光传输装置

申请号 CN200610003504.4 申请日 2006-01-28 公开(公告)号 CN1841968B 公开(公告)日 2011-01-19
申请人 富士通株式会社; 发明人 尾中美纪; 菅谷靖; 大井宽己;
摘要 一种光传输装置,包括将光 信号 插入传输路径/从传输路径分出 光信号 的光插分复用器。该光传输装置进一步包括位于传输路径上光插分复用器下游的 泵 浦光复用器和色散补偿光纤。该光传输装置被构造为容纳有可以连接到泵浦光复用器以在色散补偿光纤中对光信号进行拉曼放大的泵浦 光源 。
权利要求

1.一种具有光插分复用器的光传输装置,该光插分复用器将光信号插入传输路径/从传输路径分出光信号,所述光传输装置包括:
浦光复用器,其位于传输路径上光插分复用器的下游;
色散补偿光纤,其位于传输路径上光插分复用器的下游;
放大器;以及
第一检测器,用于对输入到所述光放大器的光信号的总强度进行检测,所述光信号包括短波长信号、中波长信号、以及长波长信号;
其中,所述光传输装置被构造为容纳有:
可以连接到泵浦光复用器以在色散补偿光纤中对光信号进行拉曼放大的泵浦光源
第二检测器,其检测短波长信号的强度;
第三检测器,其检测长波长信号的强度;以及
控制器,其基于总强度、短波长信号的强度、以及长波长信号的强度来计算中波长信号的强度,并且对泵浦光源进行控制以保持光信号的总强度和光信号的波长特性。
2.一种光传输装置,包括:
光插分复用器,其将光信号插入传输路径/从传输路径分出光信号;
前置放大单元,其位于传输路径上光插分复用器的上游,并包括第一泵浦光复用器;以及
后置放大单元,其位于传输路径上光插分复用器的下游,并包括第二泵浦光复用器和色散补偿光纤,其中
所述前置放大单元被构造为容纳有可以连接到第一泵浦光复用器以在传输路径上对光信号进行拉曼放大的第一泵浦光源,并且
所述后置放大单元被构造为容纳有可以连接到第二泵浦光复用器以在色散补偿光纤中对光信号进行拉曼放大的第二泵浦光源;
所述前置放大单元和后置放大单元中的每一个都包括光放大器和用于对输入到所述光放大器的光信号的总强度进行检测的第一检测器,所述光信号包括短波长信号、中波长信号、以及长波长信号,并且
所述前置放大单元和后置放大单元中的每一个都被构造为容纳有:
第二检测器,其检测短波长信号的强度;
第三检测器,其检测长波长信号的强度;以及
控制器,其基于总强度、短波长信号的强度、以及长波长信号的强度来计算中波长信号的强度,并且对泵浦光源进行控制以保持光信号的总强度和光信号的波长特性。
3.根据权利要求2所述的光传输装置,其中,所述光插分复用器包括波长选择开关
4.根据权利要求2所述的光传输装置,其中,所述后置放大单元还包括可变光衰减器
5.根据权利要求2所述的光传输装置,其中,所述前置放大单元还包括两个光放大器以及位于所述两个光放大器之间的可变色散补偿器。
6.根据权利要求5所述的光传输装置,其中,所述可变色散补偿器包括:
光放大介质,其对来自泵浦光源的泵浦光进行放大;以及
泵浦光反射介质,其将经光放大介质放大的泵浦光反射到光放大介质;
光回旋器、可变色散补偿单元以及泵浦光复用器;
所述光放大介质和所述泵浦光复用器设置在所述光回旋器与所述可变色散补偿单元之间;并且
所述泵浦光反射介质设置在所述可变色散补偿单元中。
7.根据权利要求6所述的光传输装置,其中,所述光放大介质由掺稀土光纤、色散补偿光纤、基高非线性光纤、以及高折射率玻璃光纤中的任一种构成。
8.根据权利要求2所述的光传输装置,其中,所述控制器基于总强度、加权的短波长信号的强度、以及加权的长波长信号的强度来计算中波长信号的强度。
9.根据权利要求2所述的光传输装置,其中,所述第二检测器包括:
第一滤光器,其使得短波长信号通过;
第一光接收器,其对通过了第一滤光器的短波长信号进行检测;以及
所述第三检测器包括:
第二滤光器,其使得长波长信号通过;以及
第二光接收器,其对通过了第二滤光器的长波长信号进行检测。
10.根据权利要求9所述的光传输装置,其中,所述第一滤光器和第二滤光器中的每一个都是光纤光栅。
11.根据权利要求2所述的光传输装置,其中,所述第一泵浦光源和第二泵浦光源输出不同波长的泵浦光。
12.根据权利要求2所述的光传输装置,其中,所述第一泵浦光源和第二泵浦光源中的每一个都输出不同波长的多个泵浦光。
13.一种光插分复用器OADM系统,该光插分复用器系统包括:
光插分复用器,其将光信号插入传输路径/从传输路径分出光信号;
连接到所述OADM的第一光传输装置;
连接到所述第一光传输装置的第二光传输装置;
其中,所述第一光传输装置和第二光传输装置的每一个都包括:
前置放大单元,其包括第一泵浦光复用器,并被构造为容纳有可以连接到所述第一泵浦光复用器以在传输路径上对光信号进行拉曼放大的第一泵浦光源;和后置放大单元,其包括第二泵浦光复用器和色散补偿光纤,并被构造为容纳有可以连接到第二泵浦光复用器以在色散补偿光纤中对光信号进行拉曼放大的第二泵浦光源;其中所述前置放大单元和后置放大单元中的每一个都包括光放大器和用于对输入到所述光放大器的光信号的总强度进行检测的第一检测器,所述光信号包括短波长信号、中波长信号、以及长波长信号,并且
所述前置放大单元和后置放大单元中的每一个都被构造为容纳有:
