中继器、用于其的激发光供应设备和激发光供应方法

申请号 CN201380009461.9 申请日 2013-02-07 公开(公告)号 CN104115348A 公开(公告)日 2014-10-22
申请人 日本电气株式会社; 发明人 河井元良;
摘要 本 发明 的目的是允许甚至当多个发光元件中的一些发光元件故障时, 中继器 也可以连续地使用。激发光供应设备设置有: 光源 单元(50),其包括多个激发光源模 块 (51(51a至51d)),其分别具有用于发射激发光的发光元件(52(52a至52d))和用于监测来自发光元件(52(52a至52d))的激发光的监测元件(53(53a至53d));分配单元(40),其合成来自多个激发光源模块(51(51a至51d))的激发光并且分配该激发光;以及控制单元(60),其 串联 地向多个激发模块(51(51a至51d))中的多个发光元件(52(52a至52d))的驱动 电流 。
权利要求

1.一种供应激发光的激发光供应设备,包括:
光源单元,所述光源单元包括多个激发光源模,所述多个激发光源模块中的每一个都包括用于发射激发光的发光元件和用于监测所述发光元件的激发光的监测元件;
分配单元,所述分配单元合成来自所述多个激发光源模块的激发光,并且分配所合成的激发光;以及
控制单元,所述控制单元供应串联地流过所述多个激发模块中的多个所述发光元件的驱动电流
2.根据权利要求1所述的激发光供应设备,其中
所述控制单元包括:
控制电路,所述控制电路检测所述监测元件的输出信号,获取输出信号的总和作为监测信号,生成使得所述监测信号的电平等于预先设定的基准值的驱动信号,并且输出所述驱动信号;以及
驱动电路,所述驱动电路基于所述驱动信号,将所述驱动电流输出到所述光源单元。
3.根据权利要求2所述的激发光供应设备,其中
所述控制电路监测是否存在来自所述监测元件的输出信号的电平为零的无信号状态,并且当所述无信号状态存在时,基于所述无信号状态的数量生成所述驱动信号。
4.根据权利要求1至3中的任一项所述的激发光供应设备,其中
一个激发光源模块发射具有预定波长的激发光,并且由所述多个激发光源模块发射的激发光的波长被设定成使得具有多个波长的激发光被供应给所述分配单元。
5.一种用于光学通信的中继器,包括:
光学放大器,所述光学放大器被设置到光纤;以及
在权利要求1至4中的任一项中所述的激发光供应设备,所述激发光供应设备将激发光供应给所述光学放大器。
6.一种用于供应激发光的激发光供应方法,包括以下步骤:
从发光元件发射激发光,并且在当时通过监测元件监测激发光;
通过分配单元合成所发射的激发光并且将其分配;
检测所检测的所述监测元件的输出信号的总和,作为监测信号;以及
基于所述监测信号,输出被供应给串联连接的多个所述发光元件的驱动电流。
7.根据权利要求6所述的激发光供应方法,进一步包括以下步骤:
监测是否存在所检测的所述监测元件的输出信号的电平为零的无信号状态;其中基于所述无信号状态的数量和所述监测信号,输出所述驱动电流。
8.根据权利要求6或权利要求7所述的激发光供应方法,其中
所述发光元件发射具有相互不同波长的激发光。

说明书全文

中继器、用于其的激发光供应设备和激发光供应方法

技术领域

[0001] 本发明涉及中继器、用于其的激发光供应设备、以及激发光供应方法。

背景技术

[0002] 在于海面下形成光学通信路径并且执行通信的海底通信系统中,提供用于放大衰减光学信号的中继器。在这样的中继器中,不容易执行诸如替换、修理等的维护。从而,要求非常可靠的中继器。然而,当中继器长期被使用时,不能避免故障等。从而,甚至当一些组件故障时,中继器也必须能够继续操作。
[0003] 例如,在专利文献1中,提出图4中所示的中继器。该中继器包括:驱动电路101,其通过恒定驱动电流驱动激发光源102;驱动电路104,其根据所输入的可变控制信号110,通过驱动电流驱动激发光源103;光学多路复用器105,其多路复用由激发光源102和103生成的激发光,并且将其提供给掺杂稀土的光纤100;光学多路分用器106,其多路分用来自光学多路复用器105的多路复用的光;以及比较器107,其将基于基准值使多路复用的光的平保持恒定的可变控制信号110输出到驱动电路104。
[0004] 通过使用这样的结构,例如,甚至当激发光源102劣化时,通过可变地控制激发光源103的驱动电流,可以处理激发光源102的寿命缩短问题。即,当激发光源102中的激发光的亮度减小时,驱动电路104操作,以增加激发光源103的亮度,用于补偿减小的量。
[0005] (专利文献1)日本专利申请特开No.2006-128382

