用于可充电和充电装置的无线电

申请号 CN201080007779.X 申请日 2010-02-12 公开(公告)号 CN102318214A 公开(公告)日 2012-01-11
申请人 高通股份有限公司; 发明人 迈尔斯·A·柯比; 马修·S·格罗布;
摘要 示范性 实施例 是针对于无线电 力 。一种方法可包含检测 定位 于相关联的充电区内的一个或一个以上发射元件。所述方法可进一步包含选择所述检测到的一个或一个以上发射元件中的至少一个发射元件以从其接收无线电力,以实现对充电装置的最佳充电。
权利要求

1.一种可充电装置,其包含:
至少一个接收元件,其经配置以接收无线电
其中所述可充电装置经配置以:
检测定位于相关联的充电区内的一个或一个以上发射元件;以及
选择所述检测到的一个或一个以上发射元件中的至少一个发射元件以从其接收无线电力,以实现对所述充电装置的最佳充电。
2.根据权利要求1所述的可充电装置,其中所述可充电装置经配置以根据一个或一个以上特定协议和一个或一个以上特定频率中的至少一者来检测所述一个或一个以上发射元件。
3.根据权利要求2所述的可充电装置,其进一步经配置以通过对使用所述一个或一个以上特定协议中的至少一者进行操作的发射元件进行取样来检测所述一个或一个以上发射元件。
4.根据权利要求3所述的可充电装置,其进一步经配置以通过对使用近场谐振协议和电感性耦合协议中的至少一者进行操作的发射元件进行取样来检测所述一个或一个以上发射元件。
5.根据权利要求2所述的可充电装置,其进一步经配置以通过对在所述一个或一个以上特定频率下谐振的发射元件进行取样来检测所述一个或一个以上发射元件。
6.根据权利要求5所述的可充电装置,其进一步经配置以通过对在一个或一个以上未经许可的ISM频带频率下谐振的发射元件进行取样来检测所述一个或一个以上发射元件。
7.根据权利要求1所述的可充电装置,其进一步包含位置装置,所述位置装置经配置以用于确定所述可充电装置的位置。
8.根据权利要求1所述的可充电装置,其中所述至少一个接收元件包含接收天线和线圈中的至少一者。
9.根据权利要求1所述的可充电装置,其进一步经配置以与和所述检测到的一个或一个以上发射元件相关联的一个或一个以上无线充电器无线地通信。
10.根据权利要求1所述的可充电装置,其进一步经配置以控制与所述检测到的一个或一个以上发射元件相关联的一个或一个以上无线充电器的至少一个操作。
11.一种操作可充电装置的方法,其包含:
检测定位于相关联的充电区内的一个或一个以上发射元件;以及
选择所述检测到的一个或一个以上发射元件中的至少一个发射元件以从其接收无线电力,以实现对所述可充电装置的最佳充电。
12.根据权利要求11所述的方法,其中检测一个或一个以上发射元件包含根据近场谐振协议和电感性耦合协议中的至少一者来检测一个或一个以上发射元件。
13.根据权利要求11所述的方法,其中检测一个或一个以上发射元件包含检测在至少一个未经许可的ISM频带频率下谐振的一个或一个以上发射元件。
14.根据权利要求11所述的方法,其中选择包含:
从每一检测到的一个或一个以上发射元件中的每一发射元件循序地接收无线电力;以及
测量从所述检测到的一个或一个以上发射元件中的每一者的每一发射元件接收到的电力的量。
15.根据权利要求11所述的方法,其中选择包含选择所述检测到的一个或一个以上发射元件中的多个发射元件,从而以时域多路复用方法从其接收无线电力。
16.根据权利要求11所述的方法,其进一步包含检测与所述检测到的一个或一个以上发射元件中的至少一者相关联的一个或一个以上无线充电器的版本。
17.一种可充电装置,其包含:
用于检测定位于相关联的充电区内的一个或一个以上发射元件的装置;以及用于选择所述检测到的一个或一个以上发射元件中的至少一个发射元件以从其接收无线电力以实现对所述可充电装置的最佳充电的装置。
18.一种充电器,其包含:
至少一个发射元件,其经配置以无线地发射电力;
其中所述充电器经配置以:
检测定位于相关联的充电区内的一个或一个以上接收元件;以及
选择所述检测到的一个或一个以上接收元件中的至少一个接收元件以向其发射无线电力,以实现对与所述一个或一个以上接收元件相关联的一个或一个以上检测到的可充电装置的最佳充电解决方案。
19.根据权利要求18所述的充电器,其进一步经配置以根据一个或一个以上无线电力协议和一个或一个以上无线电力频率中的至少一者来检测所述一个或一个以上接收元件。
20.根据权利要求19所述的充电器,其进一步经配置以通过对使用所述一个或一个以上特定协议中的至少一者进行操作的接收元件进行取样来检测所述一个或一个以上接收元件。
21.根据权利要求20所述的充电器,其进一步经配置以通过对使用近场谐振协议和电感性耦合协议中的至少一者进行操作的接收元件进行取样来检测所述一个或一个以上接收元件。
22.根据权利要求19所述的充电器,其进一步经配置以通过对在所述一个或一个以上特定频率中的至少一者下谐振的接收元件进行取样来检测所述一个或一个以上接收元件。
23.根据权利要求18所述的充电器,其进一步经配置以通过对在至少一个未经许可的ISM频带下谐振的接收元件进行取样来检测所述一个或一个以上接收元件。
24.根据权利要求18所述的充电器,其进一步包含位置装置,所述位置装置经配置以用于确定所述充电器的位置。
25.根据权利要求18所述的充电器,其中所述至少一个发射元件包含发射天线和线圈中的至少一者。
26.一种操作无线充电器的方法,其包含:
检测定位于相关联的充电区内的一个或一个以上接收元件;以及
选择所述检测到的一个或一个以上接收元件中的至少一个接收元件以向其发射无线电力,以实现对与所述一个或一个以上接收元件相关联的一个或一个以上可充电装置的最佳充电解决方案。
27.根据权利要求26所述的方法,其中检测一个或一个以上接收元件包含根据近场谐振协议和电感性耦合协议中的至少一者来检测一个或一个以上接收元件。
28.根据权利要求26所述的方法,其中检测一个或一个以上接收元件包含检测在至少一个未经许可的ISM频带频率下谐振的一个或一个以上接收元件。
29.根据权利要求26所述的方法,其中选择包含选择所述检测到的一个或一个以上接收元件中的多个接收元件,从而以时域多路复用方法向其发射无线电力。
30.根据权利要求26所述的方法,其进一步包含检测与所述一个或一个以上接收元件相关联的至少一个可充电装置的版本。
31.根据权利要求26所述的方法,其中选择包含选择所述检测到的一个或一个以上接收元件中的与所述无线充电器具有最高充电效率的所述至少一个接收元件。
32.根据权利要求26所述的方法,其中选择包含选择所述检测到的一个或一个以上接收元件中的具有最低充电平的所述至少一个接收元件。
33.根据权利要求26所述的方法,其进一步包含从一个或一个以上无线可充电装置接收信号,所述信号指示在每一相关联的一个或一个以上接收元件处接收到的电力的量。
34.一种无线充电器,其包含:
用于检测定位于相关联的充电区内的一个或一个以上接收元件的装置;以及用于选择所述检测到的一个或一个以上接收元件中的至少一个接收元件以向其发射无线电力以实现对与所述一个或一个以上接收元件相关联的一个或一个以上可充电装置的最佳充电解决方案的装置。

说明书全文

用于可充电和充电装置的无线电

[0001] 根据35U.S.C.§119主张优先权
[0002] 本申请案根据35U.S.C.§119(e)主张以下申请案的优先权:
[0003] 2009年2月13日申请的题为“通用无线和有线充电器(多频、多版本和多修正 )(UNIVERSAL WIRELESS AND WIRED CHARGER(MULTI-FREQUENCY,MULTI-VERSION AND MULTI-REVISION))”的美国临时专利申请案61/152,359,其全部揭示内容在此以引用的方式并入。

技术领域

