选择包括Nextel 800频段、Nextel 900频段、PCS全频段、PCS半频段、BRS、WiMax、长期演进项目(LTE),以及欧洲GSM 900、GSM 1800和UMTS 2100。通过允许将DART模块208的不同变体插入RDI 214,远程单元102可配置上述频段和技术的任意一个,与已开发的任意新技术或频段一样。同样,可将单个远程单元配置为通过处理多个DART模块在多频段上运行。本议题用于这样的多频段远程单元,即使本实施例强调于单个DART模块的操作以实现简化。
[0029] SeRF模块220耦合RDI 224。RDI 224具有多个连接器,其中每一个配置用来接收可插DART模块208并将DART模块208连接到SeRF模块220。RDI 204为共用接口,其配置用来允许在SeRF模块220和DART模块208不同变体之间的通信。在本实施方案中,RDI 204是SeRF模块220同样连接的被动主机主板。在另一个实施方案中,替代成为主机主板,RDI 204与SeRF模块220集成。当远程单元通过处理多个DART模块来在多频段上运行时,RDI 204提供分散的连接接口,允许每一个DART模块使用SeRF模块220发送RF数据样本。尽管图2描述了连接单个RDI的单个SeRF模块,本发明的实施方案不限于此。在替换实施方案中,SeRF模块可连接多个RDI,其每一个可连接多个DART。例如,在一个实施方案中,SeRF模块可连接达到3个RDI,其每一个可连接达到2个DART。
[0030] SeRF模块220提供了在RF、IF或基带数据样本的串行流(SeRF流)和高速光学串行数据流之间的双向转换。在该上行链路方向,SeRF模块220接收来自DART模块208处的即将到来的SeRF流并在通信链路130上将串行光学数据流发送给主机单元102。在该下行链路方向,SeRF模块220接收来自主机单元102处的光学串行数据流并将SeRF流提供给DART模块208。
[0031] 远程单元200进一步包括定位器接收机(LR)216以生成发送给远程单元200的用来确定用户单元位置的用户单元测距数据。在图2所示的实施方案中,LR 216通过天线212接收在远程单元200处接收到的RF信号的模拟信号馈给。在一个实施方案中,低噪声放大器214包括次级RF分接头,从其中LR 216接收该RF信号的模拟信号馈给。LR 216同样耦合SeRF模块220,通过提供到远程单元200和该主机单元102之间以太网管道的双向访问的接口222。在一个实施方案中,接口222是标准8位置8触点(8P8C)模块的插件
5/5e类别电缆的容器。在操作中,LR 216估算在天线212处接收到的RF信号,寻找来自特定用户单元的信号,如个人移动电话例如。例如,在一个实施方案中,LR 216估算特定通信信道的RF信号以为特定用户单元进行计时测量。当LR 216发现其所寻找的信号时,LR
216生成指示在该远程单元处接收到该信号的时间的消息。该消息这里被称作为用户单元测距数据。LR 216格式化该用户单元测距数据以在互联网协议(IP)网络上传输。随后LR
216将该用户单元测距数据输出给该SeRF模块220,其在该以太网管道上轮流路由该用户单元测距数据以传输到如SLC 140的用户定位器中心。如上所述的数字分布式天线系统因此包括用来传输数字化射频(RF)信号的第一带宽分区和实施用来传输如IP格式数据的用户单元测距数据的以太网管道的第二带宽分区。在一个实施方案中,LR 216包括“定位测量单元”,或“LMU”,由TruePosition, Inc.生产的装置,以及该用户定位器中心140包括由TruePosition, Inc.生产的网关移动定位中心。
[0032] 尽管图2(如上所述)和图4A和4B(如下所述)每一个描述了耦合SeRF模块的单个DART模块,单个远程单元外壳可在多个频段上运行并因此包括多个DART模块。在一个这样的实施方案中,如图2, 4A和4B所示系统将仅仅为每一个频段被复制一次。在一个可替换实施方案中,SeRF模块同样允许多个DART模块并行运行以在通信链路上与该主机单元进行高速光学串行数据流通信。在一个这样的实施方案中,SeRF模块积极地复用来自多个DART模块(每一个DART模块处理不同RF频段)的信号使得他们在单个传输通信链路上被同时发送。在一个实施方案中,SeRF模块将时钟信号提供给每一个DART模块实现其耦合以确保同步。
[0033] 图3是描述本发明的模块一个实施方案的方法的流程图。该方法开始于310,接收定位业务请求,当如手机的用户单元请求来自数字DAS范围内的定位业务时。在一个实施方案中,该定位业务请求能够包括求助的紧急事件911呼叫。在其他实施方案中,该定位业务请求将帮助一个或多个运行在该手机上的其他应用,如但不限于寻找附件商店的应用。当具有数字传输的分布式天线系统的至少一个远程单元天线传送无线模拟RF时接收到该定位业务请求。即,通过分别数字化该下行链路和上行链路RF信号来生成在该DAS主机单元和该远程单元之间传送的该下行链路和上行链路传输信号。该方法进行到315,其中将标准呼叫业务用于用户定位器中心以路由该定位业务请求。