第二检测器,其检测所述短波长信号的强度;
第三检测器,其检测所述长波长信号的强度;以及
控制器,其基于所述总强度、所述短波长信号的强度、以及所述长波长信号的强度来计算所述中波长信号的强度,并且对所述泵浦光源进行控制以保持所述光信号的总强度和所述光信号的波长特性;
所述第二光传输装置的前置放大单元位于传输路径的上行链路上并包括对光信号的强度进行检测的检测器,所述第二光传输装置的后置放大单元位于传输路径的下行链路上并包括第一光监控信道耦合器,该第一光监控信道耦合器将包括所述强度的光监控信道信号发送到所述第一光传输装置,并且
所述第一光传输装置的前置放大单元位于传输路径的下行链路上并包括第二光监控信道耦合器,该第二光监控信道耦合器分出从所述第二光传输装置的第一光监控信道耦合器发送的光监控信道信号,所述第一光传输装置的后置放大单元位于传输路径的上行链路上并包括一控制器,该控制器基于所述光监控信道信号中包括的强度对输出到所述第二光传输装置的光信号的强度进行控制。
14.根据权利要求13所述的光插分复用器OADM系统,其中
当所述光传输装置位于传输路径的上游时,后置放大单元具有可变衰减功能并且根据所述控制器的控制来改变从该光传输装置输出到所述另一光传输装置的光信号的强度。

说明书全文

光传输装置

技术领域

[0001] 本发明涉及用于大容量且长距离的光传输系统的光传输装置。

背景技术

[0002] 随着多媒体网络的发展,对于通信业务量的需求急剧增长,使用放大器来执行对光信号的多中继和放大的传输系统在多媒体社会中起到有效利用通信系统的重要作用。
[0003] 近来,波分复用(WDM)系统被积极地引入其中成本和尺寸是重要因素的城域核心网络中。作为常规光传输装置用于环形网络中的同步光网络插分复用器(add drop multiplexer)(SONET ADM)现在正在被光插分复用器(OADM)系统(其使用具有保护功能的OADM装置)所取代。
[0004] 图10是OADM系统的网络的结构图。由环形网络组成的OADM系统1000在传输路径1001上具有多个(m个)节点n(n1到nm),并且各节点都具有OADM 1002。OADM 1002将具有任意波长光信号分到传输路径1001,并将来自光传输路径1001的具有任意波长的光信号插入OADM1002。通常,设置在各节点n(n1到nm)的OADM 1002都具有光放大器,该光放大器在OADM 1002前级和后级对OADM的光信号的插入损耗进行补偿。具体地,在OADM1002的前级设置有前置放大单元1003,在OADM 1002的后级设置有后置放大单元1004。
[0005] 在初期引入OADM系统1000时,要求最小化引入成本。此后,当对城域通信业务量的需求增加时,要求扩展(升级)OADM系统1000的功能。要求在系统的运用初期可以使用所提供功能的一部分,并且要求随后可以顺序地扩展功能以满足长距离通信和大容量的要求。
[0006] 为了平滑地对功能进行升级,需要可以在至少不改变主信号系统的光路的情况下进行升级的光路结构。该光路应当具有其中可以在后续升级时增加光学部件的结构以降低初期引入成本。例如,存在如下方法:其中,在初期引入时,通过预期升级,仅使用掺稀土的光纤放大器作为光放大器,并且其中,在后续升级时,在传输路径和色散补偿光纤中对光信号进行拉曼(Raman)放大。
[0007] 具体地,基于增大环尺寸(增大节点数、以及增大传输路径长度)和增大容量(升级比特率、以及扩展信号带宽)的要求来进行升级。在进行升级以满足对大容量和长距离的要求时,基于诸如比特率增大和环尺寸增大的要素,需要改进各节点n(n1到nm)中的光信号对噪声比(OSNR)表示的噪声特性。
[0008] 例如,在包括设置在OADM系统1000的节点n1到nm中的每一个中的OADM 1002的传输系统中,也使用改进各节点n(n1到nm)中的OSNR的技术来满足对升级的需要(例如,参见日本特开3589974号公报)。为了增大传输距离,提供可以增大OSNR的光放大器是有效的。由产生噪声光的介质的输入光功率电平和噪声系数NF来定义OSNR(OSNR=输入光功率电平(-)噪声系数NF(-)10log(h·v·Δf))。换言之,为了改进OSNR,必须增大产生噪声光的介质的输入光功率电平,或降低噪声介质的噪声系数NF。
[0009] 图11是OADM系统中的常规光传输装置的结构图。图11中示出了一个节点n(n1到nm)的结构。在节点1100中,从上游(左侧)按顺序设置有传输路径1001、前置放大单元1003、OADM 1002、以及后置放大单元1004。OADM 1002任意地对传输路径1001上波长复用的光信号进行插入或分出。前置放大单元1003和后置放大单元1004分别设置在OADM1002的输入侧输出侧,以补偿OADM 1002对光信号的插入损耗。
[0010] 设置在前置放大单元1003中的色散补偿光纤1111补偿由于波长复用光信号对于各波长的传输速度的差异而造成的波长复用光信号的传输特性的劣化。在OADM系统1000中(参见图10),通常,从色散管理的度,各节点1100具有色散补偿光纤1111。
