改善系统性能的信道声响

申请号 CN200580027398.7 申请日 2005-08-09 公开(公告)号 CN101002498B 公开(公告)日 2012-02-08
申请人 美商内数位科技公司; 发明人 约瑟·S·李维;
摘要 传送器产生及传送低速率 信号 至其预期接收器。在接收该低速率信号时,该预期接收器产生及传送一信道发声响应(CSR),该信道发声响应为具有一预定传送格式及运载预定信息的一短突发。传送器接着分析该信道发声响并决定上链信道响应、估计下链信道响应,并以该分析及下链响应估计为 基础 来决定适当传送参数设定。该传送参数于媒体接入控制或物理层或两者组合中进行调整。依据该决定传送设定来调整其传送参数及调制具有用户数据的次载波之后,传送器于频宽较佳部分将该用户数据传送至接收器。较佳 实施例 中,传送器还产生及传送包含该决定传送参数设定,包含次载波调制信息的传送格式控制(TFC)至传送器。
权利要求

1.一种用于一基站的无线通信方法,该无线通信方法包含:
传送一信道声响响应要求到一无线传输/接收单元;
回应该信道声响响应要求而接收一信道声响响应,该信道声响响应以符号数与符号振幅而被定义;
分析该信道声响响应以估计一上链信道;
决定用于一上链多输入多输出传输的传送参数设定,该传送参数设定包括用于多个次载波的每一个的调制与编码参数,该多个次载波将根据所估计的上链信道而在多个天线中的至少一个被传送;及
使用所决定的传送参数设定而将用户数据传送到该无线传输/接收单元。
2.根据权利要求1所述的方法,其特征在于是使用一信道容量最佳化技术而通过所决定的调制与编码参数来将该用户数据调制至该次载波。
3.根据权利要求1所述的方法,其特征在于是使用一信道可靠性最佳化技术而通过所决定的调制与编码参数来将该用户数据调制至该次载波。
4.根据权利要求3所述的方法,其特征在于该信道可靠性最佳化技术为功率控制。
5.根据权利要求1所述的方法,其特征在于调整该传送参数步骤发生于一传送器的一媒体接入控制层。
6.根据权利要求1所述的方法,其特征在于调整该传送参数的步骤发生于一传送器的一媒体接入控制层及一物理层的组合中。

说明书全文

改善系统性能的信道声响

技术领域

[0001] 本发明有关无线通信系统。更特别是,本发明是改善无线通信系统信道及系统性能的方法及装置。

背景技术

[0002] 正交频分多路复用(OFDM)是涉及数据传送方案,其中用户数据是被分割为较小数据流并使用各具有较总可得传送信道为小的频宽的次载波来传送。正交频分多路复用的效率是产生自次载波的正交性。也就是说,次载波是被选择使其于传送期间彼此不干扰,而产生有效传送方案。
[0003] 多输入多输出(MIMO)是涉及无线传送及接收设计,其中传送器及接收器是运用多天线来传送及接收。多输入多输出系统可利用多天线出现所创造的空间分集或空间多路复用选择来增加产出。
[0004] 正交频分多路复用-多输入多输出系统的持续挑战为系统性能,也就是容量,可靠性等等。朝向此点,许多技术已被提出来改善如信道容量及/或可靠性。一该技术例是被称为″填充″,另一例为功率控制。水填充及功率控制是说明传送器使用来自系统中接收器的反馈信号来估计信道状况的处理。以这些估计为基础,传送器是尝试以考虑信道状况最佳化信道性能方式来传送用户数据。然而,与这些反馈信号相关的信号发送支出很显著,且通常限制系统性能任何潜在的增加。此外,产生及传送反馈信号是产生也限制系统性能潜在增加的延迟。这些反馈信号发送的缺点特别显著于具有快速变化信道状况的系统,传送大量数据的系统,及/或使用大量次载波的系统中。
[0005] 于是,预期具有一种有效估计目前信道状况来改善正交频分多路复用-多输入多输出系统的整体系统性能的方法及装置。

