流体喷射器

申请号 CN201380050310.8 申请日 2013-07-30 公开(公告)号 CN104662622B 公开(公告)日 2017-06-23
申请人 德尔福国际运营卢森堡有限公司; 发明人 M.西克斯; A.米歇尔; N.史密斯;
摘要 一种 流体 喷射器,包括:线圈(110),其被配置当通电时驱动 泵 (120)从第一状态到第二状态,以便泵送定量给料流体; PN结 (130),其在线圈两端电气地布置以当线圈两端的 电压 高于 阈值 时击穿并且使在线圈中储存的 能量 放电。在一特定 实施例 中,流体喷射器 选择性催化还原 定量给料流体喷射器。
权利要求

1.一种用于选择性催化还原定量给料系统的流体喷射器,包括:
线圈,其布置成当通电时将从第一状态驱动到第二状态,以便泵送并且喷射流体;
PN结,其以电气方式布置成跨越所述线圈以当从所述线圈移除外部驱动电压时、以及当跨越所述线圈的电压高于所述PN结的击穿电压时击穿并且使在所述线圈中所储存的能量释放;并且其中所述PN结和所述线圈共用冷却系统。
2.根据权利要求1所述的流体喷射器,其特征在于,所述PN结是在以电气方式跨越所述线圈而布置的二极管内。
3.根据权利要求1所述的流体喷射器,其特征在于,所述PN结位于以电气方式跨越所述线圈而布置的瞬态电压抑制器内。
4.根据前述权利要求中任一项所述的流体喷射器,其特征在于,所述PN结直接连接到所述线圈。
5.根据权利要求4所述的流体喷射器,其特征在于,所述PN结钎焊到所述线圈的端子上。
6.根据权利要求1所述的流体喷射器,其特征在于,所述PN结和所述线圈在共同冷却护套内。
7.根据权利要求1至3中任一项所述的流体喷射器,其特征在于,所述选择性催化还原定量给料系统包括诊断电路,所述诊断电路配置成用以诊断所述PN结的正常运行,以及所述诊断电路布置成用以测量所述线圈的放电期间的电流衰减或电压衰减。
8.根据权利要求1至3中任一项所述的流体喷射器,其特征在于,所述流体喷射器是选择性催化还原定量给料喷射器、燃料喷射器和喷射器之一。
9.一种用于使流体喷射器的线圈放电的方法,所述方法包括:
向所述流体喷射器的线圈供应电能以将泵从第一状态驱动到第二状态以便泵送并且喷射流体;
停止向所述线圈供应电能;以及
允许储存于所述线圈中的所述电能通过以电气方式跨越所述线圈而布置的PN结耗散并且其中所述PN结和所述线圈共用冷却系统。
10.一种组装流体喷射器的方法,所述方法包括:
将PN结以电气方式跨越线圈的端子而附连,所述线圈布置成用以将泵从第一状态驱动到第二状态以便驱动流体并且其中所述PN结和所述线圈共用冷却系统。

说明书全文

流体喷射器

技术领域

[0001] 本发明大体而言涉及一种流体喷射器。具体而言,但并非排他性地,本发明涉及一种被配置成用于车辆上的流体喷射器,诸如喷射器或燃料喷射器。更具体而言,本发明涉及一种选择性催化还原定量给料喷射器。本发明还涉及所述流体喷射器的使用方法和组装方法。

背景技术

[0002] 本发明的目的在于提供在多种控制电路,最特别地发动机控制单元(ECU)与流体喷射器,最特别地选择性催化还原(SCR)定量给料喷射器之间的改进的兼容性。另一目的在于提供所提到类型的流体喷射器的控制和操作的有所改进的可靠性。

