可编程无线收发器

申请号 CN200580012344.3 申请日 2005-02-10 公开(公告)号 CN1947330A 公开(公告)日 2007-04-11
申请人 比特沃半导体公司; 发明人 拉塞尔·J·希尔; 杰弗里·C·达维;
摘要 一种完全集成的、可编程的混合 信号 无线收发器,包括无线 频率 集成 电路 (RFIC),其数字输入和输出的频率和协议是不可知的,该无线收发器被编程且多无线频带和标准是配置的,以及能连接到一些网络和服务提供。该RFIC包括可调谐振荡电路,其包括具有电感的传输线,多个可切换电容器配置为切换进或出可 调谐电路 以响应第一信号,以及至少一个可变电容器能响应第二 控制信号 而改变,该振荡电路的中央振荡频率响应第一和第二控制信号而 电子 地调谐,以控制多个可切换电容器的第一电容值和至少一个可变电容器的第二电容值。
权利要求

1.一种构造进半导体集成电路的可调谐振荡电路,该可调谐振 荡电路包括:
至少一个具有电感的传输线;
多个可切换电容器配置为切换进或出该可调谐电路以响 应第一控制信号;以及
至少一个可变电容器能响应第二控制信号而改变;
该振荡电路的中央振荡频率电子地调谐以响应第一和 第二控制信号以控制多个可切换电容器的第一电容值和至 少一个可变电容器的第二电容值。
2.如权利要求1所述的调谐电路,其至少一条传输线包括相互 连接于该半导体集成电路和半导体基板的引线框的熔断基 线。
3.如权利要求1所示可调谐振荡电路,其多个固定电容器为 MOS电容器。
4.如权利要求1所示可调谐振荡电路,其多个固定电容器为在 半导体集成电路上的金属-绝缘层-金属(MIM)电容器。
5.如权利要求1所述振荡电路,进一步包括耦合到多个可切换 电容器的切换网络,该切换网络为可操作的,响应该第一控 制信号,以切换进或出至少一个可切换电容器以调谐该第一 电容值以选定该振荡频率范围
6.如权利要求1所述振荡电路,其至少一个可变电容器为一变 容二极管;以及其至少一个可变电容器的第二电容值可通过 调节对应该第二控制信号的变容二极管的偏电压来控制。
7.一种可调谐压控振荡器电路包括:
如权利要求1所述的振荡电路;以及
耦合到该振荡电路的压控振荡器;
其压控振荡器的调谐范围通过调谐该振荡电路来调节。
8.一种调谐低噪音放大器电路包括:
如权利要求1所述的振荡器电路;以及
低噪音放大器耦合到该振荡电路;
该调谐振荡电路的电抗是可调谐的以平衡该低噪音放大 器的电抗和匹配低噪音放大器到负载的输入电抗。
9.一种调谐振荡电路跨越多个频带和在多个频带中选定的频 带的方法,该方法包括:
提供电感;
提供第一电容值,并联于来自多个可切换电容器的电感 以响应第一控制信号以调谐该振荡电路到选定的一个频带; 以及
提供第二电容值,并联于电感以响应第二控制信号以在 一个频带内调谐该振荡电路。
10.如权利要求9所述的方法,其提供该第一电容器值包括切换 进和出该振荡电路,至少一个可切换电容器以获得第一电容 器值。
11.如权利要求9所述的方法,其第二电容器值由一变容二极管 提供以及其提供该第二电容器值包括变换与该第二控制信 号对应的该变容二极管的一偏电压。
12.如权利要求9所述的方法,进一步包括控制压控振荡器的调 谐范围
13.如权利要求9所述的方法,进一步包括匹配低噪音放大器的 输入阻抗到负载,通过:
耦合该振荡电路到低噪音放大器;以及
调谐该振荡电路的阻抗以平衡低噪音放大器的阻抗和匹 配该低噪音放大器的输入阻抗到该负载。

说明书全文

技术领域

发明涉及包括LC振荡电路、宽带可编程本地振荡器以及 内置控制模的可编程无线收发器。

背景技术

无线通信继续以空前的速度发展。今天,世界上已经有超过 十亿的移动无线装置。对遍及世界的蜂窝技术,广域网、本地网, 公共安全和军事通信,多频带和多通信标准/协议成为普遍存在的 通信的最大困难。
各种装置使用这些组合的转换服务的要求增长迅速(2006年 TAM预期超过$3B)。一些半导体和设备公司,认识到该增长市 场的需要,已经致于特殊的、昂贵的材料,例如-锗(SiGe) 或微机电系统(MEMS)以实现更好的性能、多特色集成电路。 其他的公司则致力于高功耗技术(例如高频取样)以建立解决方 法。
当前,建立能访问两个以上频带和不同协议的用户装置的费 用高昂且物理体积巨大。大部分装置的制造已经尝试在单个介质 上放入两个不同芯片组。特别地,一个当前设计包括,例如诺基 亚D211WLAN&GPRS PCMCIA卡。该卡使用两个多芯片组用于 WLAN部分和ST微电子芯片组用于GPRS功能。该方法是昂贵、 巨大和僵化的。
在GHz范围内设计高密度、宽带集成电路的困难在于需要提 供低功耗的振荡电路,用于跨越宽频率范围。当前现有技术依赖 的电路包括由半导体的金属层形成的电感器,该半导体制造中使 用了特殊的集成电路(ASICs)和芯片系统(SoC)装置,其能 以某种方式模块化以形成扁平几何矩形或螺旋结构以存储磁能 量。该装置称为螺旋电感器。该装置的电感量取决于的数量和 对应芯片面积的物理尺寸。遗憾地是,该类型的传感器部件的实 现是不可能对应节点尺寸技术(其定义参数,例如装置的栅极长 度)。实际上,由于模拟CMOS内节点尺寸(金属化物互补半 导体)技术是趋向于朝130nm或以下的栅极长度,该电感元件的 物理横截面必须保持同等长度,因此阻碍了整个芯片面积的减 少。其他与螺旋电感器相关的问题包括其易于产生导线损耗(导 致调谐电路的低品质因素),在基板上引发辐射和引发电磁场传 播(涡旋电流)效应。
因此尝试构造带熔断基线的LC振荡电路,如2004年10月 19日出版的Traub享有的美国专利第6,806,785号中,所讨论。 该‘785专利公开了使用熔断基线以形成电感,其作为窄带振荡 器电路的一部分,描述了该振荡器电路同样包括压变电容、熔断 基线电感器和分离-衰减放大器
在一些电信标准收发器电路的基本构造模块为频率合成器。 频率合成器的目的为发射器中的上-转换频率和接收器的下- 转换频率产生要求的谐振信号。频率合成允许在小而精确的步骤 中产生可调节频率(例如,对GSM为200Khz,对DECT(数字 增强无绳电信)为1.728MHz,以及相似的)其随后用于混频器 中以实现频带和信道的选择。
当前现有技术中的频率合成依赖于相环电路(PLL)中实 现整数N或分数N结构,其具有相位检测、低通滤波器以及在 反馈环中的可编程除法器。传统频率合成电路的一个实施例包括 具有可编程出发音输的频率除法器,带有滤波器的相位比较器, 参考频率振荡器和参考除法器,如D.Gapski所享有的德国专利 DE10131091,2002年7月18日出版。频率合成器的其他实施例 包括耦合到多重VCO的多频带频率产生器构造的振荡器在Ries 所享有的美国专利6,785,525,2004年8月31日出版有所描述。 用于通信和信号强度监控的双频合成器的实施例在W.Torbjorn 享有的GB2254971,1992年10月12日出版,有所描述。此外, 直接数字频率合成的几个实施例在Hinrichs et al所享有的美国专 利申请2004176047,2004年12月30日出版,Frank所享有的美 国专利申请2004176045,2004年9月9日出版,以及Watanabe Nozomu所享有的欧洲专利EP0409127,1991年1月23日出版 有所描述。
然而,现有技术不适于运用到单个多重频带、多标准收发器 中,其空间、费用、以及宽带频率运行是溢价的,由于例如僵化 的、窄带频率调谐能力以及高元件数量的实现等原因。

发明内容

考虑到现有技术中出现的不足,因此期望设计和实现一种 RFIC,其无需使用螺旋型电感器和具有能宽带调谐的本地振荡 器,以服务于多频带。此外,其可期望结合RFIC的内置测试和 评估模块,在原处提供对RFIC参数的监控,以及能动态调节RFIC 的参数以符合多个电信标准。
本发明的多个方面和多个实施例涉及可编程混频信号无线 收发器,其包含低费用无线频率集成电路(RFIC),其频率和协 议是不可知的。RFIC的多个实施例提供完全集成的无线收发, 其数字输入和输出是可编程的以及多无线频带和标准是可配置 的,其可用于连接到不同的网络,提供的服务或标准。
根据一个实施例,可调谐振荡电路被构造进金属半导体集成 电路,其至少包含一个具有电感的传输线,多个可切换电容器配 置为切换进或出该可调谐电路以响应第一控制信号,和至少一个 响应第二控制信号的可变电容器,其中振荡电路的中央振荡频率 是电子调谐的,以响应第一和第二控制信号,其控制多个可切换 电容器的第一电容值以及至少一个可变电容器的第二电容器值。
在一个实施例中,该传输线包含熔断基线,其在该集成电路 和引线框中相互连接。可替换的,该传输线可为微波带线或共面 波导线。多个固定电容器可以是,例如,金属氧化物半导体MOS 电容器或金属-绝缘层-金属(MIM)电容器。在其他实施例中, 该振荡电路可进一步包括耦合到多个切换电容器的切换网络,该 切换网络是可操作的,响应第一控制信号,以切换进和出任一可 切换电容器以调谐第一电容值以提供选定振荡频率范围。该可变 电容器可以是,例如,变容二极管以及第二电容值可以通过调节 变容二极管的偏电压来进行控制以响应第二控制信号。该振荡电 路可以耦合到,例如,压控振荡器(VCO)以控制VCO的调谐 范围。在另一实施例中,该调谐电路可被耦合到低噪音放大器 (LNA)电路以及振荡电路的阻抗可被调谐以削弱该低噪音放大 器的阻抗以及匹配低噪音放大器到特定负载的输入阻抗。
根据另一实施例,调谐电路跨越多个频带以及在多个频带内 的一个频带的方法,该方法包括提供阻抗,提供并联到来自多个 可切换电容器的电感的第一电容值,响应第一控制信号以在一个 频带内调谐该振荡电路,以及提供并联到电感的第二电容值,响 应第二控制信号以在在一个频带内调谐该振荡电路。
在一个实施例中,提供的第一电容值可以包括切换进或出振 荡电路的任一可切换电容器以获得第一电容值。在另外一个实施 例中,第二电容值可由变容二极管提供以及提供的第二电容可包 括改变变容二极管的偏电压响应该第二控制信号。在另外一个实 施例中,该方法可包括通过耦合该调谐电路到该压控振荡器以控 制压控振荡器的调谐范围的步骤。在另外一个实施例中,该方法 可包括通过耦合谐振电路到低噪音放大器以协调低噪音放大器 到负载的输入阻抗的步骤,以及调谐振荡电路的阻抗以平衡低噪 音放大器的阻抗以及匹配低噪音放大器到负载的输入阻抗。
根据一个其他实施例,频率合成器实现为包括压控振荡器的 锁相环,其产生VCO频率信号,耦合到压控振荡器的振荡电路 以及适于调节压控振荡器的调谐范围,以及耦合到压控振荡器的 除法器电路,该除法器位于锁相环的前向环路上,该除法器电路 适于产生频率,其为该VCO频率信号分频后的版本。
在一个实施例中,该相位锁相环可包含位于锁相环反馈通路 上的第二除法器电路,适于提供分频后输出信号,相位检测器耦 合到第二除法器电路以及用于接收分频后输出信号以及产生环 调谐信号,以及参考频率源耦合到相位检测器以及适于产生参考 频率信号。该相位检测器可用于产生基于分频输出信号和参考频 率信号的比较的调谐信号。在另外一个实施例中,该锁相环进一 步包括位于前向通路的混频器,用于接收第一频率信号和该VCO 振荡频率信号以及产生输出信号,其中该分频输出信号是输出信 号分频后的版本。在一个实例中,该参考频率源可包含直接数字 合成器,其包含参考石英振荡器,以及该参考频率信号的参考中 央频率可通过直接合成器从微控制器接受的控制信号决定,其集 成到带频率合成器的半导体芯片中。此外,该VCO频率信号的 VCO中央频率可基于结合的环路调谐信号和振荡调谐信号的来 调谐。