发明内容

[0006] 本发明为一种多输入多输出正交频分多路复用无线通信系统中改善系统性能的方法及装置。传送器是产生及传送低速率信号至其预期接收器。接收该低速率信号时,该预期接收器是产生及传送信道声响响应(CSR),该信道声响响应为具有预定传送格式且运载预定信息的一短突发。传送器接着分析该信道声响响应并决定上链信道响应,估计下链信道响应,并以该分析及下链响应估计为基础来决定适当传送参数设定。该传送参数可被调整于媒体接入控制或物理层或两者组合中。依据该被决定传送设定来调整其传送参数及调制具有用户数据的次载波之后,传送器是于频宽较佳部分传送该用户数据至接收器。较佳实施例中,传送器还产生及传送包含该被决定传送参数设定,包含次载波调制信息的传送格式控制(TFC)至接收器。附图说明
[0007] 图1为描绘改善多输入多输出正交频分多路复用通信系统的系统性能的信道声响方案流程图
[0008] 图2为被配置使用信道声响脉冲来改善系统性能的一多输入多输出正交频分多路复用传送器-接收器配对;及
[0009] 图3为依据本发明的一种多输入多输出正交频分多路复用无线通信系统,其中一基站及一无线传送/接收单元各包含一传送器-接收器配对。