[0034] 该方法进行到320,其中该用户定位器中心指示在地理区域内远程单元处的LR倾听来自该请求手机的信号。在一个实施方案中,通过在该DAS的数字传输内提供的以太网管道将发送到该LR的指令路由给该LR。该方法进行到330,其中该LR倾听来自该请求手机的信号。例如,在一个实施方案中,该LR扫描该RF信号以识别来自用户单元的紧急事件911呼叫。当该LR接收到该信号时(在340处确定),他们记录接收到该信号的时间(350)以生成用户单元测距数据并将用户单元测距数据发送回该用户定位器中心(360),通过在该DAS的数字传输内提供的以太网管道上发送IP格式消息。在一个实施方案中,当该用户定位器中心接收来自充足数量LR(通常三个或两个)处的用户单元测距数据时,该用户定位器中心基于在该用户单元测距数据中提供的信号接收时间数据来确定该手机的位置。在一个实施方案中,该用户定位器中心使用多点定位算法,其计算在多个远程单元处的LR所接收信号的到达时间差(TDOA)来确定该手机的位置估算。随后该位置估算可被发送给应急当局,或返回该手机。
[0035] 图4A是本发明的一个实施方案的远程单元400的可替换实施方案,如参照图1所述的远程单元106。远程单元400包括串行射频(SeRF)模块420,数模转换射频收发器(DART)模块408,RDI 424,线性电源放大器410,复用器411,天线412,低噪声放大器414,其中每一个参照图2如上所述运行。在一个实施方案中,低噪声放大器414与复用器411集成。
[0036] 远程单元400进一步包括定位器接收机(LR)416,用来生成用户单元测距数据用于确定传送到远程单元400的用户单元位置。SeRF模块420耦合RDI 424。RDI 424具有多个连接器,其每一个配置用来接收可插DART模块408并将DART模块408连接到SeRF模块420,在图2中如上所述。RDI 404进一步包括至少一个连接器以接收IR 416。在一个实施方案中,LR 416具有与DART模块408相同规格的接口用于插入RDI 404。
[0037] 在图4A所示的实施方案中,与其接收RF信号的模拟馈给,LR 416不如接收来自SeRF模块420的基带数据。即,SeRF模块420接收DART模块408生成的数字RF样本,其已经下转换成取样基带数字信号。即,该基带数字信号提供了DC中心基带RF信号的数字样本用于DART模块480所数字化的频谱。SeRF模块420包括环回特征430以将该取样基带数字信号提供给LR 416。尽管图4A仅仅描述了单个DART模块420,在可替换实施方案中,SeRF模块420能够环回来自耦合到SeRF模块420的任意数量DART模块处的取样基带数字信号。例如,可展现多个DART模块,当远程单元操作在多频段上传送和接收的RF信号时。
[0038] 在操作中,LR 416估算倾听来自特定用户单元处信号的取样基带数字信号,如个人移动电话例如。例如,在一个实施方案中,LR 416扫描该取样基带数字信号以识别来自用户单元的紧急事件911呼叫。当LR 416发现其寻找的信号时,LR 416生成用户单元测距数据,指示在该远程单元处接收到该信号的时间。LR 416格式化该用户单元测距数据用于在互联网协议(IP)网络上传送并将该用户单元测距数据输出到该SeRF模块420,其轮流将该用户单元测距数据在该以太网管道上路由以传输到如SLC 140的用户定位器中心。DART 480生成LR 416所关注RF频段的全下转换数字展示。该LR估算取样基带数字信号而不是模拟RF信号所具有的一个优点在于该LR不需要设计成实施模拟RF信号本身的数字取样和下转换,其能够导致LR的较便宜的设计和制作成本。
[0039] 在一个实施方案中,如图4A,LR 416同样耦合到SeRF模块420,通过提供到远程单元400和该主机单元之间以太网管道的双向访问的接口422。在一个实施方案中,接口422是标准8位置8触点(8P8C)模块的插件和5/5e类别电缆的容器。在一替换实施方案中,如图4B所示,到远程单元400和该主机单元之间以太网管道的双向访问可由LR 416通过一般在435处所示的RDI 424上直接访问。在这样的实施方案中,SeRF模块420将使用MAC地址对该用户单元测距数据打包,因而指定与LR 416相关的虚拟网络端口。
[0040] 在另一可替换实施方案中,SeRF模块420接收由DART模块408所生成的数字RF样本,其已经被下转换成基带数字样本。在操作中,LR 416估算如上所示寻找来自特定用户单元处信号的基带数字取样。本领域的一个普通技术人员在阅读本说明书后将理解到,DART模块可运行为可选地将该数字RF样本转换成中频(IF)样本,替代或补充基带数字样本。
