接触供电装置

申请号 CN201280025645.X 申请日 2012-02-08 公开(公告)号 CN103563215B 公开(公告)日 2016-05-04
申请人 日产自动车株式会社; 发明人 今野正希; 田中广志; 今津知也;
摘要 本 发明 提供一种检测混入到送电线圈和受电线圈之间的异物的非 接触 供电装置。本发明的非接触供电装置具备:第二线圈,其至少通过磁耦合在与第一线圈之间以非接触的方式对电 力 进行送电或受电;多个 传感器 ,其用于检测第一线圈和第二线圈之间的 位置 偏离;位置检测单元,其根据多个传感器各自的输出值,检测第一线圈和第二线圈的相对位置;异物检测单元,其对多个传感器各自的输出值进行比较,根据比较结果检测第一线圈和第二线圈之间的异物。
权利要求

1.一种非接触供电装置,具备:
第二线圈,其至少通过磁耦合与第一线圈之间以非接触的方式输送或接受电
多个传感器,其用于检测上述第一线圈与上述第二线圈之间的位置偏离;
位置检测单元,其将上述多个传感器各自的输出值与规定的基准值进行比较,检测上述第一线圈与上述第二线圈的相对位置;以及
异物检测单元,其将上述多个传感器各自的输出值两两之间的差的绝对值与规定的异物判断阈值进行比较,根据比较结果检测上述第一线圈与上述第二线圈之间有无异物。
2.根据权利要求1所述的非接触供电装置,其特征在于,
上述多个传感器至少由四个传感器构成,
上述位置检测单元将上述四个传感器中的至少三个传感器各自的输出值与上述规定的基准值进行比较,来检测上述第一线圈与上述第二线圈的相对位置。

说明书全文

接触供电装置

技术领域

[0001] 本发明涉及一种非接触(即,无线的或感应的)供电装置。

背景技术

[0002] 已知一种送电系统,具备:送电单元;受电单元,其以非接触的方式接受来自上述送电单元的电;效率检测单元,其检测上述送电单元和上述受电单元之间的传输效率;判定单元,其判定检测出的上述传输效率是否为规定值以上;控制单元,其在上述传输效率小于上述规定值的情况下,判定为由于障碍物等而妨碍正常的送电,暂时中止上述送电单元的送电,在规定时间后再开始微小电力的送电(专利文献1)。
[0003] 但是,在送电线圈和受电线圈之间产生了位置偏离的情况下传输效率也下降,因此无法根据传输效率的变化检测混入到送电线圈和受电线圈之间的异物。
[0004] 本发明要解决的课题是提供一种检测混入到送电线圈和受电线圈之间的异物的非接触供电装置。
[0005] 专利文献1:日本特开2010-119246号公报

发明内容

[0006] 本发明为了解决上述问题,而具备:位置检测单元,其根据用于检测第一线圈和第二线圈之间的位置偏离的多个传感器各自的输出值,检测第一线圈和第二线圈的相对位置;异物检测单元,其对多个传感器各自的输出值进行比较,根据比较结果检测第一线圈和第二线圈之间的异物。
[0007] 根据本发明,在第一线圈和第二线圈之间混入了异物的情况下,上述传感器的输出值变化,因此利用用于检测第一线圈和第二线圈的相对位置的传感器,还能够检测出线圈之间的异物。附图说明
[0008] 图1是本发明的实施方式涉及的非接触充电系统的框图
[0009] 图2是包含在图1的非接触充电系统中的送电线圈、接收部、受电线圈以及发送部的立体图。
[0010] 图3是包含在图1的非接触送电系统中的送电线圈和受电线圈位置未偏离而对置的状态的平面图(a)、立体图(b)、(c)。
[0011] 图4是表示包含在图1的非接触送电系统中的送电线圈和受电线圈位置偏离而对置的状态的平面图(a)、立体图(b)、(c)。
[0012] 图5是表示包含在图1的非接触送电系统中的送电线圈和受电线圈一边位置偏离一边对置、在送电线圈和受电线圈之间存在异物的状态的平面图(a)、立体图(b)、(c)。
[0013] 图6是表示包含在图1的非接触充电系统中的非接触供电装置的控制步骤的流程图
[0014] 图7是表示图6的远程通信控制的控制步骤的流程图。