[0011] 当传输路径1001具有较长的长度(例如,80千米)时,前置放大单元1003对大量色散进行补偿。从而,色散补偿光纤1111中的光信号的插入损耗也增加(例如10分贝)。为了避免由于设置有色散补偿光纤1111时的插入损耗而导致OSNR劣化,前置放大单元
1003具有两个光放大器1112a和1112b,并在这两个光放大器1112a与1112b之间具有色散补偿光纤1111。将掺铒光纤放大器(EDFA)用于光放大器1112a和1112b。各个光放大器的光检测器1113c和1113d检测经由插分复用单元1113a和1113b接收到的光功率。控制器1113e基于检测到的接收光功率来控制光放大器1112a和1112b的增益或输出。
[0012] 由于OADM 1002将光输出控制在固定电平,所以在后置放大单元1004中使用具有固定增益的简单光放大器,即不包括可变光衰减器(VOA)功能的简单光放大器1121。类似于光放大器1112a和1112b,该光放大器1121也由EDFA构成,并包括插分复用单元1113a和1113b、光检测器1113c和1113d、以及控制器1113e。控制器1113e基于检测到的接收光功率来控制光放大器1121的增益或输出。
[0013] 公知在传输路径1001和色散补偿光纤1111中对光信号有效地进行拉曼放大来为更大容量和更长距离而升级。因此,从引入OADM系统1000的初期阶段起,就预先在主信号的传输路径上准备拉曼放大浦光复用器1114a和1114b。在升级时,附加地设置拉曼放大泵浦光源1115a和1115b,由此执行拉曼放大。将WDM耦合器用于泵浦光复用器1114a和1114b。
[0014] 在前置放大单元1003的输入侧设置有可变光衰减器(VOA)1116。设置可变光衰减器1116以在传输路径1001的长度较短时自动补偿从前置放大单元1003的输入动态范围中提取的光功率分量。由于传输路径1001具有各种长度以满足系统用户的需要,所以必须广泛补偿传输长度的损耗。
[0015] 然而,上述OADM系统1000不能满足在扩展功能(升级)时大幅改进OSNR的要求。
[0016] 因为光放大器的噪声光随着节点1100的数量增加而发生积累从而使OSNR劣化,所以不能满足对改进OSNR的要求。当传输路径1001的长度增大时,传输路径损耗增大,由此使OSNR劣化。当通过升级比特率来增加容量时,增加的比特率扩展了光信号频谱,噪声分量增大,从而使OSNR劣化。当通过扩展信号频带来增大容量时,传输路径1001中对光信号的拉曼放大和对增益偏差的增大补偿使OSNR劣化。
[0017] 根据图11中示出的节点1100的常规结构,色散补偿器(色散补偿光纤)1111设置在前置放大单元1003中。根据该设置结构,在初期引入时,由于色散补偿光纤1111中的光信号的插入损耗,为了避免前置放大单元1003中的OSNR的劣化,前置放大单元1003需要两级光放大器1112a和1112b。这使得光路的结构变复杂。
[0018] 在升级时,仅仅前置放大单元1003中的OSNR增大,这对改进OSNR并没有显著作用。具体地,在上述结构的传输路径1001和色散补偿光纤1111中对光信号的拉曼放大仅增大了前置放大单元1003中的输入电平。因此,只能改进前置放大单元1003中的OSNR。为了有效地改进OSNR,必须既改进前置放大单元1003中的OSNR又改进后置放大单元1004中的OSNR。于是,在上述结构中不能有效地改进OSNR。
[0019] 关于光放大器的数量,必须使用更少量的光放大器来满足所要求的系统增益宽度。用户传输路径的长度在从长到短的范围变动。因此,要由光放大器支持的系统增益存在一范围。可以用于波分复用光的光放大器是很昂贵的。如图11中所示的结构(其中设置有多个光放大器1112a、1112b和1121)增加了成本。当传输路径1001的长度短时,在前置放大单元1003的输入侧设置可变光衰减器1116以减少光放大器的选项(menu)数量。根据该配置,对超过前置放大单元中的输入动态范围的光功率电平进行自动补偿。选项数量表示具有与输入功率等对应的不同特性的光放大器的数量。从具有不同特性的这些光放大器中来选择光放大器。在这种情况下,由于归因于设置了可变光衰减器1116而造成的光信号插入损耗,使得前置放大单元1003中的OSNR劣化。
[0020] 存在将色散补偿光纤1111用于可变色散补偿器的示例。然而,未提供有效增大OSNR的光路结构。在根据常规技术的结构中,仅基于前置放大单元1003侧的结构来消减传输路径1001和色散补偿光纤1111二者中的损耗变化。在升级时,对传输路径1001执行分布拉曼放大,并在色散补偿光纤1111中执行对光信号的集中拉曼放大,由此仅增大前置放大单元1003中的OSNR。
[0021] 在设置于前置放大单元1003的色散补偿光纤1111中对光信号的拉曼放大中,按输入到色散补偿光纤1111的高电平光功率来执行拉曼放大。因此,破坏了光信号的波形(眼图),并且非线性使得传输特性劣化。进而,由于归因于设置了可变光衰减器1116而造成的插入损耗(通常约几个分贝),使得前置放大单元1003中的OSNR劣化。
[0022] 在节点1100内,前置放大单元1003高速进行操作以在前置放大单元1003侧恢复损耗并改进OSNR。因此,前置放大单元1003中的光路具有复杂结构。由于OSNR很明显是在后置放大单元1004和前置放大单元1003二者中确定的,所以根据仅增大前置放大单元1003的OSNR的方法,难以实质性地改进OSNR。