[0004] 本发明一般涉及无线电子装置,且更具体来说,涉及经配置用于无线通信、无线充电和实现最佳充电情形的电子装置。

背景技术

[0005] 通常,每一电池供电装置需要其自身的充电器和电源(其通常为AC电源插座)。当许多装置需要充电时,此变得难以使用。
[0006] 正开发在发射器与待充电的装置之间使用空中电力发射的方法。这些方法通常落入两个类别中。一个类别是基于发射天线与待充电的装置上的接收天线之间的平面波辐射(还称作远场辐射)的耦合,所述待充电的装置收集所辐射电力且对其整流以用于对电池进行充电。天线可具有谐振长度以便改进耦合效率。此方法遭受以下事实:电力耦合随着天线之间的距离增加而快速衰退。因此,越过合理距离(例如,>1到2米)来充电变得困难。另外,由于系统辐射平面波,所以如果未经由滤波来进行适当控制,则无意的辐射可干扰其它系统。
[0007] 其它方法是基于嵌入于(例如)“充电”垫或表面中的发射天线与嵌入于待充电的主机装置中的接收天线加上整流电路之间的电感性耦合。此方法具有以下缺点:发射天线与接收天线之间的间隔必须非常接近(例如,几毫米)。尽管此方法可具有对相同区域中的多个装置同时进行充电的能力,但此区域通常较小,因此用户必须将所述装置定位到特定区域。
[0008] 存在对无线电力装置的需要,所述无线电力装置经配置用于检测其它无线电力装置且确定最佳充电解决方案。更具体来说,存在对可充电装置的需要,所述可充电装置经配置以检测一个或一个以上无线充电器且,其后确定用于接收电荷的最佳充电解决方案。另外,存在对无线充电器的需要,所述无线充电器经配置以检测一个或一个以上可充电装置且,其后确定用于对一个或一个以上检测到的可充电装置中的至少一者进行充电的最佳充电解决方案。附图说明
[0009] 图1展示无线电力传递系统的简化方框图
[0010] 图2展示无线电力传递系统的简化示意图。
[0011] 图3展示用于在本发明的示范性实施例中使用的环形天线的示意图。
[0012] 图4为根据本发明的一示范性实施例的发射器的简化方框图。
[0013] 图5为根据本发明的一示范性实施例的接收器的简化方框图。
[0014] 图6展示用于在发射器与接收器之间进行消息接发的发射电路的一部分的简化示意图。
[0015] 图7说明根据本发明的一示范性实施例的可充电装置。
[0016] 图8说明根据本发明的一示范性实施例的另一可充电装置。
[0017] 图9说明根据本发明的一示范性实施例的包括无线充电器和可充电装置的系统。
[0018] 图10说明根据本发明的一示范性实施例的包括多个无线充电器和可充电装置的系统。
[0019] 图11说明根据本发明的一示范性实施例的具有多个接收天线的可充电装置。
[0020] 图12说明根据本发明的一示范性实施例的包括多个无线充电器和一可充电装置的系统,所述可充电装置具有多个接收天线。
[0021] 图13为说明根据本发明的一示范性实施例的方法的流程图
[0022] 图14说明根据本发明的一示范性实施例的无线充电器。
[0023] 图15说明根据本发明的一示范性实施例的包括一无线充电器和多个可充电装置的系统。
[0024] 图16说明根据本发明的一示范性实施例的包括一无线充电器和多个可充电装置的另一系统。
[0025] 图17为说明根据本发明的一示范性实施例的另一方法的流程图。

具体实施方式

[0026] 在本文中使用词语“示范性”以指“充当一实例、例子或说明”。本文中描述为“示范性”的任何实施例没有必要被解释为比其它实施例优选或有利。
[0027] 下文结合附图所陈述的详细描述意欲作为对本发明的示范性实施例的描述,且无意表示可实践本发明的仅有实施例。在整个此描述中所使用的术语“示范性”是指“用作一实例、例子或说明”,且应没有必要被解释为比其它示范性实施例优选或有利。所述详细描述出于提供对本发明的示范性实施例的彻底理解的目的而包括特定细节。所属领域的技术人员将容易明白,可在无这些特定细节的情况下实践本发明的示范性实施例。在一些例子中,以方框图形式展示众所周知的结构和装置,以便避免使本文中所呈现的示范性实施例的新颖性模糊不清。
[0028] 在本文中使用词语“无线电力”以指在不使用物理电磁导体的情况下在从发射器到接收器之间发射的与电场磁场电磁场或其它物相关联的任何形式的能量
[0029] 图1说明根据本发明的各种示范性实施例的无线发射或充电系统100。将输入电力102提供到发射器104以用于产生用于提供能量传递的辐射场106。接收器108耦合到辐射场106,且产生输出电力110以供耦合到输出电力110的装置(未图示)存储或消耗。发射器104与接收器108两者相隔一距离112。在一个示范性实施例中,根据相互谐振关系来配置发射器104与接收器108,且当接收器108位于辐射场106的“近场”中时,当接收器108的谐振频率与发射器104的谐振频率非常接近时,发射器104与接收器108之间的发射损耗为最小。
[0030] 发射器104进一步包括用于提供用于能量发射的装置的发射天线114,且接收器108进一步包括用于提供用于能量接收的装置的接收天线118。根据应用和将与其相关联的装置来设计发射天线和接收天线的大小。如所陈述,通过将发射天线的近场中的大部分能量耦合到接收天线而非以电磁波形式将大部分能量传播到远场而进行有效能量传递。当处于此近场中时,可在发射天线114与接收天线118之间形成耦合模式。天线114和118周围的可发生此近场耦合的区域在本文中称作耦合模式区。
[0031] 图2展示无线电力传递系统的简化示意图。发射器104包括振荡器122、功率放大器124以及滤波器和匹配电路126。所述振荡器经配置以产生所要频率下的信号,所述所要频率可响应于调整信号123来调整。振荡器信号可由功率放大器124以响应于控制信号125的放大量来放大。可包括滤波器和匹配电路126以滤除谐波或其它非所要的频率且使发射器104的阻抗与发射天线114匹配。
[0032] 接收器108可包括匹配电路132以及整流器和切换电路134以产生DC电力输出来对电池136(如图2中所展示)进行充电或向耦合到接收器的装置(未图示)供电。可包括匹配电路132以使接收器108的阻抗与接收天线118匹配。接收器108与发射器104可在单独通信信道119(例如,蓝牙、zigbee、蜂窝式等)上通信。
[0033] 如图3中所说明,示范性实施例中所使用的天线可经配置为“环形”天线150,其在本文中还可称作“磁性”天线。环形天线可经配置以包括空气芯或物理芯(例如,体芯)。空气芯环形天线可能更可容许放置于所述芯附近的外来物理装置。此外,空气芯环形天线允许其它组件放置于芯区域内。另外,空气芯环可更容易实现接收天线118(图2)在发射天线114(图2)的平面内的放置,在所述平面中,发射天线114(图2)的耦合模式区可更强大。
[0034] 如所陈述,在发射器104与接收器108之间的匹配或几乎匹配的谐振期间发生发射器104与接收器108之间的有效能量传递。然而,甚至当发射器104与接收器108之间的谐振不匹配时,还可以较低效率传递能量。通过将来自发射天线的近场的能量耦合到驻留于建立了此近场的邻域中的接收天线而非将能量从发射天线传播到自由空间中而发生能量的传递。
[0035] 环形天线或磁性天线的谐振频率是基于电感和电容。环形天线中的电感一般仅为由所述环形产生的电感,而一般将电容添加到环形天线的电感以在所要谐振频率下产生谐振结构。作为非限制性实例,可将电容器152和电容器154添加到天线以产生产生谐振信号156的谐振电路。因此,对于较大直径的环形天线来说,诱发谐振所需的电容的大小随着环形天线的直径或电感增加而减小。此外,随着环形天线或磁性天线的直径增加,近场的有效能量传递区域增加。当然,其它谐振电路是可能的。作为另一非限制性实例,电容器可并联地放置于环形天线的两个端子之间。另外,所属领域的技术人员将认识到,对于发射天线,谐振信号156可为到环形天线150的输入。