[0015] 图8是表示图6的位置检测控制的控制步骤的流程图。

具体实施方式

[0016] 以下,根据附图说明本发明的实施方式。
[0017] 图1是本发明的一个实施方式的具备包含非接触供电装置的车辆200和供电装置100的非接触充电系统的框图。此外,本例子的非接触供电装置的车辆侧的单元安装在电动汽车中,但也可以是安装在混合车辆等车辆。
[0018] 如图1所示,本例子的非接触充电系统是以下的系统,即具备包含车辆侧的单元的车辆200、作为地面侧单元的供电装置100,从设置在供电站等的充电装置100以非接触的方式供给电力,对设置在车辆200的电池28进行充电。
[0019] 充电装置100具备电力控制部11、送电线圈12、接收部13、无线通信部14、控制部15。供电装置100被设置在车辆200停车的停车位,是在车辆200停车在规定的停车位置时通过线圈之间的非接触送电而供给电力的地面侧的单元。
[0020] 电力控制部11是用于将从交流电源300发送的交流电变换为高频的交流电而送电到送电线圈12的电路,具备整流部111、PFC(Power Factor Correction:功率因数)电路112、逆变器113、传感器114。整流部111与交流电源300电气连接,整流部111是对来自交流电源的输出交流电力进行整流的电路。PFC电路112是用于通过对来自整流部111的输出波形进行整流来改善功率因数的电路,被连接在整流部111和逆变器113之间。逆变器113是包含PWM控制电路等的电力变换电路,PWM控制电路具有平滑电容器、IGBT等开关元件,逆变器
113根据控制部15的开关控制信号将直流电变换为高频的交流电,供给到送电线圈12。传感器114连接在PFC电路112和逆变器113之间,检测电流电压。送电线圈12是用于向设置在车辆200侧的受电线圈22以非接触的方式供给电力的线圈,设置在设置有本例子的非接触供电装置的停车位。
[0021] 在车辆200停车在规定的停车位置时,送电线圈12在受电线圈22的下部,与受电线圈22保持距离地定位。送电线圈12是与停车位的表面平行的圆形形状的线圈。
[0022] 接收部13是由接收用的天线构成的传感器,设置在作为地面侧的供电装置100,通过测定接收用天线的附近磁场,来接收从发送部23发送的电磁波。针对接收用天线例如使用磁场天线等。另外,相对于后述的无线通信部14和无线通信部24之间的通信频率,将在接收部13和发送部23之间收发的电磁波的频率设定为低的频率。另外,该电磁波的频率是包含于在智能钥匙等车辆周边设备中使用的频带中、或接近该频带的频率。与后述的无线通信部14和无线通信部24之间的通信相比,在接收部13和发送部23之间的通信中使用适合于近距离的通信方式。
[0023] 无线通信部14与设置在车辆200侧的无线通信部24双向地进行通信,无线通信部14被设置在作为地面侧的供电装置100。针对无线通信部14和无线通信部24之间的通信频率,设定比接收部13和发送部23之间的信号的频率、在智能钥匙等车辆周边设备中使用的频率高的频率,因此,即使在无线通信部14和无线通信部24之间进行通信,车辆周边设备也不受到该通信的干扰。在无线通信部14和无线通信部24之间的通信中例如使用各种无线LAN(局域网)方式,与接收部13和发送部23之间的通信相比,能够使用适合于远距离的通信方式。
[0024] 控制部15是控制供电装置100整体的部分,具备距离测定部151、位置检测部152以及异物检测部153,控制电力控制部11、送电线圈12、接收部13和无线通信部14。控制部15通过无线通信部14和无线通信部24之间的通信,将表示开始从供电装置100的电力供给的控制信号发送到车辆200侧,从车辆200侧接收表示希望从供电装置100接受电力的控制信号。控制部15根据传感器114的检测电流,进行逆变器113的开关控制,控制从送电线圈12发送的电力。