发明内容

[0003] 总之,本发明涉及一种流体喷射器,并且特定而言,涉及一种选择性催化还原(SCR)定量给料喷射器。在一示例中,流体喷射器包括柱塞,泵柱塞能够从第一位置移动到第二位置以驱动流体通过流体喷射器,流体为通常尿素、水或燃料。当线圈被通电时,线圈被布置成用以驱动所述泵柱塞到第二位置。当对线圈断电时,泵柱塞被偏压以返回到第一位置,通常通过弹簧。根据本发明,提供电压抑制器或其它机构以当驱动信号被关掉时快速地并且可靠地将线圈中所储存的电能放电。电压抑制器应理想地能在发动机舱环境内和在SCR定量给料喷射器或水或燃料喷射器中通常发生的操作的高频率下运行/操作。在一示例中,电压抑制器被布置成用以直接地连接到线圈。电压抑制器可以邻近于线圈,并且可以钎焊到线圈端子。线圈理想地被冷却并且在一示例中,电压抑制器被布置成由同一冷却机构冷却。通常,电压抑制器被密封在线圈的同一液体冷却护套内。理想地,电压抑制器具有击穿电压,该击穿电压低于任何驱动电路的击穿电压。电压抑制器可以是单向装置或者在优选实施例中是双向装置。电压抑制器优选地包括瞬态电压抑制二极管。在一广义示例中,使用PN结。PN结被布置成当驱动电压从线圈移除时击穿并且使线圈内所储存的能量放电。PN结可以布置成使得阴极连接到线圈的正驱动电压端子。
[0004] 以此方式,提供了用于对流体喷射器的线圈加以控制的改进的方式,其也具有使流体喷射器与更广范围的发动机控制单元(ECU)更兼容的额外优点。通常,发动机的周围条件,以及从线圈耗散的大量能量意味着某些类型的ECU不能应对从线圈通过内部部件诸如通过低侧FET开关放电的能量耗散。具有单独的放电机构缓解了这个问题并且使得所描述类型的流体喷射器与更广范围的ECU相兼容。有利地,电压抑制器能受益于已经针对流体喷射器就位的冷却系统和特别地SCR定量给料喷射器。
[0005] 提供了在所附权利要求中陈述的设备和方法。另外的特征在下文中描述。
[0006] 也在下文描述的相关发明提供了诊断电路,当用于上述发明时,诊断电路特别适用。在一示例中,诊断电路被布置成用以测量流体喷射器的线圈的驱动电路中的电气特征。诊断电路比较了所测量的电气特征与另一电气特征来判断PN结是否用于使选择性催化还原定量给料喷射器的线圈中的电能放电。在一示例中,诊断电路被布置成用以测量在驱动电路的断开阶段期间的电气特征。诊断电路可以被布置成用以测量从驱动电路的断开阶段开始的500微秒时段期间的电气特征。诊断电路可以被布置成用以测量驱动电路中的电流
通常,诊断电路被布置成用以测量通过驱动电路中的感测电阻器的电流。理想地,诊断电路被布置成判断在50微秒、75微秒、100微秒、150微秒和200微秒之一的时段之后电流是否高于0.1、0.2和0.3安培之一的值。在另一示例中,诊断电路被布置成用以测量驱动电路中的电压。诊断电路可以被布置成用以测量通过驱动电路中的分压器的电压。诊断电路可以被布置成用以判断电压是否高于PN结的击穿电压。通常,诊断电路被布置成用以判断电压是否在驱动电路的断开阶段的开始的300微秒内高于PN结的击穿电压。在另一示例中,诊断电路可以被布置成用以测量在线圈的低侧处的电气特征。
[0007] 相关发明还提供了一种用于对选择性催化还原定量给料喷射器的电压抑制器的故障进行诊断的方法。在一示例中,该方法包括测量流体喷射器的线圈的驱动电路中的电气特征并且比较所测量的电气特征与另一电气特征来判断PN结是否用于使流体喷射器的线圈中的电能放电。
[0008] 所述诊断电路提供选择性催化还原定量给料喷射器的线圈的驱动电路性能的有所改进的可靠性检查。附图说明
[0009] 现将参看附图来描述本发明的实施例,在附图中:
[0010] 图1为其中运用本发明的选择性催化还原定量给料系统的示意概观图;
[0011] 图2为示出根据本发明的实施例的选择性催化还原定量给料喷射器的元件的示意图;
[0012] 图3为用于驱动图2的定量给料喷射器的示例驱动电路的电路示意图,其中驱动电路包括诊断电路;
[0013] 图4为示出图3的驱动电路但包括替代诊断电路的电路示意图;
[0014] 图5A为示出在接通阶段通过图3的驱动电路的电流流动的电路示意图;
[0015] 图5B为示出在断开阶段通过图3的驱动电路的电流流动的电路示意图;
[0016] 图6A为图5A的电路示意图,示出了在故障电压抑制器下的电流流动;
[0017] 图6B为图5B的电路示意图,示出了在故障电压抑制器下的电流流动;
[0018] 图7是利用起作用和不起作用的电压抑制器所感测的电流的曲线图;
[0019] 图8是利用起作用和不起作用的电压抑制器所感测的电压的曲线图;
[0020] 图9是使得一种定量给料喷射器的线圈放电的方法的流程图
[0021] 图10是组装一种定量给料喷射器的方法的流程图;以及
[0022] 图11为对所述定量给料喷射器的线圈诊断故障的方法的流程图。