具体实施方式

[0010] 在此,无线传输/接收单元(WTRU)是包含但不限于用户设备,移动台,固定或移动用户单元,呼叫器,或可操作于无线环境中的任何其他类型元件。当在此被称为基站的是包含但不限于B节点,地址控制器,接入点或无线环境中的任何其他接介装置。
[0011] 较佳实施例中,信道声响脉冲是被用来改善使用多输入多输出的正交频分多路复用系统中的信道及系统性能。例如,该声响脉冲是使多输入多输出-正交频分多路复用传送器得以考虑信道状况最佳化产出来评估目前信道状况及格式化传送数据分组。
[0012] 依据本实施例,多输入多输出-正交频分多路复用传送器是产生及传送如声响脉冲要求(CSRq)的低速率信号至其预期接收器。接收此要求时,该接收器是产生信道声响响应(CSR)并将其传送至该要求传送器。此信道声响响应为被可确保其成功接收被给定特定系统配置及环境的预定传送参数格式化的一短突发。被包含于该信道声响响应中的为传送器已知的信息。接收该信道声响响应时,传送器是处理该信息并决定目前信道状况。以这些决定为基础,传送器是使用包含水填充及功率控制的任何其他信道最佳化技术来调制用户数据至次载波并调整其传送参数来最大化信道容量,可靠性及/或用户所要求的任何其他信道性能特征。使用信道声响响应脉冲而非传统反馈信号来评估信道状况,是促使传送器不产生传统信道改善方法的所有支出及延迟下得以格式化及传送最佳化信道性能的数据分组。
[0013] 现在参考图1,其是描绘改善多输入多输出正交频分多路复用无线通信系统的系统性能的信道声响方案流程图100。传送数据之前,传送器是以低速率信号型式产生信道声响响应要求并将其传送至接收器(步骤102)。此要求较佳为包含来源(也就是传送器)及目的地(也就是预期接收器)的低数据速率信号,如数据分组标头。接收及处理该低速率信号时(步骤104),该接收器是产生及传送较佳为短突发或脉冲的信道声响响应(步骤106)至该传送器。信道声响响应是较加被预定义其尺寸,符号数,振幅等以确保被给定特定系统配置及/或接收器被分配资源的传送器处的接收。被包含于该信道声响响应中的为传送器可评估目前信道状况的信息。
[0014] 传送器处,信道声响响应被接收,而被传送为部分信道声响响应的信息是被处理(步骤108)且被用来特征化目前信道状况。此特征化是包含经由测量被接收于各天线处的各次载波的振幅,相位及品质;及估计下链信道响应。例如,若特定次载波指示高误差率,则传送器将不调制具有大量数据的次载波。相反地,若特定次载波抵达具有相当低误差率的传送器处,则传送器将大量调制具有数据的次载波。
[0015] 一旦信道状况于上链中已知且被估计用于下链(步骤110),则传送器是较佳使用水填充,功率控制或类似技术来决定适当传送参数设定(步骤112),(如天线选择,天线功率,频宽选择,载体功率,载体编码,载体调制等),适当调整参数(步骤114),及调制其次载波(步骤116)。应注意,参数调整可发生于媒体接入控制或物理层或两者组合中。该被格式化数据分组接着于频宽被选择部分上被传送至接收器(步骤118)。可选择地,传送器可追踪被导出自目前及先前信道声响响应测量的信道性能估计(步骤112a),促使传送器预测未来信道状况用于最佳化未来数据传送的信道性能。
[0016] 应了解,即使特定次载波及/或天线配对性能相当快速改变,通信链结整体信道性能仍可维持相对静态。若通信链结具有充足频宽及空间分集,则此特别为真。于是,被传送数据分组尺寸可被固定,仅留下编码参数被调整,其可以被接收信道声响响应为基础近乎即时发生。传送固定尺寸数据分组大大简化媒体接入控制层复杂性。然而,物理层中需添加若干复杂性,特别是若物理层被配置决定及实施最后编码方案时。
[0017] 传送被格式化数据分组之前,后或并行(步骤118),传送器可选择性产生及传送传输格式控制(TFC)信号至接收器(步骤120)。此传输格式控制信号是包含有关传送参数设定及识别何次载波被何调制方案(如四相移相键控,16正交振幅调制,256正交振幅调制等),及/或何编码类型及数据速率被使用的信息。提供此类信息至接收器做为部分传输格式控制信号为简化接收器解码复杂性的增强。可替代是,若传输格式控制信号不被产生或不被成功接收于接收器处,则接收器可经由此后被称为″隐蔽传输格式控制检测″的试行错误法来自行决定传输格式控制信息。
[0018] 为了进一步改善整体系统性能,传送器及/或接收器可监视系统中的其他接收器所发出的信道声响响应信号,评估它们及发出信道声响响应的接收器间的通信链结,及维持这些信道状况记录用于未来与该接收器通信。
[0019] 现在参考图2,图中示出依据本发明被配置的多输入多输出-正交频分多路复用传送器202及接收器204。被包含于传送器202中的为可产生低速率声响响应信号,可处理被接收信道声响响应信号,及较佳可评估自己及接收器间的通信链结信道状况的信道声响信号处理器201。此外,传送器202包含可设定包含数据速率,编码方案,分组格式等的数据传送参数的一媒体接入控制层处理器203,可依据该媒体接入控制层参数设定处理器203或选择性依据物理层处理器205自己传送参数设定来展开数据位跨越次载波及跨越传送天线2071,2072,…207n的一物理层处理器205,可处理来自媒体接入控制层处理器203及/或物理层处理器205的信息的一选择传输格式控制处理器206,可监视被传送于其他接收器-传送器配对间的信道声响响应信号的一选择信号监视处理器208,可维持信道状况及被决定传送参数记录的一选择存储器元件210,及多个传送/接收天线2071,2072,…
207n。
[0020] 被包含于接收器204中的为多个传送/接收天线2091,2092,…209n,可处理低速率声响要求,可产生信道声响响应信号,及较佳可评估自己及其他传送器及/或接收器间的通信链结信道状况的一信道声响处理器211。此外,接收器204包含可经由隐蔽检测来处理被接收传输格式控制信息及决定传输格式控制信息的一选择传输格式控制处理器213,依据该传输格式控制处理器213所提供的信息来解码及解调被接收数据分组的一数据分组处理器215,可监视被传送自其他接收器的信道声响响应信号的一选择信号监视处理器217,可维持信道状况记录的一存储器元件219,及可以该信道记录为基础来调整传送参数的一选择调整处理器221。