[0025] 车辆200具备受电线圈22、发送部23、无线通信部24、充电控制部25、整流部26、继电器部27、电池28、逆变器29、以及达30。受电线圈22被设置在车辆200的底面(底盘)等后方的车轮之间。另外,在该车辆200停车在规定的停车位置时,受电线圈22在送电线圈12的上部,与送电线圈12保持距离地定位。受电线圈22是与停车位的表面平行的圆形形状的线圈。
[0026] 发送部23是由发送用的天线构成的传感器,设置在车辆200,向接收部13发送电磁波。对发送用天线例如使用电场天线等。无线通信部24与设置在供电装置100侧的无线通信部14双向地进行通信,设置在车辆200。
[0027] 整流部26与受电线圈22连接,由将通过受电线圈22接受的交流电整流为直流的整流电路构成。继电器部27具备通过控制部25控制对导通和断开进行切换的继电器开关。另外,继电器部27通过将该继电器开关设为断开,来切断包含电池28的强电系统与成为充电的电路部的受电线圈22和整流部26的弱电系统。
[0028] 电池28通过连接多个充电电池而构成,成为车辆200的电力源。逆变器29是具备IGBT等开关元件的PWM控制电路等的控制电路,根据开关控制信号,将从电池28输出的直流电变换为交流电,供给到马达30。马达30例如由三相的交流电动机构成,成为用于驱动车辆200的驱动源。
[0029] 充电控制部25是用于控制电池28的充电的控制器,对发送部23和无线通信部24进行控制。充电控制部25通过无线通信部24和无线通信部14的通信,向控制部15发送表示开始充电的信号。另外,充电控制部25通过CAN通信网与未图示的控制车辆200整体的控制器连接。该控制器管理逆变器29的开关控制、以及电池28的充电状态(SOC)。充电控制部25在通过该控制器根据电池28的SOC达到了满充电的情况下,向控制部15发送表示结束充电的信号。
[0030] 在本例子的非接触供电装置中,在送电线圈12和受电线圈22之间,通过电磁感应作用在非接触状态下进行高频电力的送电和受电。换言之,在向送电线圈12施加电压时,在送电线圈12和受电线圈22之间产生磁耦合,从送电线圈12向受电线圈22供给电力。
[0031] 接着,使用图2,说明接收部13和发送部23的结构。图2是作为本例子的非接触供电装置的一部分的送电线圈12、发送部13、受电线圈22以及发送部23的立体图。
[0032] 接收部13由四个接收用天线13a~13d构成,接收用天线13a~13d被设置在送电线圈12的周围。另外,接收用天线13a~13d被配置为相对于送电线圈12的中心而成为对象。发送部23由一个发送用天线构成,该发送用天线被设置在受电线圈23的中心点。
[0033] 送电线圈12和接收部13被设置在作为地面侧的供电装置100,因此送电线圈12和接收部13各自的位置不变。另一方面,受电线圈22和发送部23被设置在车辆200,因此与车辆200相对于规定的停车位的停车位置对应地,受电线圈22和发送部23各自的位置相对于送电线圈12和接收部13各自的位置相对地变化。
[0034] 在将车辆200停车在规定的停车位使得受电线圈22的中心点和送电线圈12的中心点在各个线圈面的方向、换言之在受电线圈22和送电线圈12的平面方向上吻合的情况下,将接收部13和发送部23配置为从接收用天线13a~13d各自的位置到发送部23的位置的距离分别相等。
[0035] 接收用天线13a~13d分别接收从发送部23的天线发送的信号。另外,在受电线圈22的中心点和送电线圈12的中心点在受电线圈22和送电线圈12的平面方向上吻合的情况下,通过接收用天线13a~13d分别接收的信号强度相等。另一方面,在受电线圈22的中心点和送电线圈12的中心点偏离的情况下,通过接收用天线13a~13d分别接收的信号强度不相等。即,本例子如后述的那样,通过根据由接收部13和发送部23构成的多个传感器的输出值检测送电线圈12和受电线圈22的相对位置,来检测线圈的位置偏离。
[0036] 接着,使用图1和图2,说明控制部15和充电控制部25的控制内容。
