色散减小的喇曼光纤放大器

申请号 CN02131553.1 申请日 2002-09-11 公开(公告)号 CN1456905A 公开(公告)日 2003-11-19
申请人 菲特尔美国公司; 发明人 彼得·加尔德; 拉斯·格兰纳-尼尔森; 贝拉·帕尔斯多特;
摘要 一种被 泵 浦的喇曼光纤 放大器 ,包括两个光纤,确定这两个光纤的长度,使得在输入光 信号 波长 下,该光纤呈现出大小基本上相等、符号相反的色散。且具有正色散的光纤具有一圆柱形的芯,一外包层,和一相对外包层的折射率分布。该芯的直径在3至6微米(μm)之间,芯与外包层的折射率之间的差(Δn)在0.015至0.035之间。该折射率分布包括一靠近芯周围的沟槽区域,沟槽区域的宽度在1至4μm之间,Δn在-0.005至-0.015之间。这两个光纤是按色散斜率匹配的,使得在一宽波长范围上该放大器的净色散基本上保持为零。
权利要求

1.一种光纤,具有一通常为圆柱形的芯,一外包层,和一相对外 包层的折射率分布,其中:
(a)该光纤芯直径在3至6微米(μm)之间,芯与外包层的折射 率之间的差(Δn)在0.015至0.035之间;
(b)该折射率分布包括一靠近芯周围的沟槽;以及
(c)该沟槽区域的宽度在1至4μm之间,且相对外包层的Δn在 -0.005至-0.015之间。
2.根据权利要求1所述的光纤,其中该沟槽区域的宽度为大约为 1.71μm。
3.根据权利要求1所述的光纤,其中该沟槽区域的Δn大约为- 0.0085。
4.根据权利要求1所述的光纤,其中在1550nm下该光纤呈现出 11至12ps/nm/km之间的正色散。
5.根据权利要求4所述的光纤,其中在1550nm下该光纤具有大约 为0.0027nm-1的相对色散斜率。
6.根据权利要求1所述的光纤,其中该光纤具有大约17μm2的有 效面积。
7.根据权利要求1所述的光纤,其中该光纤芯的Δn大约为0.0236。
8.一种喇曼光纤放大器,包括:
一第一光纤,具有一信号输入端和一与该信号输入端相对的输出 端;
一第二光纤,具有一信号输出端和一与该信号输出端相对的输入 端,其中所述输入端被耦合到第一光纤的输出端;以及
一以这样一种方式耦合到第一和第二光纤上的光源,以便相 对于施加给第一光纤的信号输入端并从第二光纤的信号输出端输出的 光信号实现喇曼放大;
其中确定第一和第二光纤的长度,使得这些光纤具有基本上相等 的相对色散斜率,并且在光信号波长上呈现出大小基本相等、符号相 反的色散,且具有正色散的光纤包括一通常为圆柱形的芯,一外包层, 和一相对外包层的折射率分布,并且
(a)该光纤芯的直径在3至6微米(μm)之间,芯与外包层的折 射率之间的差(Δn)在0.015至0.035之间;
(b)该折射率分布包括一靠近芯周围的沟槽区域;以及
(c)该沟槽区域的宽度在1至4μm之间,相对外包层的Δn在- 0.005至-0.015之间。
9.根据权利要求8所述的喇曼光纤放大器,其中第一和第二光纤 在1550nm下具有大约为0.0027nm-1的相对色散斜率。
10.一种喇曼光纤放大器,包括权利要求1所述的光纤。

说明书全文

发明领域

本发明涉及高增益喇曼光纤放大器,和适用于这种放大器中的光 纤。

现有技术的描述

在光纤芯中具有高浓度锗的光纤,例如其中芯的折射率比周围包 层区域大0.020(Δn>0.020)、并且具有小有效面积(小于20μm2)的 光纤,当用作喇曼放大的介质时,一般可以获得令人满意的增益。例 如,在市售的色散补偿模(DCM)中该光纤用作色散补偿光纤 (DCF)。参见例如于2002年3月16日提交的,名称为“喇曼放 大的色散补偿模块”的美国专利申请10/099,820,该申请被转让给本 发明的受让人。

通常将使用呈现出高喇曼增益的光纤的放大器视为可在多波长范 围内实现高而且平坦的增益特性的装置,仅受到相关浦结构的限制。 当将喇曼放大器与掺铒光纤放大器(EDFA)进行比较时,发现相应 放大器所需的增益光纤的长度具有很大差别。例如,EDFA仅需要零 点几米的光纤,而在喇曼放大器中一般需要几千米的光纤。由此,当 设置在通信系统中时,典型的喇曼放大器可能会引入较大的色散和色 散斜率。