发明内容

[0023] 本发明的目的是至少解决现有技术中的问题。
[0024] 根据本发明的一个方面的光传输装置包括将光信号插入传输路径/从传输路径分出光信号的光插分复用器(OADM)。所述光传输装置包括:泵浦光复用器,其位于传输路径上OADM的下游;和色散补偿光纤,其位于传输路径上OADM的下游。光传输装置被构造为容纳有可以连接到泵浦光复用器以在色散补偿光纤中对光信号进行拉曼放大的泵浦光源。
[0025] 根据本发明的另一方面的光传输装置包括:光插分复用器(OADM),其将光信号插入传输路径/从传输路径分出光信号;前置放大单元,其位于传输路径上OADM的上游,并包括第一泵浦光复用器;以及后置放大单元,其位于传输路径上OADM的下游,并包括第二泵浦光复用器和色散补偿光纤。前置放大单元被构造为容纳有可以连接到第一泵浦光复用器以在传输路径上对光信号进行拉曼放大的第一泵浦光源。后置放大单元被构造为容纳有可以连接到第二泵浦光复用器以在色散补偿光纤中对光信号进行拉曼放大的第二泵浦光源。
[0026] 结合附图来阅读以下对本发明的详细说明,本发明的其他目的、特征、以及优点将得到具体阐述或变得显而易见。

附图说明

[0027] 图1A是根据本发明第一实施例的当泵浦光源设置在色散补偿光纤的后级时的光传输装置的结构图;
[0028] 图1B是根据第一实施例的当泵浦光源设置在色散补偿光纤的前级时的光传输装置的结构图;
[0029] 图2是在初期引入时的光传输装置的结构图;
[0030] 图3是在升级时的光传输装置的结构图;
[0031] 图4是用于说明对各波带内的光信号进行检测的图;
[0032] 图5是光传输装置中的相邻节点之间的噪声性能的相对值的曲线图;
[0033] 图6是光传输装置中的OSNR相对值的图;
[0034] 图7是根据本发明第二实施例的光传输装置的结构图;
[0035] 图8是根据本发明第三实施例的光传输装置的结构图;
[0036] 图9是根据本发明第四实施例的光传输装置的结构图;
[0037] 图10是OADM系统的网络的结构图;以及
[0038] 图11是OADM系统中的常规光传输装置的结构图。

具体实施方式

[0039] 以下参照附图来详细说明根据本发明的光传输装置的示例性实施例。
[0040] 图1A是根据本发明第一实施例的当泵浦光源设置在色散补偿光纤的后级时的光传输装置的结构图。图1A描述了图10中示出的OADM系统中一个节点n(节点n1到nm中的任一个)的结构。在节点100中从上游(左侧)按顺序设置有传输路径101、前置放大单元103、OADM 102、以及后置放大单元104。
[0041] OADM 102任意地从传输路径101分出波长复用的光信号,或者将波长复用的光信号插入向OADM 102的传输路径101。尽管常规上使用阵列波导光栅(AWG),但是近来使用波长选择开关(WSS)。当使用该WSS时,如稍后所详述,可以实质性地降低OADM 102中的插入损耗。
[0042] 前置放大单元103包括设置在主信号传输路径上的泵浦光复用器114a和光放大器112。光放大器包括EDFA,并且增益可以改变。在升级时,将用于拉曼放大的泵浦光源115a连接至泵浦光复用器114a。
[0043] 后置放大单元104包括色散补偿光纤111、泵浦光复用器124a、以及光放大器122。色散补偿光纤111对由于波长复用的光信号取决于波长的不同传输速度而造成的传输特性的劣化进行补偿。在升级时,将用于拉曼放大的泵浦光源125a连接至泵浦光复用器
124a。如上所述,根据本实施例,色散补偿光纤111设置在与图11所示结构中的位置不同的位置。色散补偿光纤111并非设置在OADM 102输入侧的前置放大单元103中,而是设置在OADM 102的输出侧的后置放大单元104中。后置放大单元104基于后向泵浦在色散补偿光纤111中对光信号进行拉曼放大。
[0044] 在使用色散补偿光纤111执行拉曼放大时,需要消减后置放大单元104中的输入电平的变化。光放大器122具有可变光衰减器,并可以改变增益。因此,即使输入到光放大器122中的功率改变时,也可以使输出功率固定,并且可以保持增益的波长平坦性。可以组合增益固定的光放大器122和可变光衰减器(未示出)。
[0045] 由于通过减小OADM 102中的插入损耗可以改进后置放大单元104中的OSNR,所以可以在后置放大单元104中设置色散补偿光纤111。根据该配置,设置在OADM 102的前级的前置放大单元103可以减小放大光信号的负担。结果,使用一个光放大器112就可以构成前置放大单元103。
[0046] 在升级时,后置放大单元104在色散补偿光纤111中对光信号进行拉曼放大,前置放大单元103在传输路径101中对光信号进行放大。因此,前置放大单元103和后置放大单元104中的OSNR都可以得到改进,可以有效地改进OSNR。
[0047] 色散补偿光纤111设置在OADM 102的输出侧。由于OADM 102中的插入损耗,所以到色散补偿光纤111的光信号的输入电平较小。因此,常规上由于非线性而导致的问题可以得到解决。