[0036] 本发明的示范性实施例包括在处于彼此的近场中的两个天线之间耦合电力。如所陈述,近场为在天线周围的存在电磁场但可能并不远离所述天线传播或辐射的区域。所述电磁场通常被限于所述天线的物理体积附近的体积。在本发明的示范性实施例中,磁型天线(例如,单环形天线和多匝环形天线)用于发射(Tx)天线系统与接收(Rx)天线系统两者,这是因为与电型天线(例如,小型偶极天线)的电近场相比,磁型天线的磁近场振幅往往较高。此允许所述对天线之间的潜在较高耦合。此外,还预期“电”天线(例如,偶极天线和单极天线)或磁性天线与电天线的组合。
[0037] Tx天线可在足够低的频率下且在天线大小足够大的情况下操作,以在显著大于早先所提及的远场和电感性方法所允许的距离的距离下实现到小型Rx天线的良好耦合(例如,>-4dB)。如果Tx天线的大小经正确设计,则当将主机装置上的Rx天线放置于受驱动Tx环形天线的耦合模式区内(即,在近场中)时,可实现高耦合平(例如,-2到-4dB)。
[0038] 图4为根据本发明的示范性实施例的发射器200的简化方框图。发射器200包括发射电路202和发射天线204。通常,发射电路202通过提供导致产生围绕发射天线204的近场能量的振荡信号来将RF电力提供到发射天线204。举例来说,发射器200可在13.56MHz ISM频带下操作。
[0039] 示范性发射电路202包括:固定阻抗匹配电路206,其用于将发射电路202的阻抗(例如,50欧姆)与发射天线204匹配;以及低通滤波器(LPF)208,其经配置以将谐波发射减少到防止耦合到接收器108(图1)的装置的自干扰的水平。其它示范性实施例可包括不同滤波器拓扑(包括(但不限于)使特定频率衰减同时使其它频率通过的陷波滤波器),且可包括自适应阻抗匹配,其可基于可测量的发射度量(例如,到天线的输出电力或由功率放大器汲取的DC电流)而变化。发射电路202进一步包括功率放大器210,其经配置以驱动如由振荡器212确定的RF信号。发射电路可包含离散装置或电路,或者可包含集成组合件。来自发射天线204的示范性RF电力输出可为约2.5瓦。
[0040] 发射电路202进一步包括控制器214,控制器214用于在针对特定接收器的发射阶段(或工作循环)期间启用振荡器212,以用于调整所述振荡器的频率,且用于调整输出电力水平来实施用于经由相邻装置所附接的接收器与相邻装置交互的通信协议。
[0041] 发射电路202可进一步包括负载感测电路216,其用于检测在由发射天线204产生的近场附近的有效接收器的存在或不存在。举例来说,负载感测电路216监视流动到功率放大器210的电流,所述电流受在由发射天线204产生的近场附近的有效接收器的存在或不存在影响。由控制器214监视对功率放大器210上的加载的改变的检测,以用于确定是否启用振荡器212来用于发射能量以与有效接收器通信。
[0042] 可将发射天线204实施为天线带,其具有经选择以使电阻性损耗保持较低的厚度、宽度和金属类型。在常规实施方案中,发射天线204可一般经配置以与较大结构(例如,桌子、垫子、灯或其它较不便携的配置)相关联。因此,发射天线204一般将不需要“若干匝”以便具有实用尺寸。发射天线204的示范性实施方案可为“电学上较小的”(即,波长的分数)且经调谐以通过使用电容器界定谐振频率而在较低的可用频率下谐振。在发射天线204相对于接收天线来说在直径上或边长上(如果为正方形环)可能较大(例如,0.50米)的示范性应用中,发射天线204将不一定需要大量匝来获得合理电容。
[0043] 发射器200可搜集和追踪关于可与发射器200相关联的接收器装置的行踪和状态的信息。因此,发射器电路202可包括连接到控制器214(在本文中还称作处理器)的存在检测器280、封闭式检测器290,或其组合。控制器214可响应于来自存在检测器280和封闭式检测器290的存在信号而调整由放大器210递送的电力的量。发射器可经由许多电源接收电力,所述电源例如为用以转换存在于建筑物中的常规AC电力的AC-DC转换器(未图示)、用以将常规DC电源转换成适合于发射器200的电压的DC-DC转换器(未图示),或发射器可直接从常规DC电源(未图示)接收电力。
[0044] 作为一非限制性实例,存在检测器280可为运动检测器,其用以感测插入到发射器的覆盖区域中的待充电的装置的初始存在。在检测后,可开启发射器且可使用由装置接收的RF电力来以预定方式切换Rx装置上的开关,其又导致发射器的驱动点阻抗的改变。
[0045] 作为另一非限制性实例,存在检测器280可为检测器,其能够(例如)通过红外线检测、运动检测或其它合适手段来检测人类。在一些示范性实施例中,可能存在限制发射天线可在特定频率下发射的电力的量的规章。在一些情况下,这些规章有意保护人类免受电磁辐射影响。然而,可能存在发射天线放置于人类未占用的或人类不经常占用的区域(例如,车库、厂区、车间,等)中的环境。如果这些环境没有人类,则可能可准许将发射天线的电力输出增加到正常电力约束规章以上。换句话说,控制器214可响应于人类存在而将发射天线204的电力输出调整到管制水平或更低水平,且当人类在距发射天线204的电磁场管制距离之外时,将发射天线204的电力输出调整到高于管制水平的水平。
[0046] 作为一非限制性实例,封闭式检测器290(在本文中还可称作封闭式隔间检测器或封闭式空间检测器)可为例如感测开关的装置,以用于确定外罩何时处于闭合或打开状态中。当发射器在处于封闭状态的外罩中时,可增加发射器的电力水平。
[0047] 在示范性实施例中,可使用发射器200借以不会无限地保持开启的方法。在此情况下,发射器200可经编程以在用户确定的时间量后关闭。此特征防止发射器200(尤其是功率放大器210)在其周边的无线装置充满后长时间运行。此事件可能归因于用以检测从中继器或接收线圈发送的指示装置充满的信号的电路的故障。为了防止发射器200在另一装置放置于其周边时自动关闭,可仅在检测到其周边缺少运动的设定周期后启动发射器200自动关闭特征。用户可能够确定不活动时间间隔,且在需要时改变所述不活动时间间隔。作为一非限制性实例,所述时间间隔可比在假定特定类型的无线装置最初完全放电的情况下充满所述装置所需的时间间隔长。
[0048] 图5为根据本发明的示范性实施例的接收器300的简化方框图。接收器300包括接收电路302和接收天线304。接收器300进一步耦合到装置350以用于将所接收的电力提供到装置350。应注意,将接收器300说明为在装置350外部,但其可集成到装置350中。通常,能量无线地传播到接收天线304且接着经由接收电路302而耦合到装置350。
[0049] 接收天线304经调谐以在与发射天线204(图4)的频率相同的频率下或接近相同的频率下谐振。接收天线304可与发射天线204类似地设计尺寸,或可基于相关联装置350的尺寸来不同地设计大小。举例来说,装置350可为具有比所述发射天线204的直径或长度小的直径或长度尺寸的便携式电子装置。在此种实例中,可将接收天线304实施为多匝天线,以便减小调谐电容器(未图示)的电容值且增加接收天线的阻抗。举例来说,接收天线304可放置于装置350的实质性圆周周围,以便使天线直径最大化并减少接收天线的环匝(即,线圈)的数目和线圈间电容。
[0050] 接收电路302提供与接收天线304的阻抗匹配。接收电路302包括电力转换电路306,其用于将所接收的RF能源转换成供装置350使用的充电电力。电力转换电路306包括RF-DC转换器308且还可包括DC-DC转换器310。RF-DC转换器308将在接收天线304处所接收的RF能量信号整流成非交变电力,而DC-DC转换器310将经整流的RF能量信号转换成与装置350兼容的能量电位(例如,电压)。预期各种RF-DC转换器,包括部分和全整流器、调节器、桥接器、倍增器以及线性和切换转换器。