发明内容

[0006] (将由本发明解决的问题)
[0007] 然而,在上述专利文献1中描述的结构中,假设在两个激发光源当中的激发光源102故障。这是因为激发光源102被设置为在正常条件下操作的活动激发光源,并且激发光源103被设置为辅助光源。然而,故障的原因在很多情况下不能被知晓,并且没有证据证明被用作辅助光源的激发光源103的寿命长于被用作主光源的激发光源102的寿命。从而,存在当激发光源102中的激发光的亮度减小时,甚至当执行补偿时,该劣化也不能通过激发光源103的激发光补偿。在该情况下,要求对中继器的诸如修理、替换等的工作。
[0008] 从而,本发明的主要目标在于提供中继器、用于其的激发光供应设备、以及激发光供应方法,即使当多个光源当中的一些光源故障时,中继器也可以被连续地使用。
[0009] (用于解决问题的手段)
[0010] 为了解决上述问题,根据本发明的用于供应激发光的激发光供应设备的特征在于包括:光源单元,其包括多个激发光源模,该多个激发光源模块中的每一个都包括用于发射激发光的发光元件和用于监测发光元件的激发光的监测元件;分配单元,合成来自多个激发光源模块的激发光并且将其分配;以及控制单元,其供应串联地流过多个激发模块中的多个发光元件的驱动电流。
[0011] 而且,用于光学通信的中继器的特征在于包括:光学放大器,其被设置到光纤;以及激发光供应设备,其将激发光供应给光学放大器。
[0012] 而且,一种用于供应激发光的激发光供应方法的特征在于包括:光发射监测步骤,其使得发光元件发射激发光,并且在当时通过监测元件监测激发光;分配步骤,其合成在光发射监测步骤中发射的激发光并且将其分配;监测信号检测步骤,其检测在光发射监测步骤中检测到的监测元件的输出信号的总和,作为监测信号;以及电流供应步骤,其基于监测信号,输出供应给串联连接的多个发光元件的驱动电流。
[0013] (本发明的效果)
[0014] 通过本发明,因为多个发光元件串联连接,并且供应驱动电流,甚至当多个发光元件当中的一些发光元件故障时,也可以连续地提供激发光。附图说明
[0015] 图1是根据本发明的示例性实施例的中继器的框图
[0016] 图2是示出中继器中的控制单元的控制过程的流程图
[0017] 图3是具有另一种构造的中继器的框图,以及
[0018] 图4是应用至相关技术的解释的中继器的框图。