[0037] 作为初始化控制,控制部15进行系统检查,即诊断供电装置100的各系统是否正常动作。作为初始化控制,充电控制部25同样进行系统检查,即诊断车辆200的充电系统是否正常动作。在系统检查的结果是在车辆200中发生了系统异常的情况下,向车辆200的用户通知,在充电装置100中发生了系统异常的情况下,向管理充电装置100的中心等通知。另一方面,在系统检查正常的情况下,控制部15使无线通信部14启动,设置为能够接收信号的状态。此外,例如以规定的周期定期地进行供电装置100侧的系统检查,例如在用于驱动车辆200的主开关导通时进行车辆200侧的系统检查。
[0038] 控制部15和充电控制部25分别控制无线通信部14和无线通信部24,进行以下的远程通信控制。首先,充电控制部25通过设置在车辆200的GPS功能,取得车辆200的当前地点的信息,判断车辆的当前地点是否处于预先设定的充电指定区域内。在此,充电指定区域是指与各供电装置100对应地分别设定的范围,例如是在地图上显示为以供电装置100的位置为中心的圆形的范围。车辆200处于充电指定区域内表示在对电池28进行充电时通过与该充电指定区域对应的供电装置100进行充电。
[0039] 另外,在车辆200的当前地点处于充电指定区域内的情况下,充电控制部25启动无线通信部24,成为能够在无线通信部14和无线通信部24之间进行通信的状态。当成为能够在无线通信部14和无线通信部24之间进行通信的状态时,充电控制部25从无线通信部24向无线通信部14发送用于建立连接的信号。然后,控制部15将表示接收到该信号的信号从无线通信部14回送到无线通信部24。由此,在无线通信部14和无线通信部24之间建立连接。
[0040] 另外,充电控制部25通过无线通信部14和无线通信部24之间的通信向控制部15发送车辆200的ID。控制部15判定从车辆200侧发送的ID是否与预先登记在控制部15中的ID符合,由此进行ID认证。在本例子的非接触送电系统中,预先通过ID对每个供电装置100登记能够送电的车辆200。因此,通过上述的ID认证,能够对与登记ID符合的车辆200进行送电。
[0041] 当连接建立和ID认证结束时,车辆200逐渐接近与充电指定区域对应的供电装置100,充电控制部25以规定的周期从无线通信部24向无线通信部14发送信号。控制部15通过距离测定部151测定车辆200和供电装置100之间的距离。无线通信部14接收从无线通信部
24周期地发送的信号。距离测定部151根据接收到的信号的电场强度,测定车辆200和供电装置100之间的距离。
[0042] 在控制部15中预先设定用于表示车辆200和供电装置100之间的距离接近而送电线圈12和受电线圈22在平面方向上的线圈之间的距离接近的阈值,作为车辆接近阈值。接收信号的强度与车辆200和供电装置100之间的距离具有相关性,因此在本例子中,通过信号强度来规定车辆接近阈值。
[0043] 控制部15将接收信号的电场强度和车辆接近阈值进行比较,判定车辆200和供电装置100之间的距离是否比规定的距离短。另外,当车辆200和供电装置100之间的距离比规定的距离短时,控制部15启动接收部13,另外从无线通信部14向无线通信部24发送控制信号。充电控制部25在接收到该控制信号时,使发送部23启动。
[0044] 由此,本例子在不进行接收部13和发送部23的信号的收发,而车辆200接近了供电装置100的情况下,使接收部13和发送部23启动,进行信号的收发。