[0051] 接收电路302可进一步包括切换电路312,以用于将接收天线304连接到电力转换电路306或者用于断开电力转换电路306。将接收天线304与电力转换电路306断开不仅中止对装置350的充电,而且还改变发射器200(图2)所“看到”的“负载”。
[0052] 如上文所揭示,发射器200包括负载感测电路216,负载感测电路216检测提供到发射器功率放大器210的偏置电流的波动。因此,发射器200具有用于确定接收器何时存在于发射器的近场中的机制。
[0053] 当多个接收器300存在于发射器的近场中时,可能需要对一个或一个以上接收器的加载和卸载进行时间多路复用以使其它接收器能够更有效地耦合到发射器。接收器的此“卸载”在本文中还称为“遮盖”。还可遮盖一接收器以便消除到其它附近接收器的耦合或减少附近发射器上的加载。此外,如下文更完全地解释,如由接收器300控制且由发射器200检测的卸载与加载之间的此切换提供从接收器300到发射器200的通信机制。另外,一协议可与所述切换相关联,所述协议使得能够将消息从接收器300发送到发射器200。举例来说,切换速度可为约100微秒。
[0054] 在一示范性实施例中,发射器与接收器之间的通信涉及装置感测和充电控制机制而非常规双向通信。换句话说,发射器使用(例如)所发射信号的开/关键控,以调整近场中的能量是否可用。接收器将这些能量改变解译为来自发射器的消息。从接收器侧,接收器使用接收天线的调谐与解谐来调整正从近场接受多少电力。发射器可检测来自近场的所使用的电力的此差异,且将这些改变解译为形成来自接收器的消息的信号。
[0055] 接收电路302可进一步包括用以识别所接收的能量波动的信令检测器和信标电路314,所述能量波动可对应于从发射器到接收器的信息性信令。此外,信令和信标电路314还可用以检测减少的RF信号能量(即,信标信号)的发射并将所述减少的RF信号能量整流成标称电力,以用于唤醒接收电路302内的未供电或电力耗尽的电路,以便配置接收电路302来用于无线充电。
[0056] 接收电路302进一步包括处理器316,以用于协调本文中所描述的接收器300的处理(包括对本文中所描述的切换电路312的控制)。还可在其它事件(包括检测到将充电电力提供到装置350的外部有线充电源(例如,壁式/USB电力))发生后即刻发生对接收器300的遮盖。除了控制对接收器的遮盖外,处理器316还可监视信标电路314以确定信标状态并提取从发射器发送的消息。处理器316还可调整DC-DC转换器310以获得改进的性能。
[0057] 图6展示发射电路的用于执行发射器与接收器之间的消息接发的一部分的简化示意图。在本发明的一些示范性实施例中,可在发射器与接收器之间启用用于通信的装置。在图6中,功率放大器210驱动发射天线204以产生辐射场。功率放大器由载波信号220驱动,载波信号220在发射天线204的所要频率下振荡。发射调制信号224用以控制功率放大器210的输出。
[0058] 发射电路可通过使用功率放大器210上的开/关键控过程来向接收器发送信号。换句话说,当断言发射调制信号224时,功率放大器210将在发射天线204上向外驱动载波信号220的频率。当将发射调制信号224去活时,功率放大器将不在发射天线204上驱动任何信号。
[0059] 图6的发射电路还包括负载感测电路216,其将电力供应到功率放大器210且产生接收信号235。在负载感测电路216中,电阻器Rs上的电压降形成于电力入信号226与到功率放大器210的电力供应228之间。由功率放大器210消耗的电力的任何改变将导致电压降的改变,电压降的改变将由差动放大器230放大。当发射天线处于与接收器(图6中未展示)中的接收天线的耦合模式中时,由功率放大器210汲取的电流的量将改变。换句话说,如果发射天线204不存在耦合模式谐振,则驱动辐射场所需的电力将为第一量。如果存在耦合模式谐振,则由功率放大器210消耗的电力的量将上升(因为大量电力正耦合到接收天线中)。因此,接收信号235可指示耦合到发射天线204的接收天线的存在且还可检测从接收天线发送的信号。另外,将可在发射器的功率放大器电流汲取中观察到接收器电流汲取的改变,且此改变可用以检测来自接收天线的信号。
[0060] 遮盖信号、信标信号和用于产生这些信号的电路的一些示范性实施例的细节可参看以下美国实用新型专利申请案:2008年10月10日申请的标题为“经由接收天线阻抗调制的反向链路信令(REVERSE LINK SIGNALING VIA RECEIVE ANTENNA IMPEDANCE MODULATION)”的美国实用新型专利申请案12/249,873;以及2008年10月10日申请的标题为“用于无线充电系统的发射电力控制(TRANSMIT POWER CONTROL FOR A WIRELESS CHARGING SYSTEM)”的美国实用新型专利申请案12/249,861,所述两个申请案的全文以引用的方式并入本文中。
[0061] 示范性通信机制和协议的细节可参看2008年10月10日申请的标题为“无线电力环境中的信令充电(SIGNALING CHARGING IN WIRELESS POWER ENVIRONMENT)”的美国实用新型专利申请案12/249,866,所述申请案的内容的全文以引用的方式并入本文中。
[0062] 图7描绘可包含任何已知和合适的可充电装置的可充电装置700。作为非限制性实例,可充电装置700可包含蜂窝式电话、便携式媒体播放器、相机、游戏装置、导航装置、机(例如,蓝牙耳机)、工具、玩具或其任何组合。可充电装置700可包括至少一个接收天线702、至少一个线圈705或其任何组合。接收天线702和线圈705中的每一者可经配置以接收从合适的无线电源无线地发射的电力。更具体来说,根据一个示范性实施例,天线702和相关联的接收器(例如,图2的接收器108)可经配置以接收从相关联的近场区内的无线电源发射的无线电力。另外,根据另一示范性实施例,线圈705和相关联的接收器(例如,图2的接收器108)可经配置以接收经由电感性耦合从无线电源发射的无线电力。另外,可充电装置700可经配置以将所接收的电力存储于可充电装置700的电池(例如,图2的电池136)内。应注意,术语“接收天线”和“线圈”可在本文中各自被称作“接收元件”。
[0063] 此外,根据各种示范性实施例,可充电装置700可经配置以检测一个或一个以上无线充电器,所述一个或一个以上无线充电器定位于可充电装置700的充电区内且包括一个或一个以上无线发射元件(例如,无线发射天线或线圈)。更具体来说,可充电装置700可经配置以根据一个或一个以上特定协议和/或一个或一个以上特定频率来检测一个或一个以上无线充电器。仅举例来说,可充电装置700可经配置以通过以下操作来检测一个或一个以上无线充电器:对与一个或一个以上特定无线充电协议一起操作的无线充电器进行取样,对在一个以上特定频率下谐振的无线充电器进行取样,或以上两者。如以下更充分地描述,在检测到无线充电器之后,可充电装置700可即刻经配置以确定从检测到的无线充电器接收到的电力的量(包括检测到的无线充电器经配置进行发射所处的每一频率和所使用的每一协议)。
[0064] 根据一个示范性实施例,可充电装置700可经配置以检测无线充电器,所述无线充电器定位于可充电装置700的近场区内且经配置以经由近场谐振协议在一个或一个以上合适频率(例如,未经许可的ISM频带)下无线地发射电力。应注意,各种频率可适合于在一个位置(例如,第一国家)中进行无线电力发射,但不适合于在另一位置(例如,第二国家)中进行无线电力发射。因而,根据一个示范性实施例,可充电装置700可经配置以经由位置装置701确定其位置,且其后,确定哪一个或一个以上频率适合于进行无线电力发射。仅举例来说,位置装置701可包含全球定位系统(GPS)装置。仅举例来说,可充电装置700可经配置以检测定位于相关联的近场区内且经配置以在6.78MHz、13.56MHz、27.12MHz和40.68MHz中的一者或一者以上下经由近场谐振发射无线电力的无线充电器。另外,根据一个示范性实施例,可充电装置700可经配置以检测定位于相关联的充电区内且经配置以经由电感性耦合协议输送无线电力的无线充电器。