[0048] 当使用后置放大单元104中的光纤122的可变衰减功能时,可以省略设置在前置放大单元103输入侧的可变光衰减器1116(参见图11)。当后置放大单元104中的光放大器122对光信号进行可变衰减时,可以减小传输路径101中的输入电平,可以将光功率电平调节在前置放大单元103中的输入动态范围内。由于可以减小传输路径中的输入电平,所以也可以解决由于非线性而导致的传输特性的劣化。当略去设置在前置放大单元103输入侧的可变光衰减器1116时,如稍后所详述,可以解决OSNR的劣化。
[0049] 图1B是根据第一实施例的当泵浦光源设置在色散补偿光纤的前级时的光传输装置的结构图。尽管在图1A中示出了泵浦光源125a设置在色散补偿光纤111的后级的后向泵浦的结构,但如图1B所示,泵浦光源125a也可以设置在色散补偿光纤111的前级。
[0050] 参照图2和图3来说明在对光传输装置进行升级之前和之后的光传输装置的结构。图2是初期引入时的光传输装置的结构图。图2中示出了两个相邻节点n1和n2。在初期引入时,在位于传输路径101的上游的节点n1(100)的后置放大单元104中,泵浦光源125a(参见图1A和图1B)尚未连接到泵浦光复用器124a。类似地,在位于传输路径101的下游的节点n2(100)的前置放大单元103中,泵浦光源115a(参见图1A和图1B)尚未连接到泵浦光复用器114a。
[0051] 前置放大单元103中的光放大器112的前级设置有插分复用单元113a,光检测器113c检测到的光接收功率输出到控制器113e。光放大器112的后级也设置有插分复用单元113b,光检测器113d检测到的光接收功率输出到控制器113e。控制器113e基于光检测器113c和113d检测到的光接收功率对光放大器112的增益或输出进行控制。
[0052] 后置放大单元104中的光放大器122的前级设置有插分复用单元123a,光检测器123c检测到的光接收功率输出到控制器123e。光放大器122的后级也设置有插分复用单元123b,光检测器123d检测到的光接收功率输出到控制器123e。控制器123e基于光检测器123c和123d检测到的光接收功率对光放大器122的增益或输出进行控制。
[0053] 设置在下游节点n2(100)中的前置放大单元103内的光检测器113c检测到的光接收功率还输出到设置在上游节点n1(100)中的后置放大单元104内的控制器123e。根据该配置,可以根据通过传输路径101传输的光信号的衰减来调整从上游节点n1(100)输出的光信号的功率。
[0054] 在前置放大单元103的插分复用单元113a与光检测器113c之间、以及在后置放大单元104中的插分复用单元123a与光检测器123c之间分别连接有耦合器116和126。稍后所述的在升级时接收分出的光信号的光接收器分别连接到耦合器116和126。
[0055] 图3是升级时的光传输装置的结构图。假设图1A和图1B中示出的OADM系统是在初期引入时例如按每秒10G比特的传输速度的用于中等传输距离的系统。例如,当按每秒10G比特的传输速度而增加传输距离时或者当传输速度增加到每秒40G比特时,执行升级(功能扩展)。在图3中,与图2中所示构成元件相同的构成元件用相同的标号表示。
[0056] 在升级时,在前置放大单元103中附加地设置图3中虚线包围的扩展部分301,在后置放大单元104中附加地设置图3中虚线包围的扩展部分302。这两个扩展部分301和302具有基本相同的结构。
[0057] 下面来说明后置放大单元104中的扩展部分302。泵浦光源125a连接到泵浦光复用器124a。在色散补偿光纤111,泵浦光源125a将两个泵浦波长(λ1和λ3)的泵浦光作为后向泵浦输出到泵浦光复用器124a。通过输出多个泵浦波长的泵浦光,泵浦光源125a可以在光信号的全部信号波带上获得增益的波长平坦性。
[0058] 两个滤光器313a和313b以及光接收器314a和314b经由耦合器312连接到耦合器126,滤光器313a和313b使在泵浦光源125a的泵浦波长(λ1和λ3)被拉曼放大的光信号的波长通过。泵浦波长λ1用于对光信号波带中的短波长波带进行拉曼放大,泵浦波长λ3用于对光信号波带中的长波长波带进行拉曼放大。滤光器313a和313b具有如下传输特性:阻断放大的自发辐射(ASE)光并且仅通过要监视的波带的光信号。
[0059] OSNR根据光信号光功率电平的波长特性(例如倾斜(tilt)量)而劣化。因此,对倾斜进行监视并将倾斜控制在预定级别的功能是必要的。图4是用于说明对光信号各波带中的光信号的检测的图。光信号具有预定带宽的信号波带λall,而多个信道(例如,50个信道)中的每一个都具有预定功率。在升级时,从信号波带λall,光接收器314a检测出短波长波带λs的功率,光接收器314b检测出长波长波带λl的功率。根据光检测器123c检测的总输入光强度(总功率)以及光接收器314a和314b检测的值,计算信号波带λall中除短波长波带λs和长波长波带λl之外的波带λm的光功率。在本发明中,基于该光路结构而设置有简单的倾斜监测器。
[0060] 由光接收器314a和314b以及光检测器123c检测到的波长的光信号的功率输入到信号信道数/输入电平计算器315中。信号信道数/输入电平计算器315经由控制器316来控制用于拉曼放大的泵浦光源125a的泵浦光功率,以使得位于拉曼放大的后级的光放大器122的输入光具有预定功率电平和预定波长特性。信号信道数/输入电平计算器