[0045] 接着,控制部15和充电控制部25在结束上述远程通信控制时,进行以下的位置检测控制。充电控制部25在确认了车辆200已经停车时,从发送部23的发送天线向接收部13的接收用天线13a~13d发送信号。控制部15测定通过各接收用天线13a~13d接收到的信号的输出值,首先判定接收用天线13a~13d和发送天线是否正常。作为用于判定天线异常的异常判定阈值,预先在控制部15中设定上限值和下限值。如果接收用天线13a~13d的全部输出值在从下限值到上限值的范围内,则控制部15判定为接收部13和发送部23正常动作。另一方面,在接收用天线13a~13d的输出值比上限值高、或比下限值低的情况下,控制部15判定为接收部13和发送部23的至少一方故障。然后,在判定为接收部13或发送部23故障的情况下,控制部15经由无线通信部14和无线通信部24向充电控制部25发送表示异常的信号,充电控制部25向用户通知接收部13或发送部23的异常。或者,控制部15向管理送电控制部100的中心通知接收部13或发送部23的异常。
[0046] 在接收部23和发送部23正常的情况下,控制部15按照以下的要领,通过位置检测部152检测线圈的位置偏离、换言之送电线圈12和受电线圈22的重叠状态,通过异物检测部153检测存在于线圈之间的异物。使用图3~图5,分别说明线圈的位置偏离的检测控制以及检测线圈之间的异物的控制。图3是表示送电线圈12和受电线圈22没有位置偏离而对置的状态的平面图(a)、立体图(b)、(c)。图4是表示送电线圈12和受电线圈22产生位置偏离而对置的状态的平面图(a)、立体图(b)、(c)。图5是相对于图4表示在送电线圈12和受电线圈22之间存在异物的状态的平面图(a)、立体图(b)、(c)。X轴和Y轴表示送电线圈12和受电线圈
22的平面方向,Z轴表示高度方向。
[0047] 如图3所示,在送电线圈12和受电线圈22的平面方向上,送电线圈12的中心点和受电线圈22的中心点一致的情况下,从发送部23的发送天线到接收部13的各接收用天线13a~13d的各个距离相等,因此,通过接收用天线13a~13d接收的信号的输出值成为相同的值。在此,将图3所示的情况下的各接收用天线13a~13d的输出值设为S。
[0048] 另一方面,如图4所示,在受电线圈22相对于送电线圈12在X轴方向偏离的情况下,从发送部23到接收用天线13a~13d的距离比从发送部23到接收用天线13b、13c的距离短。另外,从发送部23到接收用天线13a、13d的距离比图3所示的从发送部23到各接收用天线
13a~13d的距离短,因此接收用天线13a、13d的输出值比输出值(S)大,例如为S+30。另一方面,从发送部23到接收用天线13b、13c的距离比图3所示的从发送部23到各接收用天线13a~13d的距离长,因此接收用天线13b、13c的输出值比输出值(S)小,例如为S-30。
[0049] 因此,位置检测部152对接收用天线13a~13d的输出值和成为基准的输出值S进行比较,计算接收用天线13a~13d的各输出的偏差,由此检测受电线圈22相对于输电线圈12的相对位置。
[0050] 接着,说明异物检测部153的异物检测的控制内容。如图5所示,在与图4同样的线圈的位置关系中,在接收用天线13a的附近存在异物40的情况下,从发送部23向接收用天线13a发送的信号被异物40遮挡,因此接收用天线13a的输出值比图4的接收用天线13a的输出值(S+30)小,例如为S-600。另一方面,接收用天线13b~13d的输出值成为与图4的接收用天线13b~13d的输出值相同的值,例如分别为S-30、S-30和S+30。
[0051] 异物检测部153取得接收用天线13a~13d的输出值各自的差的绝对值,对该差的绝对值和阈值进行比较,在该差比阈值大的情况下,判定为在线圈之间存在异物。该阈值是用于判定是否存在异物的异物判定阈值,是预先设定的值。在本例子中,将异物判定阈值设为60。
[0052] 在图4和图5所示的例子中,在将接收用天线13a~13d的输出值分别设为a~d时,在图4所示的例子中,由异物检测部153进行运算使得各个差的绝对值如下。
[0053] 公式1
[0054] |b-a|=60  |c-a|=60  |d-a|=0
[0055] |c-b|=0   |d-b|=60  |d-c|=60
[0056] 然后,异物检测部153对上述各个差的绝对值和异物判定阈值进行比较,全部差成为异物判定阈值(=60)以下,因此,判定为在送电线圈12和受电线圈22之间不存在异物。