[0021] 为了简化及单独描述起见,图2所示的传送器202及接收器204此后是被说明为独立操作于多输入多输出-正交频分多路复用系统中的独立装置。然而,应了解如图3所示,这些装置202,204是较佳被配置共存为单多输入多输出-正交频分多路复用网路装置的内部相关组件,如基站或无线传送/接收单元。图3的多输入多输出-正交频分多路复用无线通信系统300是包含通信于无线接口上的一基站301及无线传送/接收单元302,可控制该基站301的一无线网路控制器250。如图示,基站301及无线传送/接收单元是包含一具本发明被配置的传送器202-接收器204配对。
[0022] 再参考图2,传送器202中,处理数据流Tx以便传输之前,低速率信道声响要求信号是被产生于信道声响信号处理器201中。此声响要求接着被传送至传送天线2071,2072,…207n以便经由无线接口传送至接收器204。接收该低速率要求时,接收器204是处理该要求及产生信道声响响应于其信道声响处理器211中。如上述,信道声响响应较佳为被格式化来确保接收于传送器202处且包含传送器202已知用于评估目前信道状况的信息的短突发。一旦被产生,信道声响响应是被传送至接收器的天线2091,2092,…209n以便传送至传送器202。
[0023] 信道声响响应接收被接收于传送器202且被处理于传送器的信道声响处理器201中。信道声响处理器201是分析被传送作为信道声响响应部分的信息,并使用该信息来特征化上链中的目前信道状况及估计下链信道响应。这些信道特征化接着被传送至媒体接入控制层处理器203及/或物理层处理器205,其是被用来设定数据传送参数,包含次载波分配,传送天线分配,次载波传送功率,传送天线功率,次载波编码,频宽选择等。可选择是,有关选择传送的频宽预期部分,传送器202可包含被配置操作为频宽选择单元的一独立处理器(无图示)。物理层处理器205接着使用如水填充,信道可靠性最佳化方案或依据传送参数设定的任何其他信道容量最佳化方案的信道容量最佳化方案来格式化该传送分组数据,调制具有用户数据的各种次载波(无图示),及映射该被调制次载波至传送/接收天线2071,2072,…207n。被格式化数据分组是使用频宽较佳部分被传送至传送/接收天线2071,2072,…207n以便传送至接收器204。可选择地,传送器202可维持信道状况估计记录用于最佳化传送未来数据分组。
[0024] 传送被格式化数据分组之前,后或并行,选择传输格式控制处理器206可经由传送/接收天线2071,2072,…207n于无线接口上产生及传送传输格式控制信号。此传输格式控制信号是对接收器204指示该被传送数据分组的传送参数设定及识别位置(也就是数据位被传送至何次载波上),被用于该被传送数据分组的编码方案及调制方案(如四相移相键控,16正交振幅调制等)。
[0025] 若传输格式控制信号被传送,则接收器204是接收该传输格式控制信号并将其处理于其选择传输格式控制处理器213中。此传输格式控制处理器213是从该传输格式控制信号撷取格式化及调制信息,并将其传送至数据分组处理器215以便用于解码及解调被接收数据分组。否则,若传输格式控制信号不被接收器204成功检测,则传输格式控制处理器213使用隐蔽检测类型处理来收集可得传输格式控制信息。
[0026] 为了进一步改善系统容量及效率,传送器202及接收器204可使用其个别信号监视处理器208,217来监视其他接收器(无图示)所产生的信道声响响应,此后并评估及估计它们及其他接收器间的信道状况。传送器202及接收器204中,其个别信道声响处理器201,211可被配置执行这些信道评估及估计。可替代是,传送器202及接收器204各可包含被配置分别当作可评估上链信道状况的信号分析器及可以该信道评估为基础来估计下链信道状况的估计器的附加处理器(无图示)。此信道状况信息可被传送器202及接收器
204用来维持信道状况记录以便用于决定未来与接收器通信的传送参数。此记录可被储存于其个别存储器元件210,219中。
[0027] 依据本发明,传送器202可再使用较佳被储存于选择存储器元件210中的传送参数设定,其是通过媒体接入控制层处理器203及/或物理层处理器205设定用于未来信道声响响应指示信道状况改变时的后续数据传送。可替代是,传送器202可使用来自先前被接收信道声响响应也被储存于选择存储器元件210或次级存储器元件(无图示)中的记录结果,来预测信道状况改变何时会发生并同时调整传送参数。同样地,接收器204可维持其选择存储器元件219中的信道状况记录以便经由其选择信道声响处理器211来调整传送参数。
[0028] 虽然不被特定明定,但传送器要求来自接收器的信道声响信息的频率是视各种因子而定。该因子例是包含但不限于:系统配置,次载波数,空间信道数,通信链结易变性,通信环境及类似者。通常,传送器必须要求信道声响响应通常足以维持信道精确知识。例如,传送器可通过预定时间区间要求信道声响响应来开始。当传送器开始累积信道声响响应数据时,传送器可使用此数据来估计信道状况改变的速率,并依据该改变速率来要求信道声响响应。
[0029] 本发明可被实施于如预期的任何类型无线通信系统中。例如,本发明可被实施于任何类型802型系统,通用移动电信系统-频分双工,通用移动电信系统-时分双工,时分同步码分多路访问,码分多路访问2000,正交频分多路复用-多输入多输出或任何其他类型无线通信系统。本发明还可被实施于集成电路上,如特定应用集成电路(ASIC),多重集成电路,逻辑可编程栅极阵列(LPGA),多重逻辑可编程栅极阵列,分离元件,或集成电路,逻辑可编程栅极阵列及分离元件。
[0030] 虽然本发明已以各种实施例做说明,但熟悉本技术人士将了解被描述于以下本申请权利要求范围中位于本发明范畴内的其他变异。再者,虽然本发明的特性及元件被以特定组合说明于较佳实施例中,但各特性及元件可被单独使用(不需较佳实施例的其他特性及元件),或有或无本发明其他特性及元件的各种组合中。
QQ群二维码
意见反馈