根据另外一个实施例,该耦合到频率合成器的振荡电路可以 是LC振荡电路,其包含至少一条具有电感的传输线,多个可切 换电容器配置为可切换进或出该调谐电路以响应第一控制信号, 以及至少一个可变电容器,其响应第二控制信号能被改变,其中 振荡电路的中央振荡频率响应第一和第二控制信号而可电子调 谐,以控制多个可切换电容器的第一电容值和至少一个可变电容 器的第二电容值。此外,振荡调谐信号的振荡中央频率可通过控 制第一电容值来选择,使得振荡电路的振荡落入选定频带的范 围,以及通过控制可变电容器以在选定的频带范围内调谐振荡电 路中央频率。该VCO中央频率可以是在选定的频带内。
根据其他实施例,调谐宽带本地振荡器的方法可包括提供电 感,第一电容值和第二电容值,全部并联提供到振荡电路,响应 第一控制信号从多个可切换电容其选择第一电容值,以调谐振荡 电路的振荡频率信号到选定的频带,响应第二控制信号以选择第 二电容值以在一个频带内调谐振荡频率,以及耦合该频率信号到 压控振荡器以调谐本地振荡器。
根据一个其他实施例,宽带本地振荡器可包括压控振荡器, 以用于接收振荡调谐信号以及产生本地振荡信号,该本地振荡信 号具备的中央频率至少部分取决于该振荡调谐信号,振荡电路包 括电感器、第一电容和第二电容都并连连接,该振荡电路可被耦 合到压控振荡器以及用于产生该振荡调谐信号,第一电容包括多 个耦合到开关的可切换电容器,其允许选择多个可切换电容器中 的一个以连接到振荡电路,响应电容器控制信号,因此决定第一 电容值,第二电容包括至少一个用于调谐的变容二极管,响应变 容控制信号以决定第二电容的值,以及振荡调谐信号的频率由基 于结合到电感的第一电容值和第二电容值决定。
在宽带本地振荡器的一个实施例中,多个可切换电容器配置 为,将多个可切换电容器中选定的一个切换进振荡电路,以及第 一电容值是可控的以使得调谐振荡调谐信号的频率进入到多个 频带内的一个选定频带。在其他一个实施例中,所述至少一个变 容二极管可被配置为在一个选定的频带内调谐振荡信号频率的 中央频率以调整该第二电容值。在其他实施例中,控制多个连接 到振荡电路的可切换电容器中的选定的那个,使得允许调谐振荡 信号跨越多个频带以及多个频带中的一个频带。
根据其他实施例,其对实现在半导体基板上的无线收发器提 供了集成评估和测试模块,该无线收发器包括接收电路其产生无 线频率信号,该集成评估和测试模块被集成到带无线收发器的半 导体基板上。该集成评估和测试模块可包括控制输入,适于接收 数字化控制信号,信号输入适于接收来自无线收发器的接收器电 路的数字化版本的无线频率信号,耦合到数字输入的处理模块适 于接收和处理来自无线收发器的接收器电路的数字化版本的无 线频率信号,以及提供数字输出信号,参考发生器适于基于数字 控制信号包含的信息产生数字参考信号。该评估和测试模块可进 一步包括耦合到参考发生器的比较器以及处理模块,其适于接收 数字输出信号和数字参考信号,该比较器被配置为比较数字输出 信号和数字参考信号以及产生误差信号,其识别数字输出信号和 数字参考信号间的偏差,以及耦合到比较起的调整模块,其适于 接收来自比较器的误差信号并产生数字调整数据,该调整模块还 适于提供数字调整数据到无线收发器的接收电路中的至少一个 元件,以调整至少一个元件的一个参数,以改变该无线频率以削 弱该误差信号。
在一个实施例中,在该集成评估和测试模块的处理模块可包 含配置为可在来自无线收发器的接收器电路的无线频率信号的 数字化版本上执行傅立叶变换的处理器,以提供包含关于该无线 频率信号的频域信息的数字输出信号。在另一个实施例中,该比 较器可被配置为比较来自数字输出信号的频域信息和包含在数 字参考信号包含的频域信息以产生误差信号,该误差信号包含关 于数字输出信号和数字参考信号间频域变动的信息。在一个实施 例中,该调整模块包括有限态计算机。
附图说明
在附图中,其并非按照尺寸规格作图,在不同图形中图示的 每个等同的或几乎等同的元件以同样的标号表示。为清楚起见, 并非每个元件都在每个附图中标示出。这些附图提供了图示和解 释的目的,以及不能定义为本发明的限制。在附图中:
图1为根据本发明的多个方面的RFIC的一个实施例的框图
图2为根据本发明的多个方面的LC振荡电路的一个实施例 的框图;
图3图示了根据本发明的多个方面的熔断基线的一个实施例 的透视图的框图;
图4为图3的交叉截面图;
图5图示了结合图2,3和4描述的LC振荡电路特性的集总 元件分布的一个实施例电路图;
图6图示了图5所示振荡电路的振荡频率和偏电压间关系的 函数图,根据本发明的多个方面;
图7示出了根据本发明的多个方面的用于振荡电路的控制电 路的一个实施例的框图;
图8示出了根据本发明的多个方面的耦合LC振荡电路到半 导体基板的引线框的框图;
图9示出了根据本发明的多个方面的熔断基线电感器的一个 实施例的输入阻抗和频率的函数图;
图10示出了根据本发明的多个方面的熔断基线电感器的一 个实施例的卸载品质因数和频率的函数图;
图11示出了根据本发明的多个方面的由一个或多个熔断基 线形成的电感器的一个实施方案的电路图;
图12示出了根据本发明的多个方面的协调LC振荡电路和低 噪音放大器的阻抗的一个实施例的电路图;
图13示出了根据本发明的多个方面的使用熔断基线的差分 低噪音放大器的一个实施方案的电路图;
图14为根据本发明的多个方面的使用熔断基线的差分低噪 音放大器的一个实施方案的电路图;
图15为根据本发明的多个方面的频率合成器的其他实施方 案的框图;
图16为根据本发明的多个方面的直接数字合成器的一个实 施方案的框图;
图17为根据本发明的多个方面的包括N分除法电路的频率 合成器的一个实施方案的框图;
图18为根据本发明的多个方面的包括N分除法电路和正交 VCO的频率合成器的其他实施方案的框图;
图19a为根据本发明的多个方面的低边选择电路的一个实施 方案的框图;
图19b为根据本发明的多个方面的高边选择电路的一个实施 方案的框图;
图20为根据本发明的多个串连连接的N分除法电路一个实 施方案的框图;
图21图示了一个示范性VCO的不同除法比率的本地振荡频 率调谐带宽,根据本发明的多个方面;
图22图示了另一个示范性VCO的不同除法比率的本地振荡 频率调谐带宽,根据本发明的多个方面;
图23为根据本发明的多个方面的包括内置测试和评估模块 的接收器电路的一个实施方案的框图;
图24为根据本发明的多个方面的BITE模块的一个实施方案 的框图;
图25图示了根据本发明的多个方面的包括两个调频的测试 输入信号的实施例;
图26示出了基于图25中示范性测试输入信号的来自接收器 电路的输出信号的一个实施例;
图27的构象图示出了两个期望构象点和实际记录的构象点;
图28示出了根据本发明的多个方面的测试收发器过程的流 程图的一个实施例;
图29为能用于变动例如LNA的元件的栅极宽度的栅极转换 技术的一个实施方案的电路图;
图30为根据本发明的多个方面的结合了振荡器电路的差分 压控振荡器的一个实施方案的电路图;
图31为根据本发明的多个方面的振荡电路的电路图的一个 实施例;
图32为根据本发明的多个方面的用于图31中电路的开关的 实施方案的电路图;
图33为根据本发明的多个方面的用于产生测试信号的电路 的一个实施方案的框图;
图34为根据本发明的多个方面的功率控制环的一个实施方 案的框图;
图35为根据本发明的多个方面的用于产生模块测试信号的 方法的一个实施例的框图;
图36为根据本发明的多个方面的测试无线收发器的发射器 电路的方法的一个实施例的流程图;以及
图37为根据本发明的多个方面的用于测试发射器电路的内 置测试和平谷模块的一个实施方案的框图。

具体实施方式

参照附图的多种图示的实施方案和多个方面因此将会被详 细描述。应当意识到本发明的应用不限于以下描述或附图所示构 造的细节和部件排列的设置。本发明可以为其他实施方案以及以 各种实现方式来实践或完成。此处用于说明目的的措辞和术语也 不应当被认为是限定。因此使用“包括”、“由…组成”、“有”、 “包含”、“涉及”以及其他相应变化,此处指包括其后所列内容 以及因此和附加的内容等价。
当前发明的多个方面和实施方案涉及可编程混合信号无线 收发机,其包括一低费用的无线频率集成电路(RFIC),其频率 和协议是不可知的。RFIC的实施方案提供了一带数字输入和输 出的完全集成无线收发器,其是可编程的以及多无线频带和标准 是可编程的以及能连接到一些网络、提供的服务或频率。装置制 造者通过该RFIC能构造多模式或单模式装置,其费用低廉且尺 寸小。该RFIC能被用于,例如,在膝上型电脑、小灵通、个人 数字辅助装置(PDAs),多媒体装置、公共安全无线电、计算机 -计算机通信装置等。该装置能由,例如IC解决提供者或装置 设计者以及允许制造者使用单个低费用CMOS和可配置的RFIC 以提升特性,同时降低费用和设计的复杂性。例如,该RFIC可 用各种变容二极管替代几个芯片,因此减少收发器装置的尺寸和 费用。
该RFIC的可配置结构,根据本发明的实施方案,独特地方 式以解决提供多标准复杂性、频率弹性、以及定制化的单芯片IC 的问题。例如,一种平衡130nm体积的CMOS技术的高性能和 低费用的方法,以及本发明的多种方面以允许极高平的集成度 和小尺寸。该RFIC可集成完全的收发器其运行在,例如,大约 400MHz到6GHZz以及能包括,例如,频率产生和合成元件,模 -数转换器,数-模转换器以及数字滤波器,以下将更加详细讨论。
参照图1,其示出了根据本发明多个方面的RFIC的一个实 施方案的框图。如图1所示,RFIC101体系结构包括可配置的接 收器100,可配置的发射器102,频率合成器104,构造有测试和 计算(BITE)的模块106以及集成微控制器108,通过程序总线 110相互连接。在一个实施方案中,频率合成器采用宽带本地振 荡器,其包括一个结合可编程除法器的窄带VCO以产生本地震 荡信号给无线收发器,以下将详细讨论。通过在微控制器108上 运行的处理作用,可编程接收器100和可编程发射器102能被配 置为中心运行频率以及动态范围,一系列的参数能够被编程。例 如,可编程接收器100可被配置为选择性和灵敏性以及各种参数, 例如输入中心频率,能量增益、噪音图形、带宽、取样率、比特 有效数(ENOB)以及能量消耗。相似地,可编程发射器的参数, 例如输入输出中心频率、失真输出等级、噪音以及动态范围可以 被微控制器配置,以下详细讨论。微控制器对RFIC提供集中式 控制以及可提供控制信号到控制多系统参数,如以下所述。通过 BITE模块106使得可编程接收器和可编程发射器预期配置的操 作易于实现构造有测试和校准的闭环。在一个实施方案中,BITE 模块106使得RF模拟电路在不同电信标准中正确切换,以及监 控和调节电路性能参数,如以下所述。
RFIC体系结构可以进一步包括可编程数字界面112,通过数 字总线114与微控制器108(或其他部件)相连。可编程数字界 面可被微控制器控制以及对参数,例如I/O数、控制模式等级、 信号等级、时钟速度、极性、信号内容等编程。RFIC可以还包 括任一或全部的可调低噪音放大器116、功率放大器118、模- 数转换器(ADC)120、数-模转换器(DAC)122、数字基带处 理器模块124、存储装置126、主阻抗模块128和主时钟130。
根据一个实施方案,RFIC可以进一步包括可编程天线部件 174,通过程序总线110与LNA116和功率放大器118相连。可 编程天线部件可被用于接收RF信号(例如,无线广播、无线电 话或数字信号等)和发射RF信号。可编程天线部件174可以包 括例如双工机的部件,以允许同步发射和接收RF信号,放大器 以及波段选择电路以允许天线部件在合适的频带内发送和接收 信号。这些部件可以被通过程序总线来自微控制器的信号所控 制。