[0065] 此外,可充电装置700可经配置以与检测到的无线充电器建立通信链路,且在建立了通信链路之后,可即刻从检测到的无线充电器无线地接收数据(例如,音频文件、数据文件或视频文件),将数据无线地发射到检测到的无线充电器,或以上两者。应注意,可充电装置700可经配置以检测和接收来自多种版本的无线充电器的无线电力。应进一步注意,可充电装置700可经配置以识别一种版本的检测到的无线充电器,且结果可因此从检测到的无线充电器接收无线电力且与检测到的无线充电器通信。另外,在建立了通信链路之后,可充电装置700可即刻经配置以控制检测到的无线充电器的操作(例如,电力的发射、数据的同步、显示媒体或任何用户接口功能性)。
[0066] 在检测到一个或一个以上无线充电器之后,可充电装置700可即刻进一步经配置以选择所述检测到的一个或一个以上无线充电中的至少一者以从其接收电力,从而优化由可充电装置700接收的电力的量。优化由可充电装置700接收的电力的量的方法可基于每一检测到的无线充电器的一个或一个以上充电协议、每一检测到的无线充电器的一个或一个以上充电频率、每一检测到的无线充电器相对于可充电装置700的位置和每一检测到的无线充电器的版本中的至少一者。应注意,相对小的可充电装置(例如,蓝牙耳机)在较高频率(例如,40.68MHz)下与在较低频率(例如,6.78MHz)下相比可更有效地进行充电。另一方面,相对大的可充电装置(例如,相机)在较低频率(例如,6.78MHz)下与在较高频率(40.68MHz)下相比可更有效地进行充电。
[0067] 图8说明可充电装置700A,其类似于图7的可充电装置700,且因此将不再进行解释。然而,在图8中,可充电装置700A不包括线圈,且仅包括一个接收天线702。应注意,在可充电装置700A包括单一接收元件(即,接收天线702)的一实施例中,可充电装置700A可经配置以在任一时刻仅从一个无线发射元件接收无线电力。因此,在此示范性实施例中,可充电装置700A可经配置以确定哪一检测到的无线充电器可实现最佳充电。换句话说,可充电装置700A可经配置以确定哪一检测到的无线充电器(且更具体来说,所述一个或一个以上检测到的无线充电器中的哪一发射元件)可实现最大效率、最大充电速率、最小干扰或其任何组合。另外,根据另一示范性实施例,可充电装置700A可经配置以利用基于用于每一选定发射元件的经分配的激活时隙的时域多路复用方法来确定所述一个或一个以上检测到的无线充电器中的哪些多个发射元件可实现最大效率、最大充电速率、最小干扰或其任何组合。
[0068] 图9说明包括可充电装置700A和无线充电器732的系统730。无线充电器732包括第一发射天线734,其经配置在(仅举例来说)13.56MHz的频率下发射无线电力。另外,无线充电器732包括第二发射天线736,其经配置以在(仅举例来说)6.78MHz的频率下发射无线电力。根据系统730的一个预期操作,可充电装置700可检测定位于相关联的充电区内且使用一个或一个以上特定协议(例如,近场谐振)进行操作和/或在一个或一个以上特定频率(例如,6.78MHz和13.56MHz)下谐振的无线充电器732。另外,在检测到无线充电器732之后,可即刻建立可充电装置700A与无线充电器732之间的通信链路733。此外,在已检测到无线充电器732之后,可确定用无线充电器732对可充电装置700A进行充电的最佳情形。
[0069] 根据一个示范性实施例,确定最佳充电情形可包括确定哪一单一协议(即,经由发射天线734的近场谐振或经由发射天线736的近场谐振)实现对可充电装置700A的最佳充电(例如,最大效率、最大充电速率、最小干扰或其任何组合)。作为一实例,可充电装置700A、无线充电器732或其组合可确定发射天线736实现对可充电装置700A的最佳充电。作为一更特定实例,可充电装置700A可在第一频率(例如,13.56MHz)下从发射天线734接收无线电力,确定从发射天线734接收到的电力的量,且其后将此信息提供到无线充电器732。另外,可充电装置700A可在第二频率(例如,6.78MHz)下从发射天线736接收无线电力,确定从发射天线736接收到的电力的量,且其后将此信息提供到无线充电器732。
无线充电器732可接着经由通信链路733通知可充电装置700A哪一协议(即,经由发射天线734的近场谐振或经由发射天线736的近场谐振)促进由无线充电器732进行的最佳充电。在确定了哪一发射元件促进最佳充电之后,可充电装置700A、无线充电器732或其组合可选择所述发射元件,且可将无线电力发射到可充电装置700A。
[0070] 应注意,在从可充电装置700A接收到与从特定发射元件(例如,发射天线734或发射天线736)接收到的电力的量有关的信息之后,无线充电器732可即刻经配置以增加或减少从特定发射元件发射的电力的量。应进一步注意,视装置的类型(即,仅举例来说,可充电装置700A是移动电话、媒体播放器还是蓝牙耳机)和/或可充电装置700A内的电池的类型而定,无线充电器732可经配置以增加或减少从特定发射元件发射的电力的量。
[0071] 根据另一示范性实施例,确定最佳充电情形可包括利用时域多路复用方法来确定哪些多个发射元件可实现最佳充电。作为一实例,可充电装置700A、无线充电器732或其组合可确定发射天线734可与发射天线736一起经时间多路复用以实现对可充电装置700A的经优化的充电。
[0072] 图10说明包括可充电装置700的另一系统750。系统750进一步包括第一无线充电器752、第二无线充电器754和第三无线充电器756,其各自定位于可充电装置700的相关联的充电区内。如图10中所说明,第一无线充电器752包括发射天线760,且可经配置以在(仅举例来说)40.68MHz的频率下发射无线电力。另外,第二无线充电器754包括经配置以在(仅举例来说)27.12MHz的频率下发射无线电力的第一发射天线762,和经配置以在(仅举例来说)6.78MHz的频率下发射无线电力的第二发射天线764。此外,第三无线充电器756包括经配置以在(仅举例来说)13.56MHz的频率下发射无线电力的发射天线766。第三无线充电器756进一步包括线圈768,线圈768经配置以经由电感性耦合将电力发射到与其充分对准的线圈(例如,线圈705)。
[0073] 根据系统750的一个预期操作,可充电装置700可检测一个或一个以上无线充电器,所述一个或一个以上无线充电器定位于相关联的充电区内且使用一个或一个以上特定协议(例如,近场谐振和/或电感性耦合)进行操作和/或在一个或一个以上特定频率(例如,未经许可的ISM频带)下谐振。因此,可充电装置700可检测第一无线充电器752、第二无线充电器754和第三无线充电器756中的每一者。此外,在检测之后,可即刻在可充电装置700与第一无线充电器752、第二无线充电器754和第三无线充电器756之间建立相应通信链路735、737和739。
[0074] 此外,在检测到第一无线充电器752、第二无线充电器754和第三无线充电器756之后,可即刻确定用于对可充电装置700进行充电的最佳充电情形。如上文所提及,确定最佳充电情形可包括针对一个或一个以上检测到的无线充电器确定最佳充电情形,所述一个或一个以上检测到的无线充电器可包括一个或一个以上协议和/或经配置以在一个或一个以上频率下发射无线电力。此外,确定最佳充电情形可包括利用时域多路复用方法确定一个或一个以上检测到的无线充电器内的哪些多个发射元件可实现最佳充电。举例来说,根据一个示范性实施例,可充电装置700可经配置以从系统750内的每一个别发射元件循序地接收无线电力。另外,在从系统750内的每一个别发射元件接收到无线电力之后,可充电装置700可经配置以确定哪一个或一个以上发射元件实现最佳充电。