[0057] 另一方面,在图5所示的例子中,由异物检测部153进行运算使得各个差的绝对值如下。
[0058] 公式2
[0059] |b-a|=570  |c-a|=570  |d-a|=630
[0060] |c-b|=0    |d-b|=60   |d-c|=60
[0061] 异物检测部153将上述各个差的绝对值和异物判定阈值进行比较,差|b-a|、|c-a|和|d-a|比异物判定阈值大,因此判定为存在异物。进而,在比异物判定阈值大的差中,输出值a是共通的,因此异物检测部153能够判定为在接收用天线13a的附近存在异物。由此,异物检测部153检测在送电线圈12和受电线圈22之间是否存在异物,确定异物的位置。
[0062] 控制部15经由无线通信部14和无线通信部24之间的通信,将由位置检测部152检测出的受电线圈22相对于送电线圈12的相对位置发送到车辆200侧。另外,控制部15在通过异物检测部153检测出异物的情况下,经由无线通信部14和无线通信部24之间的通信发送到车辆200侧。
[0063] 然后,控制部15和充电控制部25在结束了上述位置检测控制时,进行以下的充电控制。充电控制部25根据由无线通信部24接收到的线圈的位置偏离的信息,计算充电时间。从送电线圈12向受电线圈22供给的电力的送电效率依存于送电线圈12和受电线圈22的耦合系数,该耦合系数与送电线圈12和受电线圈22的相对位置关系相关。因此,充电控制部25针对从送电线圈12发送的电力,如果知道送电线圈12和受电线圈22的相对位置,则能够计算出由受电线圈22接受的电力。然后,充电控制部25根据与基于线圈的位置偏离的受电电力对应的充电电力、以及由未图示的控制器管理的电池28的SOC,能够计算出充电时间。然后,在用户判断为在由充电控制部25计算出的充电时间内进行充电即可的情况下,根据用户的操作,充电控制部25通过无线通信部14和无线通信部24之间的通信,向供电装置100发送表示开始充电的信号。控制部15根据该信号,开始送电。另一方面,在用户判断为不在由充电控制部25计算出的充电时间内进行充电的情况下,用户为了缩短充电时间,使得再次停车,减小线圈的位置偏离。充电控制部25在电池28成为满充电时,从无线通信部24向无线通信部14发送表示结束充电的控制信号,控制部15根据该控制信号停止送电。
[0064] 另外,充电控制部25在通过无线通信部24接收到表示检测出异物的信号的情况下,经由未图示的控制器,向用户通知异物的存在。用户通过根据通知排除异物,能够使得开始充电。另外,控制部15在检测出异物的情况下不进行送电。
[0065] 接着,使用图6~图8说明本例子的非接触送电系统的控制步骤。图6是表示本例子的非接触送电系统的控制步骤的流程图,图7是表示图6的远程通信控制的控制步骤的流程图,图8是表示图6的位置检测控制的控制步骤的流程图。
[0066] 在步骤S1中,控制部15和充电控制部25进行系统检查来作为初始化控制。在步骤S2中,控制部15和充电控制部25进行远程通信控制。
[0067] 对于步骤S2的远程通信控制,如图7所示,在步骤S21中,充电控制部25通过未图示的控制器的GPS功能,取得车辆200的当前地点。在步骤S22中,充电控制部25判定所取得的当前地点是否处于供电装置100的充电指定区域内。在当前地点不处于充电指定区域内的情况下,返回到步骤S21。在当前地点处于充电指定区域内的情况下,在步骤S23中,充电控制部25启动无线通信部24。
[0068] 在步骤S24中,控制部15和充电控制部25收发用于在无线通信部14和无线通信部24之间建立连接的信号,判定连接是否建立。在连接没有建立的情况下,返回到步骤S24,再次在无线通信部14和无线通信部24之间收发信号。在连接建立了的情况下,在步骤S25中,充电控制部25向供电装置100发送车辆200的ID。控制部15对通过无线通信部14接收到的信号所包含的ID、登记在供电装置100中的ID进行对照,由此进行ID认证。