根据本发明实施方案的RFIC是混合信号装置,即输入、输 出、运行都是RF信号和数字信号的装置。为最小化微控制器产 生的噪音,ADC,DAC,BITE模块和其他数据部件,三态输出 可被使用。三态输出是浮动的、为对数字电路的输出与下一阶段 的输入退耦必须的在数字电路中的高欧姆阻抗值。三态输出表示 一高阻抗到模拟电路,例如RFIC的RF部分。因此,任何数字 信号(即,从逻辑低到逻辑高的传输状态,或反之亦然)被阻止 连入模拟电路以及在模拟电路中产生噪音。
根据一个实施方案,无线收发器装置使用图1中的RFIC可 以被提供具有构造体系以避免或减少螺旋型电感器的使用,因此 使得该无线收发器随着半导体技术的发展而升级。更具体地说, 至少一个实施方案包括方法或设备用于实施可调谐振电路使用 传输线诸如互补金属氧化物半导体(CMOS)技术的微电子集成 电路中的熔断基线、微波传输带或联合二维波导越过一宽带(例 如,800MHz到2.5GHz)。根据一个实施方案,可编程振荡LC 电路可以使用通过传输线形成的固定电感结合固定的和可调的 电容来构成。该构造使得能够有效实施在千兆赫兹范围内用于模 拟电路的宽带调节电路,却消除现有工艺中谐振或振荡回路中的 螺旋型感应器的电流。可调振荡电路能被使用,例如,以构成可 编程无线收发器装置中压控振荡器以及模拟放大模块的一部分。
参照图8,其图示出了用于连接电路到诸如引线框的半导体 底板上的熔断基线150的一个实施方案的框图。熔断基线150被 连接(例如,焊接)到被印刷或蚀刻到半导体衬底上的焊接板152 上,所述焊接板位于引线框148之上以支持电路180。根据一个 实施方案,电路180可以包含反馈LC振荡电路,其振荡频率或 输入阻抗可调,以下进一步讨论。
参照图2,其图示出了采用感应器和各种电容的可编程振荡 电路132的一个实施方案的框图。振荡电路132包括感应器134, 其可以是传输线结构形成,例如熔断基线、微波传输线或共面波 导线。该感应器被平行连接到位于第一节点和第二节点间的可调 电容元件136和138上,该节点用于连接此振荡电路到其他元件 和/或电路。在一个实施方案中,可变电容元件136和138的电容 可被例如来自微控制器和/或BITE模块的控制信号控制,以下将 更详细地讨论。
根据一个实施方案,感应器134可被提供为半导体封装关联 的寄生电感。更具体地说,参照图3,半导体集成电路146,例 如本发明中的RFIC,典型地通过使用多个熔断基线150与引线 框相连。每个熔断基线150与一定电感关联,该电感独立于熔断 基线长度、熔断基线焊横截面和相邻熔断基线间的间隔。该熔断 基线150有固定的自电感,其可能近似取决于熔断基线的长度和 横截面。此外,耦合于封闭空间熔断基线的互电感影响每个熔断 基线的电感。适当调整熔断基线长度、横截面和间距,因此可得 到特定的电感。
参照图3和图4,图2中振荡LC电路可以通过一个或多个 如熔断基线150的固定电感,其内部连接到位于RFIC146和导线 框148上的焊接板。在一个例子中,振荡电路132可包含至少两 个相互耦合的熔断基线电容150。然而可以意识到本发明不限于 使用两个熔断基线,在不同应用中可以使用一个或更多熔断基 线。在一个例子中,参照图11,其示出了根据本发明方面熔断基 线感应器配置另一实施方案典型电路图。如图11所示,三个或 更多熔断基线可被以弯曲的方式终端对终端地连接。例如,第一 熔断基线150a通过耦合电容器可被连接到在半导体芯片上的电 路(例如电路146)和焊接板152间。该第一熔断基线电感器150a 通过焊接板152和第一电容188a耦合到第2熔断基线电感器 150b。第二熔断基线电感可调以通过焊接板152和第二电容188b 耦合到第三熔断基线电感器150c,其也是可调的以通过焊接板 152和第三电容188c耦合到第四熔断基线150d,如图11所示。 该模式可无限地继续以耦合任意的熔断基线电感器到任何给出 的应用的期望上。第四熔断基线电感器150d可以被通过焊接板 152被连接到半导体电路146和另一对应电容166上。如图11 所示螺旋配线方式可用于提高提供给熔断基线的电感。电容 188a-c是可调节的,且前述电容可被用于控制由多个熔断基线电 感器提供的总电阻(抗)。由于多种原因,控制电阻(抗)的能 力是可期望的,包括在控制输入阻抗中增加适应性,例如,熔断 基线所隶属的谐振电路,以及熔断基线电感器可被连接其他电路 元件所匹配的电阻。
此外,可以理解熔断基线150作为传输线以在焊接板152的 芯片和引线框间传输能量。因此,本发明不限于使用熔断基线或 其他类型的传输线,例如微波带传输线以及联合二维波导传输带 可被用于替代或加上熔断基线。因此,尽管为了清楚以下讨论将 基本涉及熔断基线,可以理解讨论的原理同样运用到其他类型的 传输线。
熔断基线150可被连接到可包含固定电容以及可变电容调谐 电路,其形成了图2谐振电路的一部分。参照图5,其示出的电 路框图表示图2、图3和图4中描述的振荡回路的分布式特性的 集总元件模型。实质上,熔断基线150作用就像传输线,其通过 调谐电路154中的电容终止在源侧176,以及在负载侧178连接 到任一其他负载或通过起于半导体基片材料的小电感Lpcb接地。 在特别的频率上,代表熔断基线的传输线,能近似地当作具有固 定电感Lbw的电抗(阻)。该电感被用来形成图2中振荡电路132 的固定电感器134。此外,焊接板152是关于水平的极板,因此 可作为寄生电容Cstray和Cpad。可以理解当在调谐电路154选择固 定电容C1,C2,C3和可变电容Cv以到达希望的振荡,这些寄生电 容应当被说明。
如图2所示,根据一个实施方案,调谐电路154包括两个可 调电容元件136,138。在一个如图5所示的实施方案中,第一可 调电容元件136可以包括带切换开关的固定电容156(C1,C2,C3) 和第二电容元件138可包括一个或多个可变电容器158a和158b。 所述固定电容和可变电容有双重作用,即选定特定的振荡中央频 率(例如,为多协议蜂窝电话标准选择带宽)以及补偿制造过程 的变动。因此无论是固定电容器和可变电容器的使用都是可能 的,在本发明至少一个实施方案中其都提供了最大的选择性和允 许包括过程和好的调谐跨越宽频范围。
根据一个实施方案,带切换开关的固定电容156可包括多个 MOS(金属氧化物半导体)或MIM(金属-绝缘层-金属)电容开 关,其通过控制信号144可电子切换。可以理解任何类型的固定 电容器都可被使用,然而,MOS或MIM电容器与CMOS和其他 半导体集成电路一样,因此可以在优选的实施方案中使用。振荡 电路通过和/或出一个或多个MOS电容器开关中切换,可在宽范 围内调节或调谐振荡频率。这些固定电容器可以有相对大的电 容,例如,数十兆分之一法拉数量级,以及因此可适于提供调谐 过程,例如,选择频带的操作(例如,800MHz,1900MHz, 2400MHz,等)。振荡电路的细微调谐可通过控制可变电容158 的电容来完成。在一个实施方案中,可变电容158可通过使用一 个或多个变容二极管构成,其通过一个可变控制电压来调节电 容。具体地说,对于一个变容二极管,电容结由偏电压Vr的反 转值来定,根据公式:
C ( V R ) = C jo ( 1 - V R ψ 0 ) n
此处C(Vr)为节点电容,Cj0为偏电压为0伏时的节点电 容,被称为“潜在嵌入”,其可以是接近0.5伏,以及n是一技 术参数(取决于半导体的制作工艺),其可以近似等于0.5。总而 言之,偏电压可以在大致0-1.5v内调节,取决于半导体的制作 工艺。因此,变容二极管的电容值可能通常低于1pf,以及该二 极管因此适合振荡电路132所有电容的细微调谐。在一个实例中, 一个或多个变容二极管的开关可用于振荡电路振荡频率的一个 波段跨越几兆赫兹的细微调节,或更粗略地选择切换进和出该固 定电容器开关。此外,不同变容二极管可具有不同零偏结电容值, 以及因此可通过创建一个或多个具有不同变容零偏结电容的二 极管开关可达到进一步调节的选择性。
参照图6,其图示了在图5中的模拟振荡电路施加偏电压Vr 时振荡频率的一个典型的曲线图。图6示出了在同一偏电压加在 变容二极管上时,当额外的固定电容器被切换进图5所示的电路, 振荡频率会增加。因此,如图6所示,调谐过程(例如,频带选 择)可以通过切换进/出一个或更多固定电容器完成。对于固定电 容器一个给定的选择,(例如,斜坡C1),图6示出了当偏电压 VR变化时,振荡频率微量改变,因此在选择频带时能够用于细 微调节。
参照图31,其图示出了结合两个熔断基线电感器348的振荡 电路346的另一实施方案。开关350可允许熔断基线传感器348 连接到额外的熔断基线,因此调节振荡电路346的总电感。添加 的开关352可允许额外的电容器354和变容二极管356进入振荡 电路,为了增加带电容性电抗的熔断基线348的感应电抗。在一 个实施方案中,开关350和/或352可通过使用两个MOS晶体管 358a,358b来构成,如图32所示。数字信号B0和它的逻辑非 B0可分别允许电流通过或无电流通过,通过控制数字信号B0提 供的电压到越过MOS晶体管的值电压。例如,通过微控制器 108在程序总线上可提供数字电压信号B0。以下将进一步讨论, 电压信号可被提洪,例如,从BITE模块106(见图1),以调节 变容二极管的电抗。可以理解到如图31所示的振荡电路可被串 行或并行连接到,例如图5中的振荡电路。此外,额外的电容器 和变容二极管能被配置到一个其它的并联分路或串联中。
因此,在调谐过程中(例如,带宽选择)可通过切换进和/ 或出一个或更多单独或多个固定值电容器(例如,MOS或MIM 电容器)来完成振荡电路132的振荡频率的调谐,以及改变一个 或多个变容二极管的偏电压来实现细微调节。细微调节不仅用于 在一个带宽内选择一个特定的预期中央频率,而且用于补偿温度 变换、制造工艺带来电感值的差异、频率漂移(例如,由于温度) 等。
根据本发明的一些实施方案,寄生电感固有的低费用、高容 量、高引脚数半导体装置被用于代替在RFIC上的振荡电路中的 传统螺旋电感器。特别地,本发明的这些实施方案使用位于微电 子电路中的引线框和焊盘间的熔断基线以及提供,结合固定电容 器和可变电容器,高品质的因数(Q)振荡电路而无须使用螺旋 电感器。电路的品质因数(Q),定义为在振荡电路中存储的能量 与振荡电路消耗能量的比率,当电感器-电容器(LC)回路电路 的寄生电感减少时,电路的品质因数(Q)会提高。典型地,在 负载电路的情况下,电路品质因数(Q)值高于20即认为是高品 质因数。元件的品质因数可被认为受元件电抗的影响,因为更高 的电抗可趋向导致更多的消耗能量。如同传统单层或双层集成螺 旋电感器,熔断基线显示出低电抗,总地来说小于25m欧/mm。 如上所讨论的,熔断基线150也具有电抗(电感),其取决于不 同的参数,例如长度、横截面、相邻线相互的耦合以及频率的变 动。参照图9,其示出了当频率在0.8GHz到2.4GHz范围内,熔 断基线模拟输入阻抗的函数图。如图9所示,阻抗(线182标示) 小且在频率上相当稳定。电抗(线184标示)随着频率的上升而 上升。
一般而言,熔断基线显示具有大约30-60的无负载品质因 数Q。参照图10,对一个实施方案中的熔断基线,其示出了当频 率在0.8GHz到2.4GHz范围内,模拟无负载品质因数Q的函数 图。无负载品质因数Q可通过该熔断基线的输入电抗的虚数部分 (例如,电抗184)与该熔断基线的输入电抗的实数部分(例如, 阻抗182)的比率计算,如以下公式所示:
Q unloaded = Im ( Z in ) Re ( Z in )
如图10所示,该熔断基线的无负载品质因数Q随频率上升 以及可以在3.5GHZ时容易超过40(基于推论)。一般而言,变 容二极管具有小于200的无负载品质因数Q,然而,通过并行连 接多个变容二极管可以提高无负载品质因数Q。振荡电路的全负 载品质因数Q可通过包括与电感器和电容器间并联的电阻器160 来控制,如图2所示。通过构造这种可编程并行电阻可在大范围 内调谐该品质因数Q。例如,通过控制信号144(见图2),电阻 160可以是可编程的。