[0075] 更具体来说,例如,接收天线702可经配置以在一频率(例如,40.68MHz)下经由近场谐振从发射天线760接收无线电力,且从发射天线760接收到的电力的量可由可充电装置700来确定。此外,接收天线702可经配置以在一频率(例如,27.12MHz)下经由近场谐振从发射天线762接收无线电力,且可充电装置700可确定从发射天线762接收到的电力的量。另外,接收天线702可经配置以在一频率(例如,6.78MHz)下经由近场谐振从发射天线764接收无线电力,且从发射天线764接收到的电力的量可由可充电装置700来确定。此外,发射天线700可经配置以在一频率(例如,6.78MHz)下经由近场谐振从发射天线766接收无线电力,且从发射天线766接收到的电力的量可由可充电装置700来确定。此外,线圈705可经配置以经由电感性耦合从无线充电器756的线圈768接收无线电力,且可充电装置700可确定从线圈768接收到的电力的量。其后,可充电装置700可确定哪一个或一个以上发射元件实现最大效率、最大充电速率、最小干扰或其任何组合。因此,作为一实例,可充电装置700可确定无线充电器754的无线充电器发射天线762和无线充电器756的线圈768实现最佳充电。在确定了哪一个或一个以上发射元件实现最佳充电情形之后,可充电装置700可选择所述一个或一个以上发射元件,且可因此将无线电力发射到可充电装置
700A。
[0076] 此外,如上文所提及,可利用时域多路复用方法来实现最佳充电。因而,可充电装置700可经配置以通过利用基于两个或两个以上发射元件的经分配的激活时隙的时域多路复用方法来确定最佳充电情形。因此,作为一实例,可充电装置700除了从线圈768接收无线电力外还可确定无线充电器752的发射天线760可与无线充电器756的发射天线766一起经时间多路复用以实现经优化的充电。
[0077] 图11描绘可充电装置700B,其类似于图7的可充电装置700,且因此将不再进行解释。然而,在图11中,可充电装置700B包括多个接收天线702。虽然将可充电装置700B描绘为仅具有两个接收天线702,但可充电装置700B可包括任何数目个接收天线702。类似于可充电装置700,可充电装置700B可经配置以检测一个或一个以上无线充电器,所述一个或一个以上无线充电器定位于相关联的充电区内且包括一个或一个以上发射元件。此外,在检测到一个或一个以上无线充电器之后,可充电装置700B可即刻经配置以优化从所述一个或一个以上无线充电器(且更具体来说,所述一个或一个以上发射元件)接收到的电力的量。应注意,在可充电装置700B包括多个接收天线的一实施例中,可充电装置700B可经配置以在任一时刻从与一个或一个以上无线充电器相关联的多个发射天线接收无线电力。
[0078] 确定最佳充电情形可包括针对一个或一个以上检测到的无线充电器确定最佳充电情形,所述一个或一个以上检测到的无线充电器可包括一个或一个以上协议和/或可经配置以在一个或一个以上频率下发射无线电力。更具体来说,确定最佳充电情形可包括确定与一个或一个以上检测到的无线充电器相关联的哪些多个发射元件实现对可充电装置700B的最佳充电。应注意,在可充电装置700B包括多个天线的一实施例中,仍可使用如上文所提及的时域多路复用方法。
[0079] 图12说明包括可充电装置700B的系统780。系统780进一步包括第一无线充电器752、第二无线充电器754和第三无线充电器756,其各自定位于可充电装置700B的相关联的充电区内。上文已描述第一无线充电器752、第二无线充电器754和第三无线充电器756,且因此将不再进行解释。然而,应注意,第一无线充电器752包括线圈763。根据系统
780的一个预期操作,可充电装置700B可检测一个或一个以上无线充电器,所述一个或一个以上无线充电器在相关联的充电区内且使用一个或一个以上特定协议(例如,近场谐振和/或电感性耦合)进行操作和/或在一个或一个以上特定频率(即,未经许可的ISM频带)下谐振。因此,可充电装置700B可检测第一无线充电器752、第二无线充电器754和第三无线充电器756中的每一者。
[0080] 此外,在检测到所述无线充电器之后,可即刻在可充电装置700B与第一无线充电器752、第二无线充电器754和第三无线充电器756之间建立相应通信链路765、767和769。如上文关于可充电装置700所提及,在建立了与检测到的无线充电器的通信链路之后,可充电装置700B可即刻经配置以控制检测到的无线充电器的操作(例如,电力的发射、数据的同步、显示媒体或任何用户接口功能性)。另外,在检测到第一无线充电器752、第二无线充电器754和第三无线充电器756之后,可充电装置700B可即刻经配置以确定最佳充电情形。
[0081] 举例来说,参看图12,可充电装置700B可经配置以从每一个别发射元件(即,发射天线760、发射天线762、发射天线764、发射天线766、线圈763和线圈768)循序地接收无线电力。此外,可充电装置700B可经配置以从两个或两个以上发射元件的每个可能和合适的组合循序地接收无线电力。应注意,可充电装置700B可仅同时从数目等于接收天线702的数目的发射天线接收电力。举例来说,如果可充电装置700B包含两个接收天线702,则可充电装置700B可经配置以同时从两个发射天线的每个可能的组合接收无线电力。然而,应注意,线圈705可同时从线圈763和线圈768两者接收无线电力,只要线圈763和线圈768每一者均与线圈705同相。
[0082] 在确定了从发射元件的每一合适组合(和任选地,个别地从每一发射元件)接收到的电力的量之后,可充电装置700B可经配置以识别用于最佳充电的一个或一个以上发射元件。举例来说,在可充电装置700B包括两个天线702的一实施例中,可充电装置700B可将发射天线764、发射天线766和线圈763识别为用于实现最佳充电情形的发射元件。作为另一实例,可充电装置700B可将发射天线766、发射天线762和线圈768识别为用于实现最佳充电情形的发射元件。另外,可充电装置700B可经配置以通过利用基于两个或两个以上发射天线的经分配的激活时隙的时域多路复用方法来确定最佳充电情形。
[0083] 图13为说明根据一个或一个以上示范性实施例的方法680的流程图。方法680可包括检测定位于相关联的充电区内的一个或一个以上发射元件(由数字682描绘)。方法680可进一步包括选择所述检测到的一个或一个以上发射元件中的至少一个发射元件以从其接收无线电力,从而实现对可充电装置的最佳充电(由数字684描绘)。
[0084] 图14描绘可包含经配置以发射无线电力的任何已知和合适的充电器的充电器900。充电器900可包括至少一个发射天线704,其经配置以将电力无线地发射到至少一个可充电装置(例如,可充电装置700)。更具体来说,发射天线704和相关联的发射器(例如,图2的发射器104)可经配置以在一频率(例如,未经许可的ISM频带)下将无线电力发射到相关联的近场区内的接收器。另外,充电器900可包括至少一个线圈902,其经配置以经由电感性耦合将无线电力发射到可充电装置(例如,可充电装置700)。
[0085] 此外,根据本发明的各种示范性实施例,充电器900可经配置以检测一个或一个以上可充电装置,所述一个或一个以上可充电装置定位于充电器900的充电区内且经配置以经由合适协议接收无线电力。更具体来说,充电器900可经配置以根据一个或一个以上特定协议、一个或一个以上特定频率或以上两者来检测一个或一个以上可充电装置。仅举例来说,充电器900可经配置以通过以下操作来检测充电区内的可充电装置:对使用特定无线充电协议进行操作的可充电装置进行取样,对在特定无线充电频率下谐振的可充电装置进行取样,或以上两者。