具体实施方式

[0019] 将描述本发明的示例性实施例。图1是根据本发明的使用激发光供应设备4的中继器2的框图。中继器2由主光学放大器3(3A和3B)和激发光供应设备4构成。
[0020] 光学放大器3中的每一个都包括连接至光纤F(Fa和Fb)和多路复用器32(32a至32d)的掺铒光纤(EDF)31(31a至31d)。而且,作为实例,图1示出通信路径包括两个系统的情况,两个系统是由光纤Fa形成的第一通信路径和由光纤Fb形成的第二通信路径,并且每个通信路径都具有双重冗余构造。
[0021] 激发光供应设备4包括分配单元40、光源单元50、以及控制单元60。光源单元50分别包括激发光源模块51(51a至51d),其包括激发激光二极管元件(此后称为发光元件)52(52a至52d)和用于监测的光电二极管元件(53a至53d)53。
[0022] 在以下说明中,假设每个激发光源模块51都具有相同规范(至少所有激发光源模块都发射具有相同波长的激发光)。然而,如随后所述,根据波分多路复用(WDM)传输,激发光源模块51可以具有相互不同的规范(所有激发光源模块51都发射具有相互不同的波长的激发光)。
[0023] 控制单元60包括控制电路61和驱动电路62。每个监测元件53的输出信号都被输入到控制电路61。控制电路61检测每个监测元件53的输出信号的信号电平,并且获得通过总计所有监测元件53的输出信号获得的监测信号G1。而且,例如,当发光元件52b故障时,因为监测元件53b的输出信号的信号电平变为等于“0”,则可以基于该信号电平,判定发光元件是否故障。控制电路61基于信号电平的判定结果和监测信号G1的值,输出驱动信号G2,以使得使其等于预先设定的亮度值。
[0024] 驱动电路62基于驱动信号G2设定驱动电流G3并且将其输出。该驱动电流G3串联地流过所有发光元件52。从而,当所有发光设备52都具有相同规范时,所有发光设备52都发射具有相同波长和相同亮度的激发光。当然,甚至当发光设备52具有相同规范时,在所有发光设备52等之间也存在个体差异。从而,甚至当所有发光设备52都由相同驱动电流G3驱动时,存在所有激发光的波长和亮度都不完全彼此相等的情况。然而,当至少波长之间的差异在可允许误差范围内并且可以认为波长基本相等时,不必须满足亮度彼此相等的条件。该原因将在分配单元40的说明中描述。
[0025] 分配单元40包括分配器41(41a和41b)、合成分配器42、以及合成器43(43a和43b)。来自激发光源模块51a和51b的激发光被输入到合成器43a中,这些激发光被合成,并且所合成的光被输出到合成分配器42。此外,来自激发光源模块51c和51d的激发光被输入到合成器43b中,这些激发光被合成,并且所合成的光被输出到合成分配器42。从而,来自合成器43a和43b的激发光被输入到合成分配器42。即,由激发光源模块51a至51d发射的激发光被收集到合成分配器42并且被分配到分配器41。
[0026] 因为来自驱动电路62的驱动电流G3被供应给串联连接的发光元件52,期望由所有发光设备52发射的激发光的波长和亮度在原理上都相同。然而,如上所述,存在由于个体差异等导致的散布。从而,甚至在该情况下,当波长之间的差异在可允许误差范围内并且可以认为波长基本相等时,不考虑亮度的散布。原因在于由所有发光元件发射的激发光被收集到合成分配器42,所收集的激发光被重新分配,并且由此消除由于个体差异导致的亮度散布。
[0027] 将参考图2中所示的流程图描述控制电路61的操作。
[0028] 步骤S1和S2:控制电路61检测所有监测元件53的输出信号,总计输出信号,并且使用总和作为监测信号G1。
[0029] 步骤S3和S4:控制电路61监测在检测到的每个监测元件53的输出信号中是否存在无信号状态(其中,信号电平为零),并且对存在无信号状态的输出信号的数量N计数。输出信号的无信号状态是指因为对应于监测元件53的发光元件52故障而没有发光。当无信号状态的数量N等于零时,处理进行至步骤S5,并且当无信号状态的数量N等于或大于1时,处理进行至步骤S8。
[0030] 步骤S5:因为无信号状态(N=0)下的输出信号不存在,控制电路61判定监测信号G1是否大于基准值。
[0031] 步骤S6和S7:当监测信号G1大于基准值时,减小驱动信号G2的电平,并且当监测信号G1小于基准值时,增加驱动信号G2的电平。而且,因为监测信号G1是所有发光元件52的输出信号的总和,合成分配器42中的亮度值对应于监测信号G1的电平值。从而,甚至当在发光设备52之间存在个体差异时,控制电路61也可以通过生成使监测信号G1的电平等于基准值的驱动信号G2,使合成分配器42中的亮度值一直保持恒定。