熔断基线传感器优于传统螺旋传感器的方面在于,熔断基线 传感器无需占用大的芯片面积。同样,由于熔断基线传感器位于 集成电路芯片146的外部,电磁场干扰小且耦合进芯片的面积减 少。然而,熔断基线传感器的缺陷在于其自感可能非常大,例如, 由于制造过程的变动,比如,线长162、线高164(见图4)、焊 接条件的变动等,不同的制造工艺间高达30%。但是,该缺陷在 本发明的振荡电路中被减轻,因为,电感变动通过改变固定电容 和可变电容中的一个或全部能被补偿。
如上所讨论,此处尝试发展窄带调谐电路结合熔断基线电感 器。然而,与现有技术相反,依据本发明多个实施方案的独特振 荡电路,都包括熔断基线(或其他传输线)电感器以替代传统的 螺旋传感器以及通过控制信号控制使用多个固定电容和可变电 容以实现宽带调谐。控制信号通过控制电容开关排和选择振荡的 中使用的变容二极管来设定振荡电路的振荡频率。此外,更多的 控制信号用于设定加到变容二级管上的偏电压以实现细微调谐 以及解决由于制造变动而带给熔断基线的变动。此外,闭环反馈 控制可以用于动态补偿操作环境的改变以及能够实现振荡电路 振荡频率范围的动态编程,如以下详细讨论。
在一些应用中,可调谐振荡电路132(见图2)被耦合到其 他电路,例如,压控振荡器(VCO),低噪声放大器、基带放大 器以及其他电路。为建立合适匹配条件,通过可调耦合电容器易 于实现这些耦合。参照图2,LC振荡电路132的第一节电140 和第二节点142可被耦合到外部电路,例如,通过耦合电容器166 耦合到压控振荡器VCO。这些耦合电容器将RF路径从变容二极 管的偏DC以及VCO中分离。根据一个实施方案,耦合电容器 166可变(例如具有可变电容值),因而可在给定的频率上改变 LC电路的输入电抗,因此提升LC电路对外部电路(例如,该压 控振荡器VCO)的匹配。良好匹配的优势在于,促进从一个电 路到其他电路的传输能效以及提高RFIC的总能效。例如,本发 明一个实施方案的优势在于,通过耦合LC振荡电路到,例如, 压控振荡器VCO,通过控制该LC振荡电路的调谐频率可控制该 压控振荡器VCO的调谐范围和频带。
为进一步促进可调谐振荡电路132与其他模拟功能电路的集 成,例如压控振荡器,使用控制单元实现对电路的自动振荡频率 选择和细微调谐,该控制单元包括微控制器和锁相环(PLL)电 路。该控制电路的实施例的框图如图7所示。如上所讨论的,通 过切换进与/或出一个特定数目的固定值电容器,以实现选择特定 频率带宽的操作。根据一个实施方案,通过来自微处理器108的 直线180所示的控制信号可控制带宽的选择。微处理器可接收输 入(例如界面112,见图1),其识别期望操作频带。基于操作选 定的频带,微处理器108可决定固定电容和可变电容的数目以及 发送控制信号到开关168以切换进合适的一个或多个固定值电容 和可变电容(例如,变容二极管)。微处理器可进一步控制变容 二极管的偏电压到一个窄范围,或更准确地定义,该运行频率的 范围,如以上所讨论。图7中解码器将来自微控制器的数字信号 转换为模拟控制信号以操作开关168以及调整变容二极管的偏电 压。因此,微控制器通过控制平行耦合到固定熔断基线电感的电 容实现可编程频率选择以选择希望的振荡频率。
根据一个实施方案,运行波动的补偿(例如,温度漂移)可 通过使用带内置测试和评估(BITE)模块106反馈控制来完成, 如以下详细讨论。特别地,该BITE模块基于in-situ校准表可监 测和校正频率偏移以及运行漂移。在一个实施方案中,动态调整 变容二极管的偏电压稳定选定的频率以抵消环境波动(温度、湿 度,等)以及,标准锁相环(PLL)电路172基于来自微控制器 108的误信号而产生该校正电压以抵消运行波动(能量波动)。该 闭环反馈控制方法通过BITE模块完成校准以及动态补偿不同运 行环境,以下将进一步详细讨论。
如以上讨论,根据一个实施方案,本发明中该LC振荡电路 可被耦合到低噪音放大器(LNA)。低噪音放大器通常用于无线 收发器以放大所接收到的RF信号以提升接收信号的信噪比促进 信号处理。为通过LNA提升信号传输,提供与LNA连接的元件 相匹配的电抗是重要的。匹配电抗,典型地为50Ohms源电抗, 对于集成高性能的多波段LNAs可能尤为重要以及对于跨越宽频 带可能是必需的。
参照图12,其示出了一个实施方案的电路框图,该实施方案 匹配一RF源192到使用一LC振荡电路190的晶体管基极电路 的输入端。该MOS晶体管M1和M2可以组成LNA116的部分, 连接到LNA116的RF源192与其使用的LC振荡电路190相匹 配。图12示出了感应地退化常用源串连CMOS配置,此时该LC 振荡电路190作为MOS晶体管M1栅极的输入的一部分。应当 理解其他LNA配置可被使用以及本发明的原则不限于图12所示 的实例。可以理解该LC振荡电路190可包含一个或更多熔断基 线传感器和以上参照图2-5讨论的任何元件。Vdc1和Vdc2端分 别提供DC偏电压到晶体管M1和M2。电阻Rd可为限流电阻, 其耦合于该晶体管和提供的漏电压Vdd之间。
对于如图12所示的配置,RF源的输入电抗(即,在节点278) 可表述为:
Z in = jωL S + 1 C gs 1 + g m 1 C gs 1 L S + jX
此处Zin为输入阻抗,Ls源退化电感,gm1为晶体管M1的 传输电导,Cgs1是M1的总栅-源电容,ω为频率,X为LC 振荡电路提供的电抗。在一个实施方案中,对180nm节点尺寸的 CMOS方法,源退化电感可大致为0.5nH到1nH,传输电导可大 致在30mS到100mS的范围内,栅-源电容可在0.7pF到1.5pF 范围内。可以理解尽管这些值典型对应180nm节点尺寸的CMOS 方法,在其他工艺节点尺寸上能找到相似的值。此外,该RF源 192可典型地具有50Ohm阻抗,因此,其可期望的匹配输入阻抗 Zin可大致为50Ohm。
在一个实施方案中,如果以下条件被满足,可实现50Ohm 源阻抗的匹配:
g m 1 C gs 1 L s = 50 Ω
L S + 1 C gs 1 = jX
换句话说,LC振荡电路的电抗,包括熔断基线传感器配置, 在目标频率处是可被控的,以大致消除晶体管电路(源退化电感 和总栅-源电容的串联结合)的电抗。
包含本发明元件的集成RFIC的通常目标频率的一些实例可 包括用于数字增强无绳电信(DECT)的1.9GHz以及用于蓝牙应 用的2.4GHz。考虑一个DECT实例,50Ohm输入阻抗匹配可提 供1.9GHz DECT应用,此时,Ls=0.57nH以及Cgs1=1.332Pf, 通过控制该阻抗为X=112.68Ohm。在另一个实施方案中,5050 Ohm输入阻抗匹配可提供2.4GHz蓝牙标准,其Ls=1.2nH以及 Cgs1=0.703Pf,通过控制该振荡电路的阻抗X=208.3Ohm。以 相似的方法,匹配其他标准,比如GSM和CDMA,能同样被实 现。
如以上参照图5和11所讨论,LC振荡电路的目标电抗值可 通过串连熔断基线150和调节156,158和188的电容来实现。 此外,如以上参照图9所讨论的,电抗可随着频率变动,如曲线 184所示,以及可随固定电容和可变电容增大知道达到目标电抗 X。
根据另一个实施方案,该LC振荡电路包括熔断基线电感器 配置,被耦合到差分级低噪音放大器以及可被用于匹配差分LNA 的输入阻抗到,例如,50Ohm或100Ohm的RF源(图13中的 RFin+和RFin-)。参照图13,其图示了包含感应串连反馈(由L1, L2,L3和L4提供)和使用p型和n型MOS晶体管194a,194b, 194c和194d的平衡LNA的一个实例。如图13所示,可使用电 压VBP和VBN来控制带电流源的差分平衡输入级。该电路可通 过,例如,0.35nmCMOS工艺来实现。可以理解,本发明的原则 不限于如13图示的示范性的LNA配置,也可使用其他类型的晶 体管和配置。此外,其他接点尺寸的CMOS工艺也可被使用。
在传统集成差分LNAs,电感器L1-L6,可被实施为螺旋电 感器,其具有几个关联缺陷,如以上所讨论的。根据本发明的一 个实施方案,电感器L1-L6中任一或全部可被实施为熔断基线, 或其它类型的传输线,如以上所讨论的。参照图14,其示出了图 13中电路熔断基线电感器配置的实例。电感器L1-L6任一个可包 含一个或熔断基线连接到焊接板152每个末端,如以上所讨论。 电容器196表示焊接板呈现的电容。在一个例子中,短线199连 接到引线框上的焊接板152上,共同被固定电容器和可变电容器 替代。此外,在芯片的一侧,到熔断基线的连接可也包括固定电 容器或可变电容器的任一或全部。这些电容器可被用于达到特定 频率值使得在特定的运行频率或运行带宽处优化整个电路的性 能,和/或提供位于差分放大器和RF输入端间的输入阻抗匹配, 如以上所讨论。
可以理解此处描述的可编程LC振荡电路的不同实施方案能 被耦合到如图1所示配置的RFIC的不同的RF元件以实现这些 元件可编程调谐,以及使得调谐整个RFIC到期望的运行频率带 宽。
还是参照图1,根据至少一个实施方案,集成无线收发芯片 可包含频率合成器104,其用于产生一个或更多参考频率给RFIC 中的不同元件使用。更具体地说,根据一个实施方案,其可提供 可编程频率合成器,该频率合成器可产生一宽范围稳定频率使得 能运行多频带,多标准无线收发器。在一个实施方案中,频率合 成器使用宽带本地振荡器结构,其包含窄带VCO结合可编程除 法器以产生本地震荡信号给无线收发器,如以下详细讨论。宽范 围稳定本地振荡信号是多频带,多标准无线收发器所期望的。然 而,使用大量VCO和/或参考信号源(例如,参考石英)可能要 求大的芯片表面积以及因为大尺寸和增加元件数量而提高无线 收发器的造价。因此,为了获得高度的集成和高性能的RFIC, 可以期望最小化VCO和参考源的数目。
参照图15,其图示了根据本发明的一个方面的频率合成器的 一个实施方案的框图。频率合成器104采用宽带可编程本地振荡 器(LO)结构以及基于直接调节数字合成锁相环(PLL),其在 正向环通路202上结合进单个或多个数字带宽交换除法器,使得 能弹性的提供产生大量稳定参考频率。如图15所示,频率合成 器104可包括一压控振荡器198耦合到可编程LC振荡电路200, 如以上所描述。可编程LC振荡电路200用于LC振荡电路振荡 频率带宽的选择,如以上所讨论,以及能被用于控制VCO的调 谐范围。在一个实施方案中,该VCO可在其能设置的中央频率 的正负20%范围内调谐,例如,在1GHz到3GHz范围内。参考 频率源204通过环检测器228和环滤波器230提供参考频率fref到 合成器环。可编程频率合成器可进一步包含在前向环202中的可 编程N分除法器232以及混频器234,高通或低通频带选择滤波 器236,以及在反馈环中的M分除法器238,以下将详细讨论它 们中的每一个。在一个实施方案中,窄带信号fVCO在单频带或双 频带调制器中(LC振荡电路结合的VCO提供)与其N次分频 后信号混合。混合结果产生高通频带或者低通频带,其可在VCO 频率fVCO两侧提供本地振荡信号。作为VCO信号,这些边频带 的每个可占有同样百分比的带宽,因此提供宽范围频率覆盖,其 是包括VCO带宽和除法比率的函数。