[0086] 根据一个示范性实施例,充电器900可经配置以检测一个或一个以上可充电装置,所述一个或一个以上可充电装置定位于相关联的近场区内且经配置以经由近场谐振在一个或一个以上频率下接收无线电力。仅举例来说,充电器900可经配置以检测一个或一个以上可充电装置,所述一个或一个以上可充电装置定位于相关联的近场区内且经配置以在合适频率下(例如,未经许可的ISM频带(例如,13.56MHz))经由近场谐振接收无线电力。应注意,各种频率可适合于在一个位置(例如,第一国家)中进行无线电力发射,但不适合于在另一位置(例如,第二国家)中进行无线电电力发射。因而,根据一个示范性实施例,充电器900可经配置以经由位置装置901确定其位置,且其后确定哪一个或一个以上频率适合于无线电力发射。仅举例来说,位置装置901可包含全球定位系统(GPS)装置。另外,根据一个示范性实施例,充电器900可经配置以检测一个或一个以上可充电装置,所述一个或一个以上可充电装置定位于相关联的充电区内且经配置以经由电感性耦合协议接收无线电力。
[0087] 此外,充电器900可经配置以与检测到的可充电装置建立通信链路,且在建立了通信链路之后,可即刻从可充电装置无线地接收数据(例如,音频文件、数据文件或视频文件),将数据无线地发射到可充电装置,或以上两者。另外,应注意,充电器900可经配置以执行各种操作(例如,使数据同步和/或显示媒体),同时将电力发射到一个或一个以上可充电装置。此外,充电器900可经配置以检测多种版本的可充电装置且将无线电力发射到多种版本的可充电装置。因此,充电器900可经配置以识别一种版本的检测到的可充电装置,且将电力发射到所述检测到的可充电装置且以合适方式与所述检测到的可充电装置通信。应进一步注意,充电器900可试图根据常见版本协议与每一检测到的可充电装置通信。然而,在检测到的可充电装置不与常见版本协议兼容的情况下,充电器900可经配置以使用合适的版本协议以合适方式与可充电装置通信。
[0088] 另外,在检测到一个或一个以上可充电装置之后,充电器900可即刻经配置以确定用于对一个或一个以上检测到的可充电装置进行充电的最佳充电解决方案,所述最佳充电解决方案使效率最大化、使充电速率最大化、使干扰最小化或其任何组合。更具体来说,例如,充电器900可经配置以针对条件(例如,与检测到的可充电装置的数目相比在充电器900内的可用发射元件的数目、检测到的可充电装置中的每一者的充电水平,或由每一检测到的可充电装置接收的电力的量(即,充电器900与检测到的可充电装置中的每一者之间的充电效率))的给定集合而确定用于将无线电力提供到检测到的可充电装置中的一者或一者以上的最佳解决方案。
[0089] 图15说明包括充电器900A、第一可充电装置902和第二可充电装置903的系统910。如所说明,第一可充电装置902和第二可充电装置903中的每一者包括接收天线702,且各自经配置以经由近场谐振来接收在特定频率下发射的无线电力。应注意,充电器900A类似于图13的充电器900,且因此将不详细描述。然而,应注意,充电器900A不包括线圈,且仅包括单一发射天线704。
[0090] 根据系统910的一个预期操作,充电器900A可经由任何合适方式检测第一可充电装置902和第二可充电装置903中的每一者。根据系统910的一个预期操作,充电器900A可检测第一可充电装置902和第二可充电装置903中的每一者,其各自定位于相关联的充电区内且使用一个或一个以上无线电力协议(例如,近场谐振)进行操作和/或在一个或一个以上无线电力频率(例如,未经许可的ISM频带)下谐振。此外,在检测到可充电装置之后,可即刻在充电器900A与第一可充电装置902和第二可充电装置903中的每一者之间建立相应通信链路905和907。此外,在检测到第一可充电装置902和第二可充电装置903之后,充电器900A可即刻确定用于系统910的最佳充电解决方案。应注意,在充电器900A包括单一发射元件(即,发射天线704)的一实施例中,充电器900A可经配置以在任一时刻将无线电力发射到仅一个可充电装置。
[0091] 因而,根据一个示范性实施例,充电器900A可经配置以确定应对哪单一检测到的可充电装置(即,第一可充电装置902或第二可充电装置903)进行充电,以实现最佳充电解决方案。作为一个实例,充电器900A可经配置以确定充电器900A与第一可充电装置902和第二可充电装置903中的每一者之间的充电效率。其后,为了减少电力损耗,充电器900A可经配置以将无线电力输送到具有最高充电效率的装置。更具体来说,例如,充电器900A可经配置以将无线电力循序地发射到第一可充电装置902和第二可充电装置903中的每一者。另外,充电器900A可经配置以请求和接收来自第一可充电装置902和第二可充电装置903中的每一者的信号,所述信号识别由第一可充电装置902和第二可充电装置903中的每一者接收的电力的量。其后,充电器900A可确定哪一可充电装置具有最高充电效率,且其后向其输送电力。举例来说,充电器900A可确定第一可充电装置902的充电效率大于第二可充电装置903的充电效率,且其后充电器900A可选择第一可充电装置902且向其输送电力。
[0092] 作为另一实例,充电器900A可经配置以对具有对电荷的最大需求的装置进行充电。更具体来说,例如,充电器900A可经配置以经由通信手段确定第一可充电装置902和第二可充电装置903中的每一者的充电水平,且其后选择具有最少带电电池的装置且将无线电力输送到所述装置。举例来说,充电器900A可确定第二可充电装置903的电池具有比第一可充电装置902的电池低的充电水平,且因此充电器900A可选择第二可充电装置903且将无线电力输送到第二可充电装置903。此外,在第二可充电装置903的电池的充电水平已达到可接受状态之后,充电器900A可将无线电力输送到第一可充电装置902。另外,根据另一示范性实施例,充电器900A可经配置以确定基于第一可充电装置902和第二可充电装置903中的每一者的经分配的激活时隙的时域多路复用方法是否可实现最佳充电解决方案。
[0093] 图16说明系统950,其包括充电器900B、第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914。如所说明,第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者包括天线702,其经配置以经由近场谐振而接收在特定频率下发射的无线电力。此外,第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者包括线圈909,其经配置以经由电感性耦合接收无线电力。应注意,充电器900B类似于图13的充电器900,且因此将不详细描述。然而,应注意,充电器900B包括两个发射天线704。根据系统950的一个预期操作,充电器900B可经由任何合适手段检测第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者。根据系统950的一个预期操作,充电器900B可检测第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者,其各自定位于相关联的充电区内且使用一个或一个以上无线电力协议(例如,近场谐振)进行操作和/或在一个或一个以上无线电力频率(例如,未经许可的ISM频带)下谐振。