具体实施方式

[0023] 现将参考上文所列出的图来描述本发明的实施例以便用并不预期限制本发明范围的方式来说明本发明的一种或多种应用。
[0024] 图1为安装于发动机20的排气管30中的选择性催化还原(SCR)定量给料系统10的示意概观图。排气管包括柴油化催化剂(DOC)40、SCR催化柴油微粒过滤器(SCRF)50、和SCR催化剂60。发动机20包括发动机冷却系统70和发动机控制单元(ECU)80。SCR定量给料系统10包括尿素递送模(UDM)90和SCR定量给料喷射器100。
[0025] SCR催化剂60包括NH3传感器62和NH3控制器64 ,NH3控制器64被布置成向ECU 80反馈信号以控制在系统10内的选择性催化还原。
[0026] 发动机冷却系统70包括热交换器72和冷却管线74,热交换器72和冷却管线74连接到SCR定量给料喷射器100以便冷却所述SCR定量给料喷射器100。
[0027] ECU 80包括SCR驱动器模块82,SCR驱动器模块82被布置成用以控制UDM 90和SCR定量给料喷射器100。
[0028] UDM 90包括SCR罐92,SCR罐92包含定量给料流体,在此情况下为尿素。UDM 90还包括进给管线94以将定量给料流体进给/馈送到SCR定量给料喷射器100。进料管线94被电加热。
[0029] ECU 80通常位于发动机舱中并且将需要在热周围条件/环境条件下在90℃的区域中操作。大部分ECU部件具有大约125℃的最大操作温度。因此,通常,ECU 80不应产生足够的热能来升高其部件的温度高于正常周围操作温度大于35℃。如果发生这种情况,ECU部件故障的机会大幅增加。
[0030] 来自发动机20进入排气管30的排烟的温度能到达800℃的区域,特别是在柴油微粒过滤器(DPF)再生事件期间。在排气管30附近的部件常常能在250℃区域中的周围条件下操作。
[0031] 图2为更详细示出根据本发明的一实施例的SCR定量给料喷射器100的示意图。SCR定量给料喷射器100包括线圈110、泵120和电压抑制器130。
[0032] 线圈110被布置成用以当通电时将泵120从第一状态驱动到第二状态,以便根据成功选择性催化还原的需要将定量给料流体泵送到排气管30内。如先前所提到的那样,利用来自NH3控制器的输入,由ECU 80和SCR驱动器模块82来管理对SCR定量给料喷射器100的控制。
[0033] 泵120包括泵柱塞(未图示),泵柱塞能从第一位置移动到第二位置以泵送和喷射定量给料流体到排气管30内。泵柱塞的第一位置对应于泵的第一状态,并且泵柱塞的第二位置对应于泵的第二状态。当线圈110通电时,泵柱塞被从第一位置驱动到第二位置。当线圈110断电时,弹簧(未图示)用于使泵柱塞返回到第一位置。有时需要将泵从第一状态快速地驱动到第二状态。需要SCR定量给料喷射器100在从1Hz至135Hz之间操作。而且,线圈110在正常操作期间使用在5至10瓦之间,至多约20瓦的能量。定量给料喷射器100并非简单地为一种喷射经加压流体的电促动,而是替代地执行使流体加压和喷射流体所必需的工作。现有技术喷射器一直倾向于分离所述泵和喷射器功能,其中泵用于生成经加压流体,泵受到控制电路控制,控制电路接收关于流体进给管线压的传感器信息。清除阀也趋向于是必需的,以防止冻结。对于那些类型的现有技术喷射器而言,喷射压力通常为大约5巴(大约500kPa)。在此示例实施例中所讨论的定量给料喷射器具有统一的泵和喷射器,其除掉了压力控件以及清除阀。也实现了在50巴(大约5000kPa)峰值的喷射压力。