根据一个实施方案,参考频率信号源204可包括直接数字合 成器,其从石英源导出参考频率并产生参考频率。例如,对于多 标准无线收发器,一些期望的参考频率可包括13MHz,26MHz, 19.2MHz,19.6MHz,20MHz,22MHz,40MHz和44MHz。 当然,可以理解也可产生一些其他的参考频率值以及本发明不限 于上述给出的实例。图16示出了(以框图形式)根据本发明的 多方面的参考频率源204的一个实施方案。数控石英振荡器206 在直线208上产生输出信号,其反馈到直接数字合成器电路210。 石英振荡器206可包括附加到振荡器214的石英212以及通过一 个或更多可变电容器216控制振荡器214。直接数字合成器电路 210接收直线208上来自石英振荡器206的信号。该直接数字合 成器电路210还接收来自,例如,RFIC微控制器(见图1)的数 字可编程信号。该可编程信号可指示该DDS电路产生参考频率 到所期望的频率值。基于可编程信号218,该DDS电路还产生(来 自直线208上的信号)数字参考频率信号。该DDS还包括数- 模转换器(DAC,未示出),其产生直线220上的采样模拟载波。 因此如果需要,低通滤波器(LPF)224可被用于消除混叠失真。 产生的参考频率fref显示在直线226上。在一个实例中,该DDS 电路可被配置到一个现现场可编程阵列(FPGA)中。
根据一个实施方案,多个参考频率可依次用于产生多个本地 振荡信号,使用信号石英212可产生的信号具有固定输出频率值 以及因此具备良好稳定特性。本发明的频率合成器构造使用参考 频率源,如以上所描述,以产生多个参考频率。每个参考信号可 保持原始石英信号的稳定性,其正是无线收发器应用中所期望 的。
还是参照图15,通过LC振荡电路200调谐该VCO198,产 生具有频率fVCO信号,如所示。通过N除法器232和混频器234 将频率fVCO调制以产生fVCO+fVCO/N频谱(高边频带)和fVCO -fVCO/N频谱(低边频带)。随后的边频带选择滤波器236可选 择边频带的一个,其作为输出频率fout。由于该边频带选择滤波 器允许的本地振荡器具有的频率范围实质上与原始VCO频率相 距甚远,该边频带选择滤波器可显著扩展频率合成器提供的本地 振荡的频率覆盖。通过将输出信号fout通过M除法器电路238 反馈到相位检测器228可保持产生频率的稳定性。该相位检测器 可将所选择的边频带信号((fVCO±fVCO/N)/M)与参考频率源 204产生的参考频率信号比较,参考频率源在直线240产生环信 号,其在被应用到VCO198之前有条件地通过低通滤波器230。 以这种方式,该VCO可被调整到直接保持期望信号频率。在一 个实例中,该相位检测器228可被实现为标准充电电路。
根据一个实施方案,可编程N分除法电路(此处N为可编程 高速正向反馈除法器系数)可被实现为单个除法器或组合除法 器。此外,可编程N分除法电路232可被实现为结合单级VCO 输出或正交VCO输出(QVCO)。
参照图17,其示出了包括N除法器的正向环202部分的一 个实施方案。在图示的例子中,该产生的频率fVCO被反馈到标准 缓冲器242,随后输入到固定2分除法器244和可编程N分除法 器组成的分路结构中。N的值可为整数或者非整数,以及可由例 如来自RFIC微控制器(见图1)的控制信号决定。固定2分除 法器244的输出信号频率成分I1为同相信号,Q1为正交信号且 其与相位I1成90度角。可编程N分除法器232同样包括同相频 率成分信号I2和正交成分信号Q2。这四个信号均提供到低边频 带选择电路和高边频带选择电路248,其形成频带选择滤波器236 (见图15)的一部分。低边频带选择电路的输出包括低边频带 (LSB)频率,高边频带选择电路248的输出包括高边频带(USB) 频率。如图17所示,该USB和LSB频率可被反馈到多路复用器 250,其用于允许USB或LSB频率信号的选择,取决于在直线 252上设定的数字控制信号。例如,设定数字控制信号为“0”可 选择LSB信号,然而设定控制信号为“1”可选择USB信号,反 之亦然。该多路复用器也可作为边频带选择滤波器的一部分。
根据另一个实施方案,该VCO可以为正交VCO254,如图 18所示。该正交VCO254可产生同相信号I1(例如,余弦信号 cos(ω1t),此处ω1为输入频率fVCO的角频率)以及正交信号Q1 (例如,正弦信号sin(ω1t))。图19a和19b分别示出了低边频带 选择电路和高边频带选择电路实现的一个实例。两个电路都包含 同样的功能块,即第一混频器256、第二混频器258和加法器260。 对于低边频带选择电路,信号I1和I2都应用到第一混频器256 以及信号Q1和Q2都应用到第二混频器258,然而对于高边频带 选择电路信号I1和Q2都应用到第一混频器256以及信号Q1和 I2都应用到第二混频器258。
对频带选择电路作示范性解释,该信号可被假定为:I1= cos(ω1t),I2=cos(ω2),Q1=sin(ω1t),Q2=sin(ω2)。因此,形成 图19a电路结构,低边频带的输出为:
          LSB=I1*I2+Q1*Q2=cos[(ω1-ω2)t]
同样地,形成图19b路结构,高边频带的输出为:
          USB=I1*Q2+Q1*I2=cos[(ω1+ω2)t]
因此,通过选择USB或LSB的一个,本地振荡信号被提供 为在紧靠或远离原始VCO的频率,取决于ω1和ω2的值。边频 带选择滤波器因此可提供高弹性的本地振荡频率范围,并提供到 宽带本地振荡器。根据本发明多个方面的该频率合成器因此允许 产生最大带宽本地振荡信号,该信号来自于相对窄带适应参考频 率。一些无线收发器应用需要低媒介频率(低-IF)或直接变换 到基带(零-IF)结构以最小化噪音和损失以及提升性能。对于 这些类型的应用,其可期望有本地振荡输出频率,该输出频率远 离且与基本VCO频率无关(即,并非直接倍数)。通过可编程除 法系数和边频带选择滤波器产生本地振荡信号,该信号远离VCO 信号且并非VCO中央频率的整数倍,使用本发明频率合成器容 易实现本结构。
根据一个实施方案,在前向环202的N分除法器电路232和 混频器234可被串连为包含两个或多个除法器和混频器的结构, 如图20所示。在第一级联262(包含N分除法电路232和混频 器234)可被串连到第二级联264(也包含N分除法电路232和 混频器234),以频带转换开关266分隔。相似的,更多的级联可 被串联以使得实现任意期望的除法器系数。第二及随后的级联可 具有同样的除法器系数或不同的除法器系数。频带转换开关266 可被用于选择一个或多个将要应用到随后级联的频率。
还是参照图15,锁相环的反馈环路包括M分除法器电路238, 如现有技术已知。M可为固定或可编程除法器系数。如果是可编 程除法器系数,M的值可被来自,例如RFIC微控制器(见图1) 的控制信号所设定。M分除法器电路238可被实现为基于一系列 标准除法器电路,包括数字可编程多级噪音整形(MASH)德 塔-西格玛调制器,如现有技术所知。系数可被用来选择除法器 的类型及设定除法器的周期。例如,对于GSM-900标准,其频 率范围为从880MHz到915MHz连续范围,以及基于200kHz频 带间隔,其调节周期可为大致10μS。
现在通过宽带可编程LO结构的不同实施方案来讨论提供的 图示和实例,可实现一些示范性的调谐范围。然而,应当理解本 发明的原则不限于此处讨论的特定实例以及广泛使用可编程LO 其可被调谐到期望的频率范围。以下表1示出了中央频率为2GHz 和调谐范围为±15%的VCO可能的中央频率(fcenter),低边频率 (flow)和高边频率(fhigh)的实例。应当理解该中央频率是任意 的以及仅仅适合说明本发明宽带可编程LO结构的调谐系数 (fhigh/flow)。可选择和选定任意的中央频率,例如,基于使用LO 的运用。通过刻度VCO的中央频率能容易实现不同的频率范围。 不同的中央频率具有相同的调谐系数。N为N分除法器电路的除 法系数(见图15)。通过改变N的值,该VCO的中央频率如所 示标度。
表1调谐范围为±15%的VCO的可用频率。
  边频带   N   Log2(N)   fcenter   flow   fhigh   上边   1   0   2000   1700   2300   上边   2   1   1500   1275   1725   上边   4   2   1250   1062.5   1437.5   上边   8   3   1125   956.25   1293.75   下边   8   3   875   743.75   1006.25   下边   4   2   750   637.5   862.5   下边   2   1   500   425   575   下边   1   0   0   0   0
参照图21,其示出了取自表1N值与频率调谐范围的函数图。 直线268a,268b,268c和268d分别表示当N值为从1到8时上 边频带频率的范围,直线270a,270b,270c和260d分别表示N 值为从1到8时下边频带频率的范围。从表1和图21中能够看 出,除最低两个频率范围(直线270a和270b表示)外所有频率 范围是交迭的,因此可获得从约637.5MHz到约2.3GHz的连续 频率范围,或可提供其他不连续的频率范围。图21示出了本发 明宽带可编程LO结构可提供等价于中央频率为1468.75MHz以 及调频范围为±57%的振荡器。换句话说,本发明中频率合成器 提供实质上更高的的频率调谐频带,与原始VCO相比(全部的 57%比该VCO的15%)。本发明中该频率合成器可提供宽带可编 程LO,其在频率上可覆盖几乎两个倍频,同时保持同样的灵敏 度(因为实质上调谐出现在每个窄带,窄带串联以提供合成的宽 带,如图21所示),因此保持良好相位噪音。
以下表2给出了中央频率为2GHz,调谐范围为±20%的 VCO可能的中央频率,低频带频率和高频带频率的实例。调谐 LC振荡电路可调节VCO的调谐范围(例如,从15%到20%变 化),如前所讨论。同样,如图15所示,N为N分除法器电路的 除法器系数值。
表2调谐范围为±20%的VCO的可用频率。   边频带   N   fcenter   flow   fhigh   上边   1   2000   1600   2400   上边   2   1500   1200   1800   上边   4   1250   1000   1500   上边   8   1125   900   1350   下边   1   875   700   1050   下边   2   750   600   900   下边   4   500   400   600   下边   8   0   0   0
图22示出了取自表2的N值与频率调谐范围的函数图,与 图21相似。直线272a,272b,272c和272d分别表示N值从1 到8所对应的上边频带频率范围,以及直线274a,274b,274c 和274d分别表示N值从1到8所对应的下边频带频率范围。如 图所示,通过将LC振荡的VCO的调谐范围提高到20%,可获 得从约400MHz到约2.4GHz的连续LO频率范围。
这些实例说明此处描述的该频率合成结构能产生宽带可编 程本地振荡器,该振荡器在非常宽的频率范围内调谐。对多重频 带允许使用单个LO,由于LO的调谐范围多重标准无线收发器 能足够宽地覆盖几个频率带宽。由于连续宽频率范围由多个可编 程窄带范围串连来提供,其调谐灵敏度和相位噪音品质与窄带本 地振荡器相比处于同样水平。通过设定N的值,可选择调谐任一 窄带。此外,该VCO中央频率和调谐可通过使用LC振荡电路 来调节,如以上所讨论。这在可获得的本地振荡器频率方面提供 了额外的弹性。