[0069] 在ID不被认证的情况下,结束本例子的控制。另一方面,在ID被认证的情况下,在步骤S26中,充电控制部25为了表示车辆200接近了供电装置100,以规定的周期从无线通信部24发送信号。控制部15通过距离测定部151测定由无线通信部14接收的接收信号的电场强度,由此测定车辆200和供电装置100之间的距离。然后,在步骤S27中,控制部15判定接收信号的电场强度是否比车辆接近阈值大。在接收信号的电场强度为车辆接近阈值以下的情况下,启动接收部13和发送部23,越是检测出线圈的位置偏离,则越是判断为车辆200没有接近供电装置100,返回到步骤S26。另一方面,在接收信号的电场强度比车辆接近阈值大的情况下,判断为车辆200接近了供电装置100,转移到步骤S3,结束步骤S2的远程通信控制。
[0070] 对于步骤S3的位置检测控制,如图8所示,在步骤S31中,控制部15启动接收部13,从无线通信部14向无线通信部24发送表示使位置检测控制开始的信号。在步骤S32中,充电控制部25根据在步骤S31中发送的信号,启动发送部23。在步骤S33中,控制部15分别测定从发送部23进行发送,由接收部13的接收用天线13a~13d接收的接收信号的输出值。在步骤S34中,控制部15判断各个接收信号的输出值是否比异常判定的下限值大,并且比异常判定的上限值小。
[0071] 在接收信号的输出值比下限值高、并且比上限值低的情况下,在步骤S35中,控制部15计算由各接收用天线13a~13d接收的输出值的各个差。在步骤S36中,控制部15通过异物检测部153判定各个输出值的差的绝对值是否为异物判定阈值以下。在各个输出值的差的绝对值为异物判定阈值以下的情况下,在步骤S37中,异物检测部153判定为在送电线圈12和受电线圈22之间不存在异物。在步骤S38中,控制部15通过位置检测部152,根据在步骤S33中测定的接收用天线13a~13d的输出值,检测受电线圈22相对于送电线圈12的相对位置,由此检测受电线圈22相对于送电线圈12的位置偏离,将检测结果发送到车辆200侧,注意到步骤S4,结束位置检测控制。
[0072] 返回到步骤S36,在接收用天线13a~13d的各个输出值的差的绝对值比异物判定阈值大的情况下,在步骤S361中,异物检测部153判定为有异物。然后,在步骤S362中,控制部15经由无线通信部14向车辆200发送表示存在异物的信号。充电控制部25根据通过无线通信部24接收到的该信号,向用户通知存在异物。在存在异物的情况下,不转移到步骤S4的充电控制,结束本例子的控制。
[0073] 返回步骤S34,在接收用天线13a~13d的输出值比下限值小、或比上限值大的情况下,在步骤S341中,控制部15判定为在接收部13或发送部23中发生了异常。然后,在步骤S362中,控制部15经由无线通信部14向车辆200表示在发送部13或接收部23中发生了异常的信号。充电控制部25根据在无线通信部24中接收到的该信号,向用户通知发生了异常。在接收部13或发送部23中发生了异常的情况下,不转移到步骤S4的充电控制而结束本例子的控制。
[0074] 返回到图6,在步骤S4中,充电控制部25使用由位置检测部152检测出的线圈的位置偏离的信息、以及电池28的SOC,计算充电时间并向用户通知。然后,根据用户的操作,充电控制部25向供电装置100发送表示开始充电的信号。控制部15在接收到该信号时,开始从送电线圈12向受电线圈22的送电。在送电开始时,控制部15停止接收部13,充电控制部25停止发送部23。然后,在电池28达到满充电时,控制部15停止送电,结束本例子的充电控制。