[0034] 重要的是,电压抑制器130被布置成用以跨越线圈110而被连接并且被布置成用以当跨越所述线圈110的电压高于阈值时使储存在线圈110中的能量放电,这在每个喷射事件结束时发生。在此实施例中,在接通阶段期间,线圈110被电能激励并且在断开阶段期间切断电能供应。当在断开阶段时,在线圈110中所储存的能量足以升高跨越所述电压抑制器130的电压高于击穿电压,并且电压抑制器130用于使线圈110中所储存的能量放电。储存在线圈110中的能量大部分作为热而损失。在此示例中,电压抑制器130是具有30伏击穿电压的瞬态电压抑制器。合适电压抑制器以部件编号SMAJ30CA销售。这种瞬态电压抑制器具有
400瓦峰值脉冲功率耗散,并且能在高达175℃操作。电压抑制器130为双向瞬态电压抑制二极管。电压抑制器130在此实施例中被钎焊于线圈110的端子(未图示)上。线圈110被一种冷却护套(未图示)所包围并且电压抑制器130被包含于线圈110的冷却护套内并且共用同一液体冷却的冷却系统(在先前被图示为发动机冷却系统70)。
[0035] 以此方式,SCR定量给料喷射器100变得与比现有技术系统与更广范围的ECU相兼容。每个ECU无需具有允许它在每个循环期间耗散掉储存在线圈110中的能量的专用设计。将ECU加热高于其最高额定操作温度的危险因此大幅降低,提高了发动机可靠性。通过将同一冷却系统共用为SCR定量给料喷射器100,电压抑制器130能被保持在其自己的操作温度范围内,尽管其可能紧密靠近于排气管30。这种方案也排除了对于另外专用驱动箱或者对其它电路做出其它修改的需要。
[0036] 当然,本领域技术人员将会意识到可以使用另一类型的电压抑制器130,并且特别地也可以使用二极管(特别是齐纳二极管)、晶体管等。
[0037] 现在存在着若电压抑制器130出现故障的可能问题。ECU 80或SCR驱动器模块82不能够完全耗散在线圈110中的能量,或者不能充分耗散在线圈110中的能量以避免可靠性问题。
[0038] 图3是用来驱动所述线圈110的驱动电路300的电路示意图。在示意图中,线圈110被示出在驱动电路300内,并且如将认识到那样,线圈110将在大部分情形下与驱动电路300以物理方式分离开。同样,电压抑制器130被示出在驱动电路300内,但将很可能位于邻近所述线圈110处,如上文已经描述的那样。
[0039] 驱动电路300包括高侧晶体管开关310,高侧晶体管开关310将线圈110的高侧连接到电池端子312从而使得车辆电池的典型电压可被施加跨越所述线圈110。在大部分车辆中,这个电压将在12伏的区域,并且将由车辆电池进行供应。驱动电路300还包括低侧晶体管开关320,低侧晶体管开关320将线圈110的低侧连接到接地端子322以完成用于向线圈110通电的电路。高侧晶体管开关310和低侧晶体管开关320二者都具有相对应控制信号,相对应控制信号适当地接通和断开每个相应晶体管。
[0040] 重要的是,驱动电路300包括线圈诊断电路330。线圈诊断电路330包括感测电阻器332,感测电阻器332在低侧晶体管开关320与接地端子322之间串联。电压测量模块334具有跨越所述感测电阻器332而连接的两个输入端子并且具有输出,输出被布置成用以输出一种指示着通过感测电阻器332的电流的信号。
[0041] 而且,驱动电路300包括飞轮晶体管开关340,飞轮晶体管开关340被布置成用以将线圈110的高侧连接到接地端子322。飞轮晶体管开关340以与高侧晶体管开关310相反的方式受到控制,从而使得当一个接通时,另一个断开。