参照图30,其示出了在不同VCO电路使用的LC振荡电路 一个实施方案的电路图。在图示的例子中,不同的VCO包含交 叉耦合MOS晶体管对332a,332b,连接到两个变容二极管334a, 334b和两个LC调谐电路200。位于两个变容二极管334a,334b 间的输入端336接收来自环路滤波器230(见图15)的信号。晶 体管338a和338b组成电流镜电路,其对该VCO设置偏电流。 由于电压在电阻340a,340b上产生压降,因此可获得不同的输 出VCO+和VCO-的输出信号fvco(见图15),晶体管342a, 342b作为输出上的缓冲器。如图15所示,在频率fvco上,不同 的电压信号被输入到N分除法器电路232中。
根据一个实施方案,通过控制电压使用变容二极管334a, 334b实现VCO电路198的调谐,环路滤波器在输入端336处提 供该控制电压。在一个实例中,当Vdd=1.8V时,在调谐电压 达到大致0.5V时,变容二极管334a,334b将开始前向偏置。然 而,假定MOS晶体管342a,342b的过激励电压为约0.5V,位于 Vdd和阳极(344a,344b)间的该变容二极管至少产生约0.5V 的压降。因此,阳极的DC电压大致为1.3V(假定Vdd=1.8V)。 因此,环路滤波器230在输入端336提供的调谐电压可从0V到 Vdd(例如,1.8V)范围内,无需前向偏置变容二极管334a,334b (因为阳极电压为1.3V以及二极管的阀值为0.5V)。因此,变动 调谐电压不会提高VCO的增益,以及由于该变容二极管从未前 向偏置,VCO无需承受相位噪音品质的降低。
在一个实施方案中,通过来自环路滤波器230的信号改变变 容二极管的电容,以及改变LC振荡电路的电容来控制VCO调 谐范围。如上讨论,调谐变容二极管334a,334b提供频带内的 细微频率调谐。通过切换进和出多个电容器进LC振荡电路200 实现调谐过程,如上讨论。因此,合理设定LC振荡电路,该VCO 能具有高达20%的宽调谐范围。
以上讨论,图1中的RFIC可包括内置测试和评估(BITE) 数字逻辑和校验模块106,该模块能设定、检测和校正性能参数, 如,增益、动态范围以及模拟接收电路的选择性。根据一个实施 方案,该BITE模块可被集成到系统元件能被镶嵌到无线收发芯 片以监控和检验接收和/或发射电路。如图1所示RF收发器的模 拟前终端可包含多个精确调谐和优化函数块,包括,例如低噪音 放大器116、混频器280、带通滤波器284以及模-数转换器120。 这些或相似模拟组装模块为多数接收结构所构造,包括外差、低 -IF和零-IF接收器。当从一个配置向另一个转换时,允许模拟 接收电路在不同设定中运行(例如,不同的蜂窝电话标准),其 要求在不同频带运行不同频率、频带间隔、灵敏度、动态范围等。 监控接收器和/或发射器的性能参数是否符合新的电信标准是十 分重要的。如果检测到误差,调整接收器电路的参数到符合期望 的性能要求也是十分重要的。此外,一旦用户选择特定的设定(例 如,GSM蜂窝电话标准),可期望监控接收电路的参数,例如, 在一定的时间间隔内,去检测来自期望性能的偏差,以及,如果 该偏差被检测到,实施校正。可特别优选为在运行无线收发器期 间能监控性能参数和实施调整,即通过集成(内置)监控和校验 系统。
参照图23,其示出了无线收发器接收电路的一个实施方案的 框图,包括内置的测试和评估(BITE)模块106以监控和调整接 收电路的功能,根据本发明的多个方面。BITE模块可监控和调 整参数,例如增益、动态范围和接受电路的可选择性,以下讨论。 在一个图示的实例中,接收电路包含RF输入288、低噪音放大 器116、混频器280、带通滤波器282、基带放大器284和模-数 转换器(ADC)120。这些元件的每个都可通过可编程总线110 接收数字指令实现可编程。这些数字指令可指定这些元件的运行 参数,例如,中央平率和可编程滤波器282的滤波次序,ADC120 的有限数位、以及以下进一步讨论的其他参数。每个元件可包括 数字寄存器存储数字指令,该指令可被下载以设定运行参数。通 过多个补充,低插入损耗开关290a和290b,该BITE模块106 能被切换进或出接收电路。在接收电路的常规运行中,在RF输 入288处接收RF信号并进行处理以及通过接收电路在直线296 上提供数字输出。当BITE模块在运行时,开关290a和290b未 从RF输出288和数字输出节点296连接到接收电路,而是耦合 接收电路到BITE模块106。
根据一个实施方案,为了测试、监控和校验接收电路,例 如,从微处理器(见图1)可产生触发信号,通过数字编程总线 110到BITE模块106以激活BITE模块。例如,当微处理器发出 指令以监控模拟接收电路时,该BITE模块可开始运行。可替换 地,该微控制器可发送指令到系统一切换到不同标准,例如从 GSM到CDMA。在这个例子中,该微控制器可发送指令以调谐 该接收器到特定中央频率,增益设定、带宽和线性度,以符合所 选定的电信标准。因此,该BITE模块可被激活以检测任一或全 部接收器电路及无线收发器的发射器电路的一个或多个元件的 性能,以确保根据新标准性能要求运行收发器。在以上全部实例 中,该BITE模块从微控制器接收指定数据语言,该语言内容包 括设定特定标准例如GSM,EDGE-GSM,CDMA等的信息,以 下详细讨论。此外为激活该BITE模块,微控制器可发送信号到 290a以临时将输入288从接收器电路中断开,而通过直线292 将测试信号输入到接收器电路中。同时的(或接近的),微控制 器可发送信号到转换开关290b以临时将数字输出节点296从随 后的数字基带处理界面(例如,数字基带处理器124和数字界面 112-见图1)而通过直线298将数字输出连接到BITE模块106 上。
参照图24,其图示了根据本发明多个方面的内置测试和评估 (BITE)模块的一个实施方案。该BITE模块106可包含离散傅 立叶转换(DFT)模块300,数据表查询模块302,比较器304、 宏模块306、串连-并联转换模块308,以及可选的发射器电路 310,其在直线292上产生测试输入信号。应当理解到独立发射 器可产生测试信号,也可从无线收发器(见图1)结构的发射器 部分获得测试信号。该BITE模块可通过数据总线114被耦合到 微控制器108上(见图1)。在一个实施方案中,该BITE模块106 可被实现为硬件,在现场可编程门阵列(FPGA)逻辑中作为可 用的嵌入逻辑,或作为基于蜂窝应用专用集成电路(ASIC)微电 子设计。
根据一个实施方案,BITE模块106的目的是产生合适的测 试信号,其可用于测试模拟接收电路。这些测试信号取决于特定 的设定,例如,蜂窝电话标准,例如GSM、EDGE-GSM、CDMA 等,都基于接收电路(例如,LNA、带通滤波器等)中各个独立 功能模块所设定的参数,所选择的设定是达到要符合性能所必需 的。接收电路模块要测试的参数的实例可包括:设置期望功率电 平增益的偏电压或电流,为获得特定运行频带,匹配网络的输入 输出阻抗以保持合适的输入/输出阻抗以匹配网络间的元件,有效 元件的元件尺寸以选择运行频率,以及第三阶输入截取端(IIP3s) 以指定线性度。
图28以流程图形式示出了无线收发器可完成的处理步骤的 一个实施方案,包括BITE模块可实现的测试接收器元件,例如, LNA116,的步骤,当切换到选定的运行频率。应当理解到该BITE 模块可被用于测试和/或监控无线收发器中接收器电路和/或发射 器电路的任一可编程元件。为简明起见,以下讨论将涉及接收器 电路元件的基本的测试。然而应当意识到本发明的原则和描述的 过程步骤也可用于发射器电路的元件。
在第一步骤320中,该无线收发器可进入初始化步骤。该初 始化模块的目的是配置或编程该接收器电路进入以最初的“推 测”(例如,局域校验数据的参数)表示的状态以使得接收器电 路的状态实现在选定接收器设定(例如GSM模式,CDMA模式 等)的期望运行。例如,参照图1,该可编程无线收发器101可 通过界面112接收来自外部主控制器(伟显示)的指令,以配置 或重配置该模拟接收电路进入选定的运行模式。相应地,该集成 微控制器可下载(例如,从存储器126)与选定模块有关的存储 数字值,以及将他们同步进程序总线110以发送到无线收发器的 元件中。在一个实施方案中,微控制器可下载数字指定的存储值 直接到接收器电路中。在另一实施方案中,一旦BITE模块106 被连入模拟电路,该BITE模块下载数字化存储值,通过数字程 序总线在各个模拟快中通信,例如,低噪音放大器116,混频器 280、带通滤波器282、基带放大器284和模-数转换器ADC120。 数字字作为控制信号可指定在接收器电路中每个模拟块的将要 应用的运行特性。例如,数字可指定带通滤波器的中央频率,放 大器的增益等。数字允许单独指定接收器电路的模块以使得实现 特定的电信标准功能。在一个实例中,数字的内容可通过微控制 器108或基带处理器124指定。在一个实施方案中,存储器126 可存储一个或多个数字字,其指定一个或多个电信标准的运行参 数。该微控制器可访问存储器以检索合适的数字并提供给BITE 模块。
如图23所示,该BITE模块106也可被耦合到频率合成器 104(见图1)中数字可编程振荡器314部分,其提供具有频率 fout的调和输出信号,例如在图15-18中所示。根据一个实施方 案,来自初始化设置的存储值指定该数字,该频率合成器104可 被编程为期望的频率带宽以及可产生参考频率信号fref,如以上 所讨论的。接收器VCO198(见图15)通过使用与锁相环运行有 关的负反馈,因此可被锁相到参考频率信号fref(见图15中直 线126),参照图15、16。该过程的结果可产生精确和期望的本 地振荡器频率fout,其在直线316上可被提供给混频器280,如 图23所示。
此外,为选定运行设定还需设定本地振荡频率,收发器的其 他元件的特定参数也可被编程。例如,数字存储值可被传输(通 过程序总线)以控制该可编程带通滤波器282(见图23)的参数, 例如滤波次序、滤波器类型(例如,高通、低通或带通),滤波 器形状(例如Butterworth,Chebyshev等)和中央频率。在 初始化阶段,可编程带通滤波器282的数字存储下载值与期望运 行模式有关。从这些最初设置,在闭环负反馈环中的中央频率和 滤波次序值被调整。例如,该中央频率取决于主时钟(见图1) 的精度以及该滤波次序取决于主阻抗128。该过程的结果为精确 聚集中央频率以及精确控制滤波次序。此外,模-数转换器120 也可被编程,以及存储值可被设定为控制采样率(Fs)和有效比 特数(ENOB)以反映期望运行模式所要求的值。应当意识到为 了期望的运行模式,接收器中的任何可编程存储器不受负反馈环 的调整,例如,偏电流、输入匹配电路和负载阻抗能被设定为在 存储中存储的初始化值。
还是参照图28,在第二步骤322中,无线收发器可进入测试 模式,BITE模块可被激活。测试模块的目的为同步测试信号以 便于,对例如接收器电路测试以确定其性能的现行水平。在一个 实施方案中,该BITE模块106通过在直线292上运行测试输入 信号到该模拟接收器电路以初始化测试接收器电路。混频器280 对直线316上的信号和测试输入信号混频以传输测试信号的频率 内容进入具有高频边和低频边的基带频率。该带通滤波器282因 此可选择特定频率范围以及传输性能,例如,波动和/或失真,基 于数字字的内容通过BITE模块106被提供给带通滤波器。模拟 接收电路相应的输出被ADC120数字化,在直线2989上被应用 到BITE模块以进行处理。测试输入信号可产生特定性能(例如, 频率、振幅等),模拟电路的各种性能特性可被测试(例如增益、 频率。线性度等)。在一个实施方案,在直线298中设置数字滤 波器(未示出),其对数字信号进行滤波并产生监控信号,例如, 在常规或同步间隔,其取决于来自主时钟130(见图1)的时钟 频率。