315还经由控制器123e来控制光放大器122的增益。
[0061] 信号信道数/输入电平计算器315具体地对倾斜进行监视来控制拉曼放大。在这种情况下,由光接收器314a检测到的短波长波带λs的电平和由光接收器314b检测到的长波长波带λ1的电平具有高优先级,并且与其余波带λm的电平一起计算输入电平。由此,倾斜监视器将信号波带λall划分为三,从而使得对后级光放大器112和122的输入处在恒定功率电平。此外,对传输路径101中产生的受激拉曼散射(SRS)进行补偿。根据该配置,可以对用于拉曼放大的泵浦光源115a和125a的泵浦光功率进行控制以获得预定波长特性。
[0062] 在前置放大单元103的扩展部分301中,用于基于后向泵浦在传输路径101中对光信号进行拉曼放大的泵浦光源115a的泵浦光的波长(λ2和λ4)不同于后置放大单元104中的色散补偿光纤的泵浦波长(λ1和λ3)。将用于在后置放大单元104的色散补偿光纤111中对光信号进行拉曼放大的波长(λ1和λ3)和用于在前置放大单元103的传输路径101中对光信号进行拉曼放大的波长(λ2和λ4)设定为交替波长,以避免波长的相互重叠。根据该配置,可以获得设置于OADM 102的前置放大单元103和后置放大单元104的全部节点中的增益的波长平坦性。如上所述,通过改变泵浦波长以避免节点n(n1和n2)中对光信号拉曼放大的增益波长特性的相同形状,前置放大单元103和后置放大单元104可以相互补偿由拉曼放大产生的增益波长偏移。此外,对拉曼放大的增益波长偏移进行补偿的增益均衡器变得不必要。
[0063] 在上述结构中,没有检测有效软边缘(active soft edge,ASE)。然而,光检测器113c和123c直接检测光信号。在升级时,光接收器314a和314b检测最影响倾斜的短波长波带λs和长波长波带λl。根据该配置,可以最小化对昂贵的光学部件的使用。换言之,在升级时,附加地提供最低限度必需的用于检测短波长波带λs和长波长波带λ1的光接收器314a和314b、以及滤光器313a和313b。
[0064] 根据上述结构,通过假定在升级时连接扩展部分301和302,在初期引入时预先提供分出并复用光信号的泵浦光复用器114a和124a以及耦合器116和126。根据该配置,在升级期间无需断开主光信号就可以在工作状态下进行升级(服务中升级)。此外,无需使用昂贵的光谱分析仪就可以构造简单且高精度的倾斜监视器。
[0065] 图5是根据本发明的光传输装置中的相邻节点之间的噪声性能的相对值的曲线图(参见特征线401)。图5示出了根据计算而获得的特性。横轴表示OADM的插入损耗[分贝],纵轴表示OSNR[分贝]。为了进行比较,还示出了根据图11所示的现有(常规)光路结构方法的OSNR的特征线402。已知在OADM中的损耗较小的区域中,在根据本发明的特征线401中与常规特征线402相比改进了OSNR。当采用具有相对较大的插入损耗的AWG时,根据常规技术的OSNR(如特征线402所示)优于根据本发明的OSNR(如特征线401所示)。然而,当将诸如波长选择开关(WSS)的低损耗介质用于OADM时,通过本发明能够更好地改进SNR(如特征线401所示)。即使在前置放大单元1003的一级设置光放大器时,该OADM
1002也不能改进OSNR。
[0066] 例如,当OSNR改进了0.5分贝时,这基本上具有与以下相同的效果:OADM系统100中具有1000千米的传输长度的传输路径101可以增加112千米。因此,根据本发明对OSNR的改进对于升级长距离传输路径是非常重要的。当未来技术成熟时,预期OADM 102中的插入损耗等会减小。因此,通过应用本发明,可以实现对OSNR的有效改进。
[0067] 图6是根据本发明的光传输装置中的OSNR相对值的图。图6中示出了根据本发明的结构(参见图1A)的特征测量点501和根据现有结构(参见图11)的特征测量点502。横轴表示OADM 102内的单元的构成,纵轴表示OSNR[分贝]。图6中依次示出了根据本发明的构成部件和根据现有技术的构成部件。在下面的圆括号中示出了根据常规技术的构成部件的标号1001到1112b。根据本发明的技术和常规技术对于对传输路径101(1001)的拉曼放大器(分布式拉曼放大器(DRA))(泵浦光源115a(1115a)等)和前级光放大器
112(1112a)提供了等效的特性。
[0068] 然而,根据常规技术,色散补偿光纤111(1111)中的拉曼放大(DCFRA)的OSNR远大于其他构成部件中的OSNR。因此,这对于改进OSNR效果不大。根据常规技术,附加地设置了后级光放大器(1112b)。因此,产生了附加噪声分量,这使OSNR劣化。