[0032] 步骤S8和S9:另一方面,在步骤S4中,当无信号状态的数量N大于或等于1时,根据检测到的无信号状态的数量N,设定驱动信号G2的增加/减小量。通常,当发光元件52故障时,发光元件52被短路。在这样的情况下,在不大量增加驱动信号G3的情况下,不能使被收集到合成分配器42的激发光的亮度值等于目标亮度值。从而,控制电路61根据无信号状态的数量N,设定驱动信号G2的增加/减小量。
[0033] 例如,将考虑当所有发光元件52都发射具有相同波长的激发光的情况(当使用具有单个波长的光学信号时),监测元件53b的输出信号处于无信号状态。在该情况下,控制电路61确定发光元件52b被短路,并且将驱动电流G3增加5/4倍。而且,例如,将考虑当发光元件52a和52c和发光元件52b和52d发射具有相同波长的激发光时(在传输波长多路复用光学信号的WDM传输的情况下),监测元件53b的输出信号处于无信号状态的情况。在该情况下,控制电路61确定发光元件52b被短路,并且使驱动电流G3增加3/2倍。从而,根据发光元件是否故障来控制驱动电流,并且由此被收集到合成分配器42的激发光的亮度值可以保持恒定。
[0034] 分配器41的输出被分配到多路复用器32(32a至32d)。多路复用器32a和32c被设置到具有冗余构造的第一通信路径的光纤Fa,并且多路复用器32b和32d被设置到具有冗余构造的第二通信路径的光纤Fb。通过该构造,具有由发光元件52发射的光的波长的激发光经由多路复用器32被供应给每个光纤F。
[0035] 另一方面,通过经由掺铒光纤(EDF)31的光纤F传输光学信号。如众所周知的,EDF31具有放大入射光并且将其输出的功能。从由多路复用器32供应的激发光获得在当时要求的能量。结果,通过光纤F传输的光学信号由EDF31放大。
[0036] 而且,在上述说明中,因为使用具有单个波长的光学信号,所以假设所有发光元件52都是具有相同规范的激发激光二极管元件。然而,该示例性实施例不限于这些条件。即,甚至当使用WDM传输的通信系统被使用时,该示例性实施例可以被应用至通信系统。当使用WDM传输的通信系统被使用时,使用具有相互不同波长的光学信号。
[0037] 例如,假设使用具有两个波长974nm和976nm的光学信号,发光设备52a和发光设备52c发射具有相同波长的激发光,并且发光元件52b和发光元件52d发射具有相同波长的激发光。在该情况下,由发光元件52a和52c发射的激发光和由发光元件52b和52d发射的激发光经由合成器43而被合成分配器42合成,并且所合成的光被分配。从而,具有两个波长的激发光被输入到多路复用器32。从而,甚至当使用具有两个波长的光学信号时,可以实现光学放大。当然,在该实例中,使用具有两个波长的光学信号。当使用具有多个波长的光学信号时,根据所使用的波长的数量,使用具有相互不同的规范的激发激光二极管元件。
[0038] 而且,在中继器的上述说明中,使用具有双重冗余构造的通信路径。然而,在本发明中,冗余的数量不限于上述数量。例如,如图3中所示,可以使用具有三重冗余构造的通信路径。在图3中,根据冗余的数量添加分配器44(44a至44c),通过其将信号相等地划分为两个输出信号。
[0039] 如上所述,所有发光设备都串联连接,并且供应串联地流过所有多个发光元件的驱动电流。从而,能够使用中继器,直到所有发光设备都故障为止。特别是,因为驱动多个发光设备的电流可以通过使用一个控制电路和一个驱动电路供应,所以可以使用具有简单构造的控制单元。从而,控制单元的成本可以被减少,并且其故障发生频率可以被减小。而且,多个发光设备不具有诸如主光源或辅助光源的特定色,并且可以作为主光源或辅助光源操作。从而,发光设备具有发光设备可以具有大操作裕量的优点,这是因为所有发光设备都具有相同角色。从而,中继器的可靠性被改进,并且由此用于维护等的成本可以被减少。
[0040] 本申请要求于2012年2月14日提交的日本专利申请No.2012-029601的优先权,其内容完全结合于此作为参考。
[0041] 符号的说明
[0042] 2 中继器
[0043] 4 激发光供应设备
[0044] 32 (32a至32d)多路复用器
[0045] 3 (3A和3B)光学放大器
[0046] 40 分配单元
[0047] 41 分配器
[0048] 42 合成分配器
[0049] 43 (43a和43b)合成器
[0050] 50 光源单元
[0051] 51 (51a至51d)激发光源模块
[0052] 52 (52a至52d)发光元件
[0053] 53 (53a至53d)监测元件
[0054] 60 控制单元
[0055] 61 控制电路
[0056] 62 驱动电路
QQ群二维码
意见反馈