而EDFA可能将很小的色散引入通信系统中,该放大器仅在大约 1528至1565nm和1570至1615nm的波长范围内提供增益。不过,喇 曼放大器能够在更多的波长范围上工作,仅受到可使用的泵浦结构的 限制。具体来说,喇曼放大器的增益区域处于比泵浦波长长大约100nm 的波长处。因此,如果需要1500nm处的增益,则将泵浦波长设置为 大约1400nm,喇曼放大器将能够提供所需的增益。

通常还知道,通过将在所关心的波长下分别具有相等的正色散和 负色散的光纤组合起来,可以获得“0”的净色散。该技术被用于现 代光通信系统中,其中在斜率匹配的色散补偿模块(DCM)中,用具 有负色散的光纤来补偿传输光纤的正色散。但是,包括一典型的传输 光纤和一斜率匹配DCM的具有中性总色散的光纤对不是有效的喇曼 放大器,因为传输光纤的长度必须比模块光纤的长度大许多倍。并且, 典型的传输光纤是喇曼放大的不良介质,因为它们具有低模态喇曼增 益系数(0.4至0.71/W/km),并且有效面积大于5μm2。对于普通传 输光纤,所需的长度大约为模块DCF长度的7倍。对于色散位移型光 纤,诸如,例如可从OFS Fitel购得的Truewave光纤,所需的长度 大约比DCF的长度大25倍。

可从OFS Fitel购得的DCM采用称为RightWaveDK光纤的色 散补偿光纤。RightWave DK光纤呈现负色散斜率,补偿传统单模光 纤的大约65%的色散斜率,在1550nm下可实现-2040ps/nm那样低 的色散值。

现代光通信系统的色散容限极窄。因此,当设置于通信系统中时, 极其需要在宽带宽上可获得具有基本上零净色散的高增益的喇曼光纤 放大器。

发明概述

根据本发明,适合用作喇曼光纤放大器中增益光纤的光纤包括一 通常为圆柱形的芯,一外包层,和相对外包层的折射率分布。芯的直 径在3至6微米(μm)之间,芯的折射率与外包层的折射率之间的差 (Δn)在0.015至0.035之间。该折射率分布包括一靠近芯周围的沟槽 区域,并且该沟槽区域的宽度在1至4μm之间,相对折射率在-0.005 至-0.015之间。

根据本发明另一个方面,一喇曼光纤放大器包括一第一光纤,具 有一信号输入端和一与该信号输入端相对的输出端;一第二光纤,具 有一信号输出端和一与该信号输出端相对的输入端,其中第二光纤的 输入端被连接或耦合到第一光纤的输出端,并且以这样一种方式将一 泵浦光源耦合到第一和第二光纤上,以便相对于施加给第一光纤的信 号输入端并从第二光纤的信号输出端输出的光信号实现喇曼放大。确 定第一和第二光纤的长度,使得在光信号波长处下这些光纤呈现出大 小基本上相等且符号相反的色散。具有正色散的光纤包括一通常为圆 柱形的芯,一外包层,和一相对外包层的折射率分布。该芯的直径在 3至6微米(μm)之间,Δn在0.015至0.035之间。该折射率分布包 括一靠近芯周围的沟槽区域,且此沟槽区域的宽度在1至4μm之间, Δn在-0.005至-0.015之间。

为了更好地理解本发明,参考下面结合附图和所附权利要求的描 述。

附图的简要说明

在图中:

图1为根据本发明的喇曼增益光纤的折射率分布,表示通过光纤 芯与外围包层的截面的折射率之间的差;

图2表示根据本发明的喇曼光纤放大器的结构;

图3为表示由图2的放大器得到的作为波长的函数的净增益和噪 声因数的曲线;

图4为表示当将图1的光纤与相对色散斜率(RDS)稍微不同的 色散补偿光纤组合在一起时所得到的剩余色散的曲线。

本发明的详细说明

图1为表示通过本发明光纤10的截面的折射率分布的曲线。y-轴 绘出Δn,即所测得的通过光纤10的芯12和外围包层16的截面的折射 率之间的差,为沿曲线的x-轴测得的截面中的位置的函数。光纤10 具有高喇曼增益系数,正色散,并且色散斜率适合于与现有光纤诸如, 例如所述具有负色散的RightWave DK光纤匹配。图2表示根据本发 明的喇曼放大器50,包括本光纤10和确定长度的现有负色散光纤, 如RightWaveDK光纤,其中放大器50的总色散接近或者基本为零。

使用改进的化学汽相沉积(MCVD)方法制造光纤10,得到下面 的特征:

1.高喇曼增益系数。

2.正色散,即在1550nm下的色散大约为10至12ps/nm/km。

3.与典型DCF(例如RightWave DK光纤)匹配的相对色散斜率 (RDS)。

4.在泵浦和信号波带中具有良好的光谱特性,即从1400nm至 1650nm具有低光谱衰减。

5.低弯曲损耗,截止波长小于1400nm。

如所提到的,光纤10呈现出图1中的折射率分布。具体来说,光 纤10的芯12的Δn大约为0.0236,直径大约为4.68微米(μm)。靠 近芯的沟槽区域14具有大约-0.0085的Δn,而且芯12和沟槽区域 14的总直径大约为8.10μm〔即沟槽区域14的宽度为 (8.10-4.68)/2=1.71μm〕。光纤10的外包层16的总直径大约为125μm。

因而光纤10的芯12具有高Δn(>20×10-3),小直径。沟槽区域 14是薄的,并且具有大约-9×10-3的Δn的深凹陷。如果没有沟槽区 域14,光纤10将表现出较小的正色散,RDS大约为0.0085ps-1。提 供沟槽区域14,用于减小光纤10的有效面积,增大其色散,减小其 RDS,使光纤能够与所提到的RightWave DK光纤很好地匹配。

所制造的具有上述技术要求的光纤10呈现出下列特性:     截止波长     <1400nm     1550nm下的有效面积     17μm2 模态喇曼增益(泵浦波长:1453nm)     2.71/W/km     1550nm下的衰减     0.45dB/km     PMD     <0.1ps     1550nm下的色散     11-12ps/nm/km     1550nm下的色散斜率     0.033ps/nm2/km     1550nm下的相对色散斜率     0.0027nm-1     1dB波长     >1700nm     零色散波长     <1200nm

为了使光纤10保持上面的特性,最好使光纤的几何形状基本上保 持在下面的范围内:

区域       尺寸                   与外包层的折射率差(Δn)

芯12      直径=3至6μm            0.015至0.035

沟槽14    宽度=1至4μm           -0.005至-0.015

外包层16  宽度=62.5μm            0

将一定长度的本光纤10与可购得的色散补偿光纤诸如具有负色 散的RightWave DK光纤连接起来,得到图2中的喇曼放大器结构, 具有基本上为零的净色散和色散斜率。如上表所示,在1550nm下喇 曼增益光纤10的色散为12ps/nm/km,而DK光纤具有大约- 100ps/nm/km的色散。因此,如在喇曼放大器结构中使用8至10倍于 DK光纤的喇曼增益光纤10,则在1550nm下的总色散为零。另外, 本光纤10与DK光纤在1550nm下的相对色散斜率相等,导致1550nm 下总色散斜率为零。作为附加的特征,DK光纤也是用于喇曼放大的 优良的增益介质。

实例

利用5000米的本光纤10和560米负色散补偿光纤52制成图2中 的喇曼放大器50,其中使用RightWave DK光纤作为负色散补偿光纤 52。提供更长长度的光纤,用较小的泵浦功率可以获得相同的净增益, 但是由于双瑞利后散射增大,也将导致更高的多路干扰(MPI)。

输入信号进入光纤52的一端54,其相对的一端56连接到本光纤 10的一端58。以与光纤10的信号输出端62相反(反向)的泵浦结构 设置泵浦60。如果需要,放大器50可以被向前(共)泵浦或双向泵 浦。

从1526至1610nm,在整个C-波段和L-波段检测输入信号波 长发生改变。对于下面给出的泵浦功率和波长,60个输入信道,并且 总输入功率为0dBm(每个信道为0.0167mW)时可获得10dB的平均 净增益,并且增益波动小于0.4dB。

泵浦波长(nm)    泵浦功率(mW)

1422              247

1435.5            173

1451              100

1466              70

1477              72

1505              84

图3为对于图2中的放大器50所得到的曲线,其中曲线70表示 净增益,曲线72表示噪声因数,以dB为单位。平均MPI为44.4dB。

图4表示一个喇曼增益光纤10与如图所示相对色散斜率(RDS) 稍微不同的三个不同的RightWave DK光纤相连接的例子。在三个不 同的波长范围内,即S-波段(曲线80)、C-波段(曲线82)和L -波段(曲线84),得到几乎为零的剩余色散。具体来说,在C-波 段中,从1520至1570nm,剩余色散在±0.025ps/nm/km之内。

相比之下,图4中的曲线86表示将丹麦的OFS Fitel制造的具有 负色散的标准喇曼增益光纤和具有正色散的标准传输光纤相结合时的 剩余色散。可以看出,在1550nm下可以得到零剩余色散,在非1550nm 的波长下,存在很大的剩余色散,因为该光纤的斜率不匹配。

上面的描述代表本发明的最佳实施例,显然在不偏离下面权利要 求提出的本发明的精神和范围的条件下,本领域技术人员可以进行多 种改变和变型。

发明背景

QQ群二维码
意见反馈