[0069] 具体地,如图6中的范围503所示,根据常规技术,由于色散波长光纤1111中的拉曼放大超过非线性的限度而产生的传输特性劣化,导致设置在后置放大单元104中的光放大器(1112b)中的OSNR下降。另一方面,根据本发明的结构,在前置放大单元103中的传输路径101中执行拉曼放大,并在后置放大单元104中的色散补偿光纤111中执行拉曼放大。因此,可以改进设置在后置放大单元104中的光放大器122中的OSNR。如上所述,根据本发明,因为色散补偿光纤111设置在输入功率小的位置处,所以与常规技术相比可解决非线性限制。因此,可以增大使用色散补偿光纤111的拉曼放大(DCFRA)的增益。因此,可以改进后置放大单元104中的OSNR。此外,根据本发明,可以略去常规技术中使用的位于前置放大单元(1003)的后级的光放大器(1112b)。因此,可以相应地减小噪声分量。
[0070] 在从传输路径101的输入(In)到OADM 102的输出(out)的区段中的光功率不存在由于根据本发明的结构与根据常规技术的结构之间的差异而导致的差异。然而,与根据本发明的对后置放大单元104(光放大器122)的输入光功率相比,根据常规技术的对后置放大单元1004(光放大器1121)的输入光功率减小。
[0071] 如上所述,根据本发明的结构,存在以下三个优点。首先,在形成节点的诸如OADM102的装置中插入损耗减小的情况下,可以改进OSNR。其次,可以降低部件成本。成本降低是因为与根据常规技术的结构相比较为简单的结构。虽然在根据常规技术的结构中位于前置放大单元103后级的光放大器1112b(参见图11)是必要的,但根据本发明可以省略该光放大器。虽然在根据常规技术的结构中需要增加位于前级的光放大器1112a的输出,但在根据本发明的结构中不需要增加该输出。第三,与根据常规技术的结构相比,根据本发明的非线性相移可以减小(减小到约一半或更低)。此外,可以充分地避免由于非线性而导致的传输特性劣化。
[0072] 如上所述,根据本发明,由于应用了WSS,使得OADM 102中的插入损耗降低。通过使用该结构,将色散补偿光纤111设置为后置放大单元104中的负载。根据该配置,可以将OSNR设置为与根据常规结构中的OSNR基本相同。同时,可以简化前置放大单元103的结构(可以减少光放大器的数量)。在升级时,可以在前置放大单元103和后置放大单元104二者中都实现拉曼放大,由此有效地增加了OSNR。
[0073] 图7是根据本发明第二实施例的光传输装置的结构图。在图7中,与图3所示第一实施例中的构成部件相同的构成部件用相同的标号来表示。
[0074] 在第二实施例中,在升级时,按与图3所示方式类似的方式,在前置放大单元103中附加地设置扩展部分301,在后置放大单元104中附加地设置扩展部分302。此外,在升级时,前置放大单元103中的光放大器具有两级。在初期引入时设置的光放大器112的前级附加地设置光放大器701,并且在一对光放大器701和112之间设置可变色散补偿器(VDC)702。
[0075] VDC 702对于减少色散补偿光纤111的选项是有效的。然而,作为单个元件的VDC702对于可以进行补偿的色散是有限制的。当传输路径101具有长距离时,作为单个元件的VDC 702不能获得需要级别的色散补偿。因此,也使用对固定级别的色散进行补偿的色散补偿光纤111。VDC 702仅对可变的需要色散级别进行补偿。
[0076] 根据第二实施例,与第一实施例(参见图3)类似,也在后置放大单元104中执行色散补偿光纤111中的拉曼放大。因此,可有效地增大OSNR。VDC 702中的插入损耗较大(约10分贝)。因此,前置放大单元103具有两级的光放大器701和112。VDC 702设置在这两个光放大器之间,由此避免了由于VDC 702中的插入损耗而导致OSNR劣化。如上所述,根据第二实施例,本发明涉及的光路结构还可以应用于具有VDC 702的下一代OADM系统。
[0077] 图8是根据本发明第三实施例的光传输装置的结构图。在图8中,与图3所示第一实施例中的构成部件相同的构成部件用相同的标号来表示。在图8中,略去了在第一实施例中说明了的升级时的扩展部分301和302的结构。图8示出了上行链路801和下行链路802。
[0078] 根据第三实施例,使得对前置放大单元103的光输入电平与传输路径101的长度无关地保持恒定。具体地,检测经由上行链路801的传输路径101对前置放大单元103输入的功率。使用下行链路802的光监控信道(OSC)来传输与所检测到功率的信息对应的控制信号,由此控制上行链路801上的后置放大单元104中的光放大器122的增益或输出,以使得在上行链路801上输入到前置放大单元103的功率保持恒定。
[0079] 放大单元1(811)包括设置在上行链路801上的后置放大单元104以及设置在下行链路802上的前置放大单元103。在上行链路801上的后置放大单元104的输出端设置有插入或分出OSC信号的OSC耦合器821。在下行链路802上的前置放大单元103的输入端设置有插入或分出OSC信号的OSC耦合器822。设置在放大单元1(811)中的光放大器122具有改变增益的功能。
[0080] 放大单元2(812)包括设置在上行链路801上的前置放大单元103以及设置在下行链路802上的后置放大单元104。在上行链路801上的前置放大单元103的输入端设置有插入或分出OSC信号的OSC耦合器823。在下行链路802上的后置放大单元104的输出端设置有插入或分出OSC信号的OSC耦合器824。