[0075] 如上述那样,本例子具备发送部23和多个接收用天线13a~13d,通过位置检测部152,根据该接收用天线13a~13d的输出值,检测送电线圈12和受电线圈22的相对位置,另外通过异物检测部153,对该接收用天线13a~13d的输出值进行比较,根据比较结果检测送电线圈12和受电线圈22之间的异物。由此,本例子利用用于检测送电线圈12和受电线圈22的相对位置的传感器、即发送部23和接收用天线13a~13d,能够检测线圈之间的异物,作为其结果,不需要另外设置异物检测用的传感器。另外,本例子检测异物,向用户通知异物的存在,由此能够从线圈之间排除异物,因此能够防止由于非接触送电造成的来自异物的发热。另外,本例子使用多个传感器检测异物,因此能够确定异物的位置。
[0076] 另外,本例子通过异物检测部153,根据接收用天线13a~13d各自的输出值的差来检测异物。由此,通过取得接收用天线13a~13d的输出值的差,能够抵消由于线圈的位置偏离造成的输出值的偏差量,因此能够提高异物的检测精度
[0077] 此外,本例子在通过异物检测部153检测出异物的情况下,不进行位置检测部152的线圈的位置检测,但也可以在异物存在于从四个接收用天线13a~13d偏向一个天线的位置的情况下,使用剩余的三个接收天线的输出值,通过位置检测部152,检测送电线圈12和受电线圈22的相对位置。由此,本例子能够进行线圈的位置偏离的检测、异物的检测这两者,能够提供方便性更高的非接触送电系统。
[0078] 此外,本例子由四个天线构成接收部13,但并不必须是四个,由多个天线构成即可。另外,接收部13并不必须设置的地面侧,也可以设置在车辆200侧,发送部23并不必须设置在车辆200侧,也可以设置在地面侧。另外,本例子由发送部23的发送线圈、接收部13的接收用天线13a~13d构成多个传感器,但并不必须将多个传感器设为发送部23和接收部13成对的结构,也可以由只设置在地面侧或车辆200侧的任意一方的传感器构成。例如,也可以在地面侧设置朝向车辆发信的多个红外线传感器,根据反射的红外线的强度,与上述同样地,进行异物检测和线圈的位置检测。
[0079] 此外,在本例子中,异物检测部153根据接收用天线13a~13d的输出值的差检测出异物,但异物检测部153也可以通过将接收用天线13a~13d各自的输出值相乘、相加、或相除,比较其运算结果,来检测异物。
[0080] 另外,在本例子中,异物检测部153也可以在从送电线圈12向受电线圈22供给电力时检测异物。另外,在异物检测部153在电力供给中检测出异物的情况下,控制部15停止来自送电线圈12的送电,通过无线通信向车辆200侧通知混入了异物。
[0081] 此外,基于无线通信部14和无线通信部24之间的通信的距离测量与基于接收部13和发送部23之间的通信的线圈的位置偏离检测相比,测量单位大,因此也可以与接收部13和发送部23之间的通信周期相比延长无线通信部14和无线通信部24之间的通信周期。另外,接收部13和发送部23之间的通信也可以如无线通信部14和无线通信部24之间的通信那样,减少与不进行控制信号的双向通信对应的所发送的数据量,但为了提高线圈之间的位置偏离的精度,也可以进行系统检查时的奇偶校验。
[0082] 另外,位置检测部152也可以在从送电线圈12向受电线圈22的电力供给中进行线圈的位置检测。例如,控制部15进行控制使得在从进行电力供给开始经过了规定的期间后停止电力供给,在停止中通过位置检测部152检测线圈的位置,在检测后再次开始电力供给即可。由此,本例子能够在电力供给中确认是否没有产生线圈的位置偏离。
[0083] 另外,本例子根据无线通信部14的接收信号的电场强度,测定车辆200和供电装置100之间的距离,但也可以根据接收信号的时间差等测定距离。另外,也可以设置直接测量车辆200和供电装置100之间的距离的传感器来作为用于测量距离的、远程通信的通信单元。
[0084] 上述送电线圈12和受电线圈22的一个线圈相当于本发明的第一线圈,另一个线圈相当于本发明的第二线圈,发送部23和接收部13的接收用天线13a~13d相当于本发明的多个传感器,位置检测部152相当于本发明的位置检测单元,异物检测部153相当于本发明的异物检测单元。
QQ群二维码
意见反馈