根据一个实施方案,通过半导体芯片上的发射器280在直线 292上产生测试信号。通常,为测试接收器电路上的元件以决定 其性能是否符合选定的通信标准,在重要的无线频率产生该测试 信号以及可被调制或解调,或可为连续波(CW)信号。例如, 为测试RF中央频率符合度和增益,在CW信号或附近可运行期 望中央频率。
参照图33,其图示了锁相环VCO366的实施方案,结合精确 的参考信号源,可用于产生具有精确RF输出频率的测试信号。 在一个实例中,可数字化产生输出斜信号,例如,通过微控制器 108(见图1),通过直线360上传输到数-模转换器(DAC)120 并被转换成模拟信号。在直线362上的模拟信号通过加法器被引 入到反馈环363。通过程序总线110上的信号N分计数器可被编 程,以设定合适的N值以分频来自VCO的信号以在直线368上 产生期望的输出频率。相位检测器228可比较分频后的输出频率 ftest/N和在直线226上的参考频率fref并产生差分频率信号,其被 低通滤波器230滤波且输送到加法器364,如图33所示。产生的 参考频率fref以上已参照图15和16讨论。加法器364结合来自 相位检测器的该滤波后信号和来自DAC120的信号以产生调谐 电压Vtune以设定VCO输出频率。以这种方式,可产生精确测试 信号ftest,因为该信号ftest的中央频率可被参考频率源204(见图 15)和反馈环263精确控制。
根据一个实施例,该测试信号功率电平被用于对各种收发器 元件增益校验,可通过使用功率控制环(见图34)控制。在直线 374上的信号ftest可被反馈到各种增益放大器370,其可放大或衰 减信号以使得在直线374上提供具有特定功率电平Ptest的测试信 号。该增益通过各种增益放大器370应用到直线374上的信号, 可通过位于直线374上的环信号反馈到该不同的增益放大器实现 控制。在功率控制环中,该输出信号功率电平Ptest通过功率检测 单元(PDU)378可取决于精确地已知参考频率电流IREF以及参 考电压VREF。PDU378的输出可被反馈回信号比较器380的一个 端口,如所示。该信号比较器也可在其他端口从系统微控制器108 (未示出)接收控制信号。例如,通过程序总线,微控制器可发 送控制信号(其可为在直线372上的信号指定期望功率)到数- 模转换器(DAC)120,其依次,传输控制信号到信号比较器380。 该信号比较器可比较控制信号指定的功率电平和来自PDU378的 信号的功率电平,以及在直线382上产生差分信号。该差分信号 被低通滤波器384滤波且应用到可变增益放大器370以调整可变 增益放大器的增益。合成的测试信号386(见图33)可具有精确 控制的中央频率(来自环363)以及功率电平Ptest通过指定是已 知的,对于整个收发系统是可接受的容差。
还是参照图24,当该BITE模块传输特定测试信号到模拟接 收器的输入端,其通过采样在直线298上提供给BITE模块的数 字监控信号同步监控输出。当同步或异步采样数字数据进入该 BITE模块106,其通过DFT模块300转换进入该频域。该转换 允许该BITE模块分析接收信号的频率内容以及与理想的响应相 比较,以下进一步讨论。在一个实施方案中,该DFT300可被实 施为,例如,64、128、256或512点转换,其允许计算将要描述 的复杂组框图,对特定的电信标准,接收数字信号的同相(I) 和正交(Q),以下将进一步讨论。
一旦DFT模块300已产生数字输出信号DO,其被传输到比 较器304。该比较器304也接收来自数据表302的数字信号DT。 数字信号DT表示接收器电路对特定测试输入信号的理想响应。 在一个实施例中,可从该微控制器108的附加存储器126下载参 考信号DT。该微控制器,可依次初始化该参考信号DT到该BITE 模块以响应基带处理器124发出的指令,该指令可指定,例如, 将测试的接收器电路的电信标准。与理想性能的偏差可能会导致 产生校正响应其下载进数字存储器(未示出)以及通过数据总线 与各种模拟块通信,以下将进一步讨论。
如以上讨论,通过收发器能产生的测试信号具有精确控制参 数,例如中央频率和功率电平。当该信号被转换进入频域,其可 具备精确已知的频率特性,其被用于评估该收发器的元件。参照 图25,其示出了由该收发器310产生的且在直线292上提供给该 模拟接收器电路的双重调谐模拟测试信号(在频域中说明)的实 施例。该测试输入信号可包含两个紧密间隔谐波信号(直线294a 和294b表示),其具备同样的振幅A1或不同的振幅A1和A2, 以及本地频率f1和f2。在一个实施例中,谐波294a和294b可 具有自由的相位关系以及为选定重要的标准可以大致一个信道 带宽分隔。可以意识到该测试信号不限于图25所示的实施例且 可具有不同结构。例如,A2可稍小于或大于A1。在一个实施例 中,通过发射器310可产生该测试信号以响应数据表302提供的 数字输入,通过微控制器108(见图24)其可依次接收存储于存 储器126中的控制输入。例如,通过发射器中的同相和求积单边 频带模块可产生该测试信号以及可被上-转换为该频带的较低 终端,通过锁相环振荡器锁定到特定频率,此处表示为flow,以 进行测试。在直线292上的输入信号测试结果可具有两个主频域 成分,即f1和f2,且可通过开关290a和290b传输到可编程接 收器电路的输入端。
当该测试输入信号被应用到该接收电路,其被放大、混频、 滤波以及被该接收电路的元件数字化,如以上所述。通过放大因 数g1和g2,该过程可提升包含该测试输入信号的原始音调的振 幅,其取决于模拟接收电路的设定。参照图26,该放大的音调在 频域内以直线317a和317b示出。通过DFT模块产生这些谐波 在接收到的数字化信号执行离散傅立叶变换以将采样信号转换 进频域,以及允许分析接收信号的频率成分(音调)。此外,由 于在任意接收器成分出现第三阶非线性和下-转换到基带,该过 程可产生额外谐波信号,例如振幅B和C在本地频率2f1-f2和 2f2-f1的谐波(直线318a和318b),如图26所示。这些谐波的 振幅和本地频率直接与整个模拟接收电路的线性性能相关。因 此,通过监控ADC的输出,该BITE模块能执行分析该模拟接收 电路和在DTC模块300中随后的频域变换。详细比较数字输出 信号DO和参考信号DT,允许评估该接收电路。
明显地,基于来自数据表302提供的差分数字输出能产生差 分输入频率的差分测试信号。因此,频率范围,频率稳定性,增 益线性度都能被测试。在较低频带终端的增益可取决于比较该测 试信号(调节上-翻转间隔过程的增益/损耗)的原始谐波功率的 f1和f2处的谐波中的功率。线性度,以第三阶截取点(IP3)形 式,能取决于计算IM3,即,f1和2f1-f2或f2和2f2-f1的功 率差别,以及使用该关系:
          IP3(dBm)=A(dBm)+IM3/2(dBc)
此处dBm指示与毫瓦相关的分贝以及dBc为该载波频率的 分贝,以及A为原始测试输入信号的频域(即,出现在谐波中的 功率)的振幅。
此外,如果flow以离散形式在重要频带(远离一些过度带宽 因素,通常等于该接收器产生的容差的期望中央频率)上变换, 以及在每个步骤上计算增益,对频率响应的知识是发展的。从这 个频率响应数据,能做到精确估计中央频率和接收器的带宽。
根据一个实施方案,更多改进的测试环节可包括产生测试输 入信号,其包括一个或更多调制的信号。特定调制技术的信号具 备唯一表示,例如正交振幅调制(QAM),双相移相键控(BPSK), 等。在发射器中可产生码元,例如,BITE模块的发射器310,或 RFIC(见图1)的发射器电路。在一个实例中,响应例如,数据 表302或微控制器108提供的数字指令可产生码元。
在一个实例中,该测试信号可通过同相(I)和正交(Q)调 制器调制。测试信号可被放大,频率或相位调制。在一个实施例 中,当该信号的振幅中未获得信息(例如,相位或频率的调制), 基带或低频,成形的数字化或模拟信号可被加入到图33中的锁 相环363,通常在环路滤波器369之前或之后。在另外一个实施 例中,测试信号的振幅可包含一些信息,使用IQ调制器产生测 试信号,如图35所示。参照图35,压控振荡器VCO产生的信 号通过90度移相器可被反馈到两个混频器390a,390b。在混频 器390a,390b调制信号可与移相后的VCO信号结合。通过微控 制器(见图1)的控制可从存储器126获得I和Q数据流。来自 混频器的输出信号可在加法器392中被结合以产生测试信号ftest。 在一个实例中,通过可变增益放大器370可控制信号ftest的功率 电平,参照图34讨论。
参照图27,其示出了图23示出的接收器电路产生的仿真的 构象图的一个。如图27所示,对每个发送的码元,I和Q内容可 以矢量表示。具体地说,图27描述了以整数注脚n和n+1确定 的两个矢量(尽管应当意识该构象图可包含多个矢量)表示的码 元(S)标识符定位于图的位置SIn,SQn,SIn+1和SQn+1,实际对 应于注脚n和n+1标注的接收信号,如图27所示。
还是参照图28,该过程的下一步可比较模式323,比较模式 的目的是当比较期望响应时确定存在于当前性能配置的误差量。 一旦该测试模式完成,该数字输出信号(Do)被从DFT模式300 提供到比较器304以与参考数字信号DT比较。该参考数字信号 DT可被存储在数据表302中以及与典型标准的重要性有关。该 参考数字信号可包括目标中央频率,信号的目标带宽、目标增益 和目标IP3。此外还有目标值,每个参数具有预期相关的可接受 误差带。在一个实施例中,这些值基于统计可得知,在可接受误 差范围中,当实际值等于目标值时,基准设计暗含所有系统性能 的一致性将出现。
在一个实施例中,在每个时间增量tn和tn+1,比较器304 比较模拟电路的标准输出(DO)和参考信号(DT)以产生误差 矢量幅度信号EVM。时间增量可被定义,例如,通过数字输出 信号的采样率,其可得出主时钟频率。根据一个实施方案,能基 于,例如,在所谓的“L2”标准,对每个码元计算误差矢量幅度 (EVM),根据公式:
EVM n = | I ( t n ) - S In | 2 + | Q ( t n ) - S Qn | 2

EVM n + 1 = | I ( t n + 1 ) - S In + 1 | 2 + | Q ( t n + 1 ) - S Qn + 1 | 2
然而,应当意识到本发明不限于使用L2标准,也可以定义 其他标准。比较器304可监控整个构象图表示的由DFT模块200 提供的数字输出信号DO,和数字表302提供的参考信号DT。该 比较器检测信号DO和DT间的偏差,即,在一些定义的误差容 差限度内是否DO=DT。还是参考图24,如果比较器不存在偏差 (例如,在一些容差内DO=DT),采用支线Y,其促使串并转换 电路308以重发数字存储器的内容,其对模拟接收电路设定性能 参数。串-并转换模块将在直线312上接收的串连数字信号转换 为并行信号,通过数字总线114应用到模拟接收电路中的元件, 如图23所示。如果该比较器存在误差,则采用支线N。在这种 情况下,该比较器提供该EVM信号到宏模块306。在一个实施 例中,对测试模块的至少一个迭代一旦计算出当前值和误差,该 比较模式被完成,这些值被发送到宏模块306中。
还是参照图28,下一个过程步骤可以是计算模式326。计算 模式的目的是决定下一寄存器值设定要设定的值,基于测定响应 和期望响应间的误差。在一个实施例中,计算模式的目的可以基 本由宏模块306完成。在一些情况中,接收器电路可具有复杂传 输功能,为确定在比较模式中效应(例如,偏差)的产生原因, 其可被模块化(以硬件或软件)。因此,宏模块306可包含接收 器模块。在一个实施例中,宏模块计算机,基于数学计算法则, 调整接收器性能的误差。这些调整可包含新的数字存储器值,通 过串-并转换模块308其内容被传输到不同模拟模块,引起接收 器电路中一个或多个元件性能的调整。在一个实例中,宏模块306 可被实现为有限态计算机。