[0094] 此外,在检测到所述可充电装置之后,可即刻在充电器900与第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者之间建立相应通信链路970、971、972和973。此外,在检测到第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914之后,充电器900B可即刻确定用于系统
950的最佳充电解决方案。
[0095] 应注意,充电器900B可同时将电力发射到数目等于发射天线(即,发射天线704)的数目的接收天线(即,接收天线702)。举例来说,在图15中所说明的实施例中,充电器900B可经配置以同时将无线电力发射到两个发射天线704。此外,应注意,线圈902可同时将无线电力发射到多个线圈909,只要线圈909与线圈902同相。
[0096] 根据一个示范性实施例,充电器900B可经配置以确定应对哪一个或一个以上检测到的可充电装置进行充电,以实现最佳充电解决方案。作为一个实例,充电器900B可经配置以确定充电器900B与第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者之间的充电效率。其后,为了减少电力损耗,充电器900B可经配置以将无线电力输送到具有最高充电效率的一个或一个以上可充电装置。更具体来说,例如,充电器900B可经配置以根据各种协议和频率将无线电力循序地发射到第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者。另外,充电器900B可经配置以请求和接收来自第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者的信号,所述信号识别由第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者根据每一合适协议和频率所接收的电力的量。其后,充电器900B可确定应使用哪些协议和频率对哪一个或一个以上可充电装置进行充电,以实现系统950的最佳充电情形。
[0097] 作为另一实例,充电器900B可经配置以将电力输送到具有对电荷的最大需求的一个或一个以上可充电装置。更具体来说,例如,充电器900B可经配置以经由通信手段确定第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的每一者的充电水平,且其后将无线电力输送到具有最少带电电池的一个或一个以上可充电装置。另外,根据另一示范性实施例,充电器900B可经配置以确定基于第一可充电装置911、第二可充电装置912、第三可充电装置913和第四可充电装置914中的两者或两者以上的经分配的激活时隙的时域多路复用方法是否可实现最佳充电解决方案。
[0098] 应注意,充电器900(且更具体来说,充电器900的至少一个天线704)可包括额外功能性。作为一个实例,天线704可经配置以发射射频。此外,例如,天线704可经配置以作为RF中继器、毫微微型小区、WiFi接入点(AP)或其任何组合而操作。另外,天线704可远离充电器900而定位,且经由同轴电缆、RF导体、IP连接或任何其它合适连接器而连接到充电器900。在此实例中,天线704可经配置以作为用于RF中继器、毫微微型小区、WiFi接入点(AP)或其任何组合的远程天线而操作。
[0099] 图17为说明根据一个或一个以上示范性实施例的方法690的流程图。方法690可包括检测定位于相关联的充电区内的一个或一个以上接收元件(由数字692描绘)。方法690可进一步包括选择所述检测到的一个或一个以上接收元件中的至少一个接收元件,以向其发射无线电力,以实现与所述一个或一个以上接收元件相关联的一个或一个以上可充电装置的最佳充电解决方案(由数字694描绘)。
[0100] 所属领域的技术人员应理解,可使用多种不同技术和技艺中的任一者来表示信息和信号。举例来说,可通过电压、电流、电磁波、磁场或磁性粒子、光场或光学粒子或其任何组合来表示可在整个上述描述中所参考的数据、指令、命令、信息、信号、位、符号和码片。
[0101] 所属领域的技术人员应进一步了解,结合本文中所揭示的示范性实施例而描述的各种说明性逻辑、模块、电路和算法步骤可实施为电子硬件、计算机软件或两者的组合。为了清楚地说明硬件与软件的此互换性,上文已大体上在其功能性方面描述了各种说明性组件、块、模块、电路和步骤。将此功能性实施为硬件还是软件视特定应用和强加于整个系统的设计约束而定。所属领域的技术人员可针对每一特定应用以不同方式实施所描述的功能性,但此些实施决策不应被解释为会导致偏离本发明的示范性实施例的范围。
[0102] 可用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程阵列(FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件组件或其经设计以执行本文中所描述的功能的任何组合来实施或执行结合本文中所揭示的示范性实施例而描述的各种说明性逻辑块、模块和电路。通用处理器可为微处理器,但在替代方案中,处理器可为任何常规的处理器、控制器、微控制器或状态机。还可将处理器实施为计算装置的组合,例如,DSP与微处理器的组合、多个微处理器、结合DSP核心的一个或一个以上微处理器,或任何其它此类配置。
[0103] 结合本文中所揭示的示范性实施例而描述的方法或算法的步骤可直接以硬件、以由处理器执行的软件模块,或以所述两者的组合来体现。软件模块可驻留于随机存取存储器(RAM)、快闪存储器、只读存储器(ROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)、寄存器、硬盘、可装卸磁盘、CD-ROM或此项技术中已知的任何其它形式的存储媒体中。将示范性存储媒体耦合到处理器,以使得所述处理器可从所述存储媒体读取信息,并可将信息写入到所述存储媒体。在替代方案中,存储媒体可与处理器成一体式。处理器和存储媒体可驻留于ASIC中。ASIC可驻留于用户终端中。在替代方案中,处理器和存储媒体可作为离散组件而驻留于用户终端中。
[0104] 在一个或一个以上示范性实施例中,可以硬件、软件、固件或其任何组合来实施所描述的功能。如果以软件来实施,则可将所述功能作为一个或一个以上指令或代码而存储于计算机可读媒体上或经由计算机可读媒体进行传输。计算机可读媒体包括计算机存储媒体与通信媒体两者,通信媒体包括促进将计算机程序从一处传递到另一处的任何媒体。存储媒体可为可由计算机存取的任何可用媒体。以实例且非限制的方式,此计算机可读媒体可包含RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置,或可用于以指令或数据结构的形式载运或存储所要程序代码且可由计算机存取的任何其它媒体。而且,适当地将任何连接称为计算机可读媒体。举例来说,如果使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)或例如红外线、无线电和微波等无线技术从网站服务器或其它远程源传输软件,则同轴电缆、光纤电缆、双绞线、DSL或例如红外线、无线电和微波等无线技术包括在媒体的定义中。如本文中所使用,磁盘和光盘包括压缩光盘(CD)、激光光盘、光盘、数字多功能光盘(DVD)、软盘和蓝光光盘,其中磁盘通常以磁方式再现数据,而光盘用激光以光学方式再现数据。上述各者的组合也应包括在计算机可读媒体的范围内。
[0105] 提供对所揭示的示范性实施例的先前描述以使得所属领域的技术人员能够制作或使用本发明。所属领域的技术人员将明白对这些示范性实施例的各种修改,且可在不偏离本发明的精神或范围的情况下将本文中所界定的一般原理应用于其它实施例。因此,本发明无意限于本文中所展示的示范性实施例,而将赋予本发明与本文中所揭示的原理和新颖特征一致的最广范围。
QQ群二维码
意见反馈