[0042] 图4为上文参考图3所展示的布置的替代布置的电路示意图。此处,相同的附图标记表示相似部件并且它们将不在本文中再次描述。展示了替代线圈诊断电路430,其感测电压而不是电流。此处,分压器432在其顶端处连接于线圈110的低侧与低侧晶体管开关320之间。电压抽头(voltage tap)434被连接于分压器432的两个电阻器之间以便输出电压读数。
[0043] 图5A为示出在接通阶段期间图3的驱动电路300的电路示意图。此处,被示出为i的电流从电池端子312通过高侧晶体管开关310、线圈110、低侧晶体管开关320和感测电阻器332向下传递到接地端子322。
[0044] 图5B为示出在断开阶段期间的驱动电路300的电路示意图。此处,高侧晶体管开关310处于开路配置,正如低侧晶体管开关320也处于开路配置。电流并不从电池端子312流到接地端子322。替代地,在线圈110中的能量通过电压抑制器130直接地耗散并且电流以不涉及驱动电路300的环路而环绕流动。在感测电阻器332中没有或基本上没有电流流动。
[0045] 图6A为示出当电压抑制器出现故障时的驱动电路300的电路示意图。此处,如图5A所示,电流如之前在驱动电路的接通阶段期间那样流动。在工作的电压抑制器的情形与不工作的电压抑制器情形之间在接通阶段期间在电流流动方面并无差异。
[0046] 图6B为示出同样在电压抑制器130处于故障状态,在断开阶段期间,驱动电路300的电路示意图。此处,不同于图5B,电流并不以环路通过线圈110和电压抑制器130流动。替代地,飞轮晶体管340将线圈110的高侧接地并且低侧晶体管开关320由于在线圈110低侧处的电压超过了低侧晶体管开关320的击穿电压而变得闭合。电流通过飞轮晶体管开关340流入到线圈110的高侧内,通过线圈110、通过低侧晶体管开关320、通过感测电阻器332并且经由接地端子322接地。
[0047] 如对于熟练的读者将显然的,图6B展示了感测电阻器332将感测到持续了在断开阶段开始的时段的电流。而且,熟练的读者现将认识到,对于图4所示的电路将同样如此。即,当电压抑制器130在故障状态时,在断开阶段开始时在电压抽头434处将会生成电压。
[0048] 为了进一步说明这点,图7为在x轴上绘制时间并且在y轴上绘制由线圈诊断电路330通过感测电阻器332所测量的电流的曲线图。绘出了两个曲线,第一(实线)示出了当电压抑制器130处于正常工作条件时的电流i。此处可以看出当断开阶段开始时在通过感测电阻器332的电流中存在急剧下降。换言之,在图5B中所示的环路中发生电流衰减并且因此并未被感测电阻器332测量到。第二曲线(虚线)示出了当电压抑制器130出现故障时(如图6B所示)的电流i。此处,电流i示出了通过感测电阻器的衰减特征。应当指出的是因此在感测电阻器332中的这种电流衰减允许发动机控制单元或类似物判断/确定所述电压抑制器130中出现故障并且采取适当措施,诸如限制所述SCR定量给料喷射器100的操作频率、限制喷射到排气30内的定量给料流体的量、和向使用者提供设法维护发动机的警告信号等中的一个或多个做法。在感测电阻器332中的电流i从接通阶段的结束时的大约1.6安培衰减到当电压抑制器130工作时进入断开阶段大约50微秒的0.2安培或更小,以及从1.6安培衰减到进入断开阶段大约200微秒时的0.2安培或更小。
[0049] 图8为绘制出用于图4中所示的线圈诊断电路430的电压绘制的曲线图。此处,存在着从接通阶段到断开阶段的转变时所测量的跨越所述线圈101的电压的曲线。可以看出,在接通阶段期间,跨越所述线圈110上的电压为10伏,在此示例中等于电池的电压。