例如,如果当前比较模式测试可确定可编程LNA116的中央 频率低20%,宏模块306可计算要求的数字存储器值以切换出一 些与LNA116匹配输入有关的LC振荡器136的离散并联电容器, 以将LNA116的中央频率提高20%,根据已知的汤普森谐振公 式:
f center = 1 2 π LC
此处出现在LNA和LC振荡电路的L和C分别为电感和电 容。
可替换的,LNA116的中央频率通过减少在LNAs输入电路 使用的整个装置宽度可被重调谐,LNAs输入电路可被实现为栅 极切换技术。参照图29,其示出了包括四个互相连接的MOS晶 体管328a,328ab,328c和328d的LNA116的一个实施方案。 该LNA116还包括四个电容器320a,320ab,320c和320d,其 独立于来自二进制数字输入B0-B3的每个MOS晶体管输入栅极 (G)。各个栅极连接G1,G2,G3和G4通过耦合电容器结合 到整个栅极连接G。在一个实施例中,耦合电容器可具有大约 0.5pF的电容值。通过电阻R0-R3,二进制连接端B0-B3耦合可 编程数字总线110(见图23)到四个MOS晶体管各个栅极连接 上,如图29所示。在一个实施例中,这些晶体管每个具有大约 3kΩ的值。每个晶体管各自的漏级一起被耦合提供整个漏级(D) 连接,其提供输出到LNA116。每个晶体管的各自的源极连接也 被一起耦合以形成整个源(S)连接,其用于设定合适的DC偏 条件。
根据一个实施方案,四个MOS晶体管328a,328b,328c和 328d的每个具有特定的栅极宽度,参考此处W1(对晶体管328a), W2(对晶体管328b),W3(对晶体管328c),W4(对晶体管328d)。 通常,基于电路布局和用于制作RFIC晶体管的工艺过程,晶体 管栅极宽截面可在一定宽度范围内变化。在一个实施例中,栅极 宽度可在从大致80微米到大致700微米范围内变化。由于各个 晶体管的栅级是分隔的(通过电容器330a,330b,330c和330d), 四个二进制连接端B0-B3中的每个无论是编程为逻辑“1”或逻 辑“0”,其可产生整体性能,其合成栅级宽度可在16个不同尺 寸内变动。
在一个实施例中,信号电压电平可被选择为例如在任何输入 B0-B3上为逻辑“0”,其暗含电压低于晶体管阀值电压。因此, 如果逻辑“0”被应用到任晶体管328a-d的各自的栅级,其功能 为管,然而,如果逻辑“1”被运用到栅极,相应的晶体管被开 启。LNA的整个栅极宽度可被取决于开启的每个晶体管的各个门 宽度的总和。因此,控制信号的值取决于在数字比特模式,在任 意16个值内,整个栅极宽度能被控制,如以下表3所示。
表3基于四个数字输入信号的整个可编程装置的宽度   B3   B2   B1   B0   Wtotal   0   0   0   0   0   0   0   0   1   W1   0   0   1   0   W2   0   0   1   1   W1+W2   0   1   0   0   W3   0   1   0   1   W3+W1   0   1   1   0   W3+W2   0   1   1   1   W3+W2+W1   1   0   0   0   W4   1   0   0   1   W4+W1   1   0   1   0   W4+W2   1   0   1   1   W4+W2+W1   1   1   0   0   W4+W3   1   1   0   1   W4+W3+W1   1   1   1   0   W4+W3+W2   1   1   1   1   W4+W3+W2+W1
如果W1,W2,W3,W4中的每个都不同,表2示出了LNA 的整个装置宽度如何编程为16个值中的任一个。然而,可以意 识到本发明不限于如上表所示具有四个栅极宽度和四个数字输 入四个晶体管的实施例。相反的,本发明的原则可被运用为任意 数目的晶体管和数字输入信号以及不同晶体管的栅极宽度可以 是相同的或不同的。
此外,还是参照图29,电流源,394可基于暗含数字模式(以 及因此,“开启”晶体管的数目)调节,通过求和每个开启晶体 管源极提供的电流可设置合适的偏电流,因此偏电流对应于每个 晶体管328a,328b和328d各自可提供的偏电流的总和。
如现有技术常用的,通过减少或提高整个栅极宽度,LNA的 中央频率可相应地提高或降低。该应用到各个二进制输入B0-B3 的数字值可由宏模块控制以基于期望的中央频率设定合适的栅 极宽度。此外,可编程LNA116的栅极,通过改变到LNA的偏 电流从而整个接收器电路能被调节,通过偏控制电路和通过控制 负载阻抗,如以下等式所示:
                A=-gm*Z1
此处A为增益,gm为传输电感以及Z1为负载阻抗。如以上 所讨论,负载阻抗可被控制,例如,通过使用可编程LC振荡电 路126。控制阻抗能,依次,用于修改和设计LNA的增益。
在一些情况下,LNA的线性度对整个接收器电路的线性度冲 击很大。对给定LNA布局的线性度产生最直接影响的参数通常 是偏电流和负载线。如果参照图27,例如,线性度低而增益高, 能调节偏电流和负载阻抗以查找充分符合全部条件的配置。在一 个实施例中,能估算线性度和增益,例如,通过观察信号输出 DO,如以上参照图26所讨论。对于g1A1和g2A2,B和C的感 应越小,LNA的线性度越好。此外,通过观察输出信号的g1A1 和g2A2与输入信号强度A1和A2的关系,可决定频率f1和f2 的增益g1和g2。
在一些实施方案中,在接收器电路元件中可能的复杂交感, 可能不允许对接收器电路每个功能模块非连续参数调整。在这种 情况下,宏模块306可计算基于特定功能误差和跨越时间进展的 寄存器值的设定。这可典型地包括迭代过程调整步骤。例如,参 照图28,测试模式322,比较模式323和计算模式326可重复直 到数字输出信号DO在该参考信号DT定义的容差内。
如以上所讨论,在一个实施方案中该宏模块306可被实现为 一状态计算机。这为调整计算提供高度的内置弹性。例如,因数 校准可被用于产生该原始存储器值。此外,一旦查找到实时解决 方案存储器值能被更新,例如,该新产生的值被用于下次的初始 化配置。换句话说,该宏模块306可为一学习过程的类型以调整 无线收发器的性能。
一旦数字输出信号在可接受的容差范围内匹配该参考信号 DT,该BITE模块106可输入“保持”模式327,见图28。保持 模式的目的在于保持该存储器在当前电流值直到微控制器(或基 带处理器)发送下一指令以监控或改变到不同的电信标准。此外, 当前存储器值可被写入存储器126,作为新的初始化值被用于下 一初始化模式。
如上所讨论,该BITE模块106可监控和调整接收器电路286 的任一或全部元件,包括LNA116,混频器280、带通滤波器282 和基带放大器284。应当意识到可运用相似过程到接收器电路的 其他任一元件以及发射器电路的324(见图1)的任一可编程元 件。例如,参照图36,其示出了根据本发明多个方面的发射器电 路的性能参数测试方法的一个实施方案的流程图。在第一步396, 对将要测试的发射器电路的性能可选定特定的电信标准(例如, CDMA,GSM等)。基带处理器因此可产生中断到微控制器以激 活测试模式。微控制器108(见图1)可下载初始化数字值以及 检验设定(步骤398),对应的选定模式通过程序总线传输到该发 射器电路的一个或多个元件,参照上述对接收器电路的讨论相近 似的方式。在一个实施例中,这些初始化的值可从存储器126获 得。该微控制器因此可激活该BITE模块106以及开始测试/评估 该发射器电路的一个或多个元件。
参照图37,其示出了耦合到根据本发明多个方面的RFIC中 发射器电路的BITE模块的一个实施方案的框图。当微控制器108 激活该BITE模块106,控制信号可被发送到切换开关400以中 断正常数据流Idate和Qdate在直线402a和402b上被发送到发射器 102,相反允许测试数据(Itest和Qtest)在直线404a和404b上被 从BITE模块发送到发射器102,如所示(图36中的步骤406)。 该测试数据(Itest和Qtest)可以上述产生参照测试信号以测试接 收器电路相似的方式从存储在数据表302的信息产生。该测试信 号可也被反馈回比较器304。在一个实施例中,数字测试信号通 过低通滤波器408可被滤波以及在混频器410a和410b中与本地 振荡信号flo混频。该本地振荡信号flo可由以上讨论的频率合成 器104产生。该本地振荡信号通过可编程90度移相器412可也 被反馈回混频器410a和410b,以产生合适的同相和正交信号。 从混频器410a和410b输出的同相和正交信号可被添加到组合器 以从发射器102产生组合输出信号。
在通常操作中(例如,信号Idate和Qdate被反馈回发射器), 来自发射器102的输出信号在直线416上可被发送到天线模块 174(见图1)。在测试模式中,该微控制器可发送控制信号到切 换开关418以退耦来自天线的发射器输出以及替代地产生来自发 射器的输出信号(此处表示为Smeas,因其为测量后信号),在直 线420上被反馈回BITE模块106(见图36的步骤426)。在一个 实施例中,来自发射器的输出信号通过各种增益放大器422可被 放大,和/或在被反馈回天线或BITE模块前通过可编程衰减器 424衰减。
根据一个实施方案,来自发射器的信号,Smeas,可被BITE 模块中的下-转换器428下-转换以转换该无线频率信号到低基 带频率以进行处理(见图36中步骤430)。在一个实施例中,下 -转换器428可包括标准混频器,如现有技术所熟知的。下-转 换信号因此可被提供到离散傅立叶转换器(DFT)模块300以进 行数字处理。该DFT模块300可处理该接收到的信号以及在信 号上执行傅立叶变化,如以上参照接收电路的测试所讨论,以产 生测量后数字数据流Imeas和Qmeas(如图36的步骤432),其分别 表示同相和正交数字信号内容。这些数字信号Imeas和Qmeas可被 反馈回该比较器304,此处可分别与测试数据Itest和Qtest相比较 (如图36的步骤434),参照以上对接收器电路所描述的相似的方 式。如果测量后数据Imeas和Qmeas和测试数据(Itest和Qtest)间比 较在可接受的误差界限内,该BITE模块可进入“保持”模式, 如以上所讨论的。在保持模式中,该数字寄存器可被锁定到它们 的当前值(如图36的步骤436)直到该微控制器(或基带处理器) 发送下一指令以监控或改变到不同的电信标准。此外,当前寄存 器值可被写入寄存器126(如图36的步骤438)作为新的初始化 值可用于下次测试的初始化。
如果比较器检测到数字数据的差异,其可初始化该宏模块 306以运行软件计算法则,其计算调整量,如以上讨论的。该宏 模块可计算发射器电路元件新的设定,例如可编程衰减器422, VGA424,或频率合成器104。该调整量可导致,例如,频率和 相位移动由于输入到可编程频率合成器104的数字输入,信号衰 减由于可编程衰减器424的输入,或可变增益调整由于可编程 VGA422的输入。此外,对其他迭代测试该宏模块可用信号通知 该测试数据可被重发到发射器102(如图36的步骤440)。
如此描述本发明至少一个实施方案的几个方面,应当意识到 不同的替换、调整和改进可容易想到这些现有技术。这些或其他 替换、调整和改进可作为本发明的一部分和作为本发明的范围。 相应的,该前述描述和附图仅作为实施例而不能用来作为限定。 本发明的范围应当决定所附权利要求的合适构造,以及它们的等 同。
QQ群二维码
意见反馈