[0081] 如图8所示,设置在上行链路801上的放大单元2(812)中的光检测器(PD)113c检测对前置放大单元103的光信号功率输入。将检测到的功率的信息设置为OSC信号,并经由设置在下行链路802上的OSC耦合器824使用传输路径101中的OSC将其传输到放大单元1(811)。
[0082] 在放大单元1(811)中,OSC耦合器822使用传输路径101上的OSC分出OSC信号,并将该OSC信号输入到后置放大单元104中的控制器123e。控制器123e基于包含在该OSC信号中的功率信息对光放大器122的增益进行控制。根据该配置,即使传输路径101长度改变,也可以通过对传输路径的长度进行匹配来控制后置放大单元104中的增益,并且可以使得输入到传输路径101下游的前置放大单元103中的光放大器112的光信号的电平保持恒定。
[0083] 具体地,当上游节点n1(100)与下游节点n2(100)之间的传输路径101的长度短时,减小上游节点n1(100)的后置放大单元104中的光放大器122的增益(减小输出功率),由此使得输入到传输路径101下游的前置放大单元103中的光放大器112的光信号的功率电平保持恒定。通过调整后置放大单元104中的光放大器122的增益,可以消减(调整)色散补偿光纤111中的损耗和增益。
[0084] 根据第三实施例的结构,可以减少设置在传输路径101下游的节点n1(100)中的前置放大单元103中的光放大器112的选项数量。同时,可以避免OSNR劣化。选项数量意味着具有与光放大器112的特性(例如,输入范围)对应的不同结构的光放大器112的数量。选择具有适合于设置位置的特性的光放大器112。对于选项数量,光放大器112以及具有取决于输入电平检测范围的不同特性的多个光检测器113c是必要的。根据第三实施例的结构,可以使得对前置放大单元103中的光放大器112输入的光信号电平与传输路径101的长度无关地保持恒定。因此,不必选择性地设置具有与传输路径101的长度对应的特性的光放大器112,由此省时省
[0085] 如上所述,根据第三实施例,使用上行OSC链路和下行OSC链路来监视输入到传输路径101下游的节点n(n2)中的前置放大单元103的光信号功率,由此控制传输路径101上游的节点n(n1)中的后置放大单元104中的光放大器122以自动调整后置放大单元104的输出。
[0086] 图9是根据本发明第四实施例的光传输装置的结构图。在第四实施例中,对第二实施例(参见图7)中说明的VDC 702的另一应用示例进行说明。
[0087] 在图9中,作为一般性结构,VDC 900包括设置在光信号输入侧的光回旋器(optical circulator)901和可变色散补偿单元902。可变色散补偿单元902从输入侧起按顺序包括传输路径101的输出端(套管(ferule))912、准直透镜(collimating lens)913、线聚焦透镜914、颜色色散元件(chromatic dispersion element)(虚拟成像相位阵列(VIPA))915、聚焦透镜916、以及三维镜917。颜色色散元件915按对于各波长不同的发射角沿上下方向发射光信号。当使三维镜917沿图9中的横向(Y方向)移动时,可以改变各波长的颜色色散。
[0088] 设置在VDC 900上的光回旋器901与可变色散补偿单元902之间的光路上设置有泵浦光复用器114a(参见图1A)和光放大介质920。在光路上的可变色散补偿单元902中设置有泵浦光反射介质921,该泵浦光反射介质921使得光信号通过并且高反射泵浦光。光放大介质920可以由色散补偿光纤111(参见图1A)、掺稀土光纤、基高非线性光纤、高折射率玻璃光纤等构成。可以通过在准直透镜913的入射面上淀积膜来形成泵浦光反射介质921。
[0089] 根据第四实施例的结构,泵浦光反射介质921可以将泵浦光反射到光放大介质920,由此改进了增益的效率。当将EDF用于光放大介质920时,在光放大介质920与可变色散补偿单元902之间设置增益均衡器(GEQ)和ASE截止滤波器。根据该配置,可以抑制由于沿着与增益波长偏离的方向相反的方向产生的ASE而导致的噪声系数(NF)的劣化。
VDC900对插入损耗基本没有变化。当使用掺稀土光纤时,增益波长特性不会改变。尽管常规VDC 702在光信号的输入侧和输出侧分别具有隔离器,但是根据上述结构,光回旋器901可以实现隔离器的功能。如上所述,根据第四实施例的VDC 900,可以减少部件的数量,可使装置小型化,并且可以降低成本。
[0090] 本发明也可以应用于集线器和包括光交叉连接器(OXC)的光传输系统以及包括OADM的系统。本发明可以支持减小OADM中的插入损耗以及增大传输路径101的长度(近年来这在城域系统中得到了发展),并且与常规方法的改进相比可以改进OSNR。
[0091] 根据本发明,可以减小初期引入成本,可以灵活地进行功能扩展以满足传输路径长度的增大或容量的增大。当进行功能扩展时,可以避免由于非线性而导致的传输特性的劣化。因此,可以增大色散补偿光纤中的拉曼放大的增益。由此,可以有效地改进(增大)OSNR,并且可以以低成本来进行功能扩展。
[0092] 尽管为了完整而清楚的公开,针对具体实施例描述了本发明,但是所附权利要求并不由此受限,而是应该理解为包含落入本文阐述的基本教义内的本领域技术人员可以想到的全部修改和另选结构。
QQ群二维码
意见反馈