[0041] 替代在分布式天线系统的远程单元处生成用户单元测距数据,可在该主机单元处生成该相同数据。例如,图5是描述本发明一个实施方案的主机单元(一般在500处示出)的方框图,如参照图1所述的该主机单元102。多个远程单元506耦合主机单元500,如参照图1所述,以形成数字DAS。主机单元500包括主机单元数模转换射频收发器(DART)模块508和主机串行射频(SeRF)模块520。SeRF模块520提供了到达与来自该远程单元506的在RF数据样本(SeRF流)的串行流和多个高速光学串行数据流之间的双向转换。每一个串行光学数据流包括用于传送下行链路和上行链路传输RF信号的数字传输,与在每一个远程单元506和主机单元500之间的以太网管道一样。在该上行链路方向,SeRF模块520接收了来自多个远程单元的即将到来的串行光学数据流并将每一个转换成数字化基带RF数据样本的串行流,其被合并成RF数据样本的宽带流。DART模块508提供了在SeRF模块520和一个或多个如BTS 110的基站之间的双向接口。与使用该远程单元一样,当主机单元520在具有多个基站的多频段上运行时,为每一个频段提供单独的DART模块508。主机
500同样保留具有至少一个提供到至少一个互联网网关入口的基站的以太网管道。定位器接收机(LR)530通过以太网链路525耦合到SeRF模块520的以太网端口接口524。以太网链路525可包括具有至少一个在接口525和LR 530之间路由数据的网络开关的局域网(LAN)、广域网(WAN)。LR 530进一步耦合到SeRF模块520以接收数字RF数据样本。SeRF模块520为LR 530提供了到来自远程单元506处RF数据的单个串行流的访问,在该数据被合并成该RF数据样本的宽带流之前。
[0042] 在一个实施方案内的操作中,LR 530选择从该远程单元之一处接收到的一个RF数据串行流,并倾听来自特定用户单元的信号,如个人移动电话例如。LR 530能够通过观察到来自在该远端中正运行的任意频段的任意时间槽的数据。例如,在一个实施方案中,LR530估算特定通信信道的RF信号以作出特定用户单元的计时测量。当LR 530发现其正寻找的信号时,LR 530生成指示在该远程单元处接收该信号时间的用户单元测距数据。因为在远程单元506处接收模拟RF信号的时间和在主机单元500处接收相应数字化RF数据样本的时间之间存在传播延迟,当生成该用户单元测距数据时必须计算该延迟。LR 530通过确定在主机单元500处接收该数字化RF数据样本的时间以及减去与该特定远程单元506相关的传播延迟时间来进行补偿。通过LR 530先前或周期测量可获知每一个远程单元506的传播延迟时间。LR 530所生成的用户单元测距数据因而展现了在该远程单元处接收该RF信号的时间。LR 530格式化该用户单元测距数据用于在互联网协议(IP)网络上传送并将该用户单元测距数据输出到该SeRF模块520,其轮流将该用户单元测距数据在该以太网管道上路由以传输到如SLC 140的用户定位器中心。在一个实施方案中,LR 530在来自多个远程单元506处的多个RF数据串行流上同时倾听来自特定用户单元的信号。在这样情况中,LR 530所生成的用户单元测距数据为传播延迟而调整,基于哪一个远程单元506接收到该相应模拟RF信号。在一个可替换实施方案中,LR 530包括数个单独定位器接收机,每一个指定用来观察来自特定远程单元的信号。在一个实施方案中,LR 530是远程可配置的,例如,从在用户定位器中心的管理接口处,用来寻找在特定远程单元天线处接收到的特定RF频段内的特定样本。
[0043] 数个装置可获得用来实施在本说明书中所述的本发明的系统和方法。作为上述任意装置的补充,这些装置包括但不限于数字计算机系统微处理器、可编程控制器、现场可编程阵列(FPGA)和特殊应用集成电路(ASIC)。因此本发明的其他实施方案是位于计算机可读媒体上的编程指令,其在由上述控制器实施时,使得该控制器实施本发明的实施方案。计算机可读媒体包括如计算机存储器的任意物理形式的装置,包括但不限于穿孔卡、磁盘或磁带、任意光学数据存储系统、快闪只读存储器(ROM)、非易失性ROM、可编程ROM(PROM)、可擦除可编程ROM(E-PROM)、随机访问存储器(RAM)或永久、半永久或暂时存储器储存系统或装置的任意其他形式。编程指令包括但不限于由计算机系统处理器所执行的计算机可执行指令和如超高速集成电路(VHSIC)硬件描述语言(VHDL)的硬件描述语言。
[0044] 尽管已经在这里示出和描述了特定实施方案,那些本领域普通技术人员应当理解,旨在获取相同目的的任意设置可替换该示出的特定实施方案。本申请打算覆盖本发明的任意调整或变体。因此,其明显用意是本发明仅仅由该权利要求和其等同形式进行限定。
QQ群二维码
意见反馈