[0050] 在图8中的曲线图中的曲线中第一个(实线)示出了当电压抑制器130可操作时跨越所述线圈110上的电位差。此处,看出在断开阶段中跨越线圈110上的电位差升高到大约33伏(即,电位差等于电压抑制器130的击穿电压,在此情况下,其实际上在30伏与40伏之间)。跨越所述线圈110的电压保持在这个水平持续大约500微秒,并且然后快速地降低到零,因为在线圈中的所有能量通过电压抑制器130而被耗散。
[0051] 在图8的曲线图上的第二曲线(虚线)示出了当电压抑制器130处于故障状态时跨越所述线圈110的电位差。此处,在从接通阶段到断开阶段的转变时,跨越所述线圈110的电压快速地增加到显著高于当电压抑制器130处于工作条件时的量。在此情况下,跨越所述线圈110的电压的峰值是在大约60伏,其等于低侧晶体管开关320的击穿电压。应当指出的是,在断开阶段期间跨越所述线圈110的电压当电压抑制器130不工作时持续了比当电压压缩机130工作时更短的时段(300微秒相比于500微秒)。
[0052] 以此方式,催化还原定量给料系统能更可靠地运行而同时利用先前提到的更广泛的兼容性。
[0053] 图9为使SCR定量给料喷射器100的线圈110放电的方法的流程图。此处,如先前解释的那样,线圈110在步骤910被驱动电路300加电。线圈110然后在步骤920被驱动电路300断电。然后当由线圈110所生成的电压超过电压抑制器130的击穿电压时,在断开阶段开始时,通过电压抑制器130来耗散在线圈110中所储存的能量。
[0054] 图10为组装所述SCR定量给料喷射器100的方法的流程图。此处,电压抑制器130跨越所述线圈110而被附连以便在步骤1010在断开阶段期间实现储存在线圈110中的电能的放电。使用钎焊技术来附连所述电压抑制器,但可以使用其它合适技术。电压抑制器130紧密靠近于线圈110而附连,并且被附连到线圈110以便能共用线圈110的冷却系统。特别地,电压抑制器130被附连为处于线圈110或SCR定量给料喷射器的同一液体冷却护套内侧。
[0055] 图11是用于诊断SCR定量给料喷射器100的线圈110中故障的方法的流程图。此处,在步骤1110由驱动电路300使线圈110通电。然后在步骤1120由驱动电路300使线圈110断电。在步骤1130,由诊断电路330进行测量以感测通过感测电阻器332流动的电流或者由诊断电路430进行测量以感测在分压器432中的电压。诊断电路330被布置成在感测电阻器332中寻找持续数十微秒的衰减电流。诊断电路340被布置成用以跨越所述线圈110寻找比当电压抑制器130操作的情形下更大的峰值电压和延续更短持续时间的电压。例如,诊断电路430可能寻找大约为电压抑制器130的击穿电压(以指示正确工作)的电压或者高于电压抑制器130击穿电压的余量(在此示例中30伏、或实际上33伏)(以指示电压抑制器130的不正确工作)。作为替代或作为补充,诊断电路430可能寻找持续了高于特定阈值的时段,即,例如350微秒,以指示电压抑制器正在正确工作,或低于阈值以指示电压抑制器不正确地工作。
[0056] 虽然已在上文中参考一个或多个优选实施例对本发明展开描述,将意识到在不偏离如所附权利要求中所限定的本发明的范围的情况下可以做出各种变化或修改。
[0057] 例如,已在SCR定量给料喷射器应用的情形下描述了本发明,但本发明将会用于其它应用,诸如燃料喷射器和水喷射器,特别是车辆应用中。特别地,本发明可以用于燃料喷射器,例如用于将燃料喷射到排气系统内以用于催化再生的类型的燃料喷射器。本发明也可以用于水喷射器,例如用于向柴油机的进气歧管内喷水以减少排放的水喷射器。具体而言,本发明将会特别地用于其中喷射器是电促动泵,优选地具有冷却机构,诸如水冷却机构的情况。
QQ群二维码
意见反馈