高频功率放大器以及使用了它的发送器和移动体通信终端

申请号 CN200610074510.9 申请日 2006-04-21 公开(公告)号 CN1862952B 公开(公告)日 2012-07-18
申请人 瑞萨电子株式会社; 发明人 田上知纪; 松本秀俊;
摘要 本 发明 提供一种不论负载阻抗的变动如何都保持良好的线性,并且小型的高频功率 放大器 。检测出最末放大级晶体管的输出 端子 的交流 电压 振幅,并在该电压振幅超过了预先确定的 阈值 时,输出抑制 功率放大器 的输入 信号 振幅的信号。
权利要求

1.一种高频功率放大器,其使用于高频移动体通信终端,其特征在于,包括:
至少1级的放大级,放大来自可变增益放大器的输入信号
输出匹配电路,连接于上述放大级的输出侧
第一检测部,检测出构成上述放大级的晶体管与上述输出匹配电路的连接点处的由上述输入信号得到的电压振幅,作为上述可变增益放大器的增益控制信息进行输出。
2.如权利要求1所述的高频功率放大器,其特征在于:
具有电源电压检测部,其检测出上述功率放大器的末级的电源电压,作为上述可变增益放大器的增益控制信息进行输出。
3.如权利要求1所述的高频功率放大器,其特征在于:
还包括第二检测部,其在上述输出匹配电路内、或者上述输出匹配电路与输出端子之间具有定向耦合器,将该定向耦合器的输出信号作为上述可变增益放大器的增益控制信息进行输出。
4.如权利要求2所述的高频功率放大器,其特征在于:
还包括第二检测部,其在上述输出匹配电路内、或者上述输出匹配电路与输出端子之间具有定向耦合器,将该定向耦合器的输出信号作为上述可变增益放大器的增益控制信息进行输出。
5.如权利要求1所述的高频功率放大器,其特征在于:
上述第一检测部包括与构成上述放大级的晶体管的集电极连接的电压检测用二极管,和与该电压检测用二极管连接的电压检测用电阻及电容。
6.如权利要求5所述的高频功率放大器,其特征在于:
构成上述放大级的晶体管、与构成上述放大级的晶体管连接的输入匹配电容及级间匹配电容、以及上述第一检测部,作为单芯片的微波单芯片集成电路来构成。
7.如权利要求1所述的高频功率放大器,其特征在于:
构成上述放大级的晶体管,是提供给上述功率放大器的偏置电流根据射频输入电压而变化的自偏置方式。
8.一种发送器,其使用于高频移动体通信终端,其特征在于:
包括高频功率放大器和控制部,
上述高频功率放大器包括:至少1级的放大级,放大来自可变增益放大器的输入信号;
输出匹配电路,连接于上述放大级的输出侧;以及第一检测部,检测在上述放大级的末级的放大用晶体管与上述输出匹配电路的连接点处的由上述输入信号得到的电压振幅并输出,上述控制部具有使用上述电压振幅的信号来控制上述可变增益放大器的增益的功能。
9.如权利要求8所述的发送器,其特征在于:
具备电源电压检测部,其检测出上述功率放大器的末级的电源电压,
上述控制部具有使用上述第一检测部的信号和上述电源电压检测部的信号来控制上述可变增益放大器的增益的功能。
10.如权利要求9所述的发送器,其特征在于:
还包括第二检测部,其在上述输出匹配电路内、或者上述输出匹配电路与输出端子之间具有定向耦合器,并将该定向耦合器的输出信号作为上述可变增益放大器的增益控制信息进行输出,
上述控制部具有使用上述第一检测部的信号、上述电源电压检测部的信号以及从上述第二检测部得到的信号来控制上述可变增益放大器的增益的功能。
11.如权利要求9所述的发送器,其特征在于:
还包括第二检测部,其在上述输出匹配电路内、或者上述输出匹配电路与输出端子之间具有定向耦合器,将该定向耦合器的输出信号作为上述可变增益放大器的增益控制信息进行输出,
上述控制部具有使用上述第一检测部的信号、上述电源电压检测部的信号、以及从上述第二检测部得到的信号来控制上述可变增益放大器的增益的功能。
12.如权利要求8所述的发送器,其特征在于:
在上述功率放大器的输出电压振幅超过了预先确定的阈值时,将抑制上述功率放大器的输入信号振幅的信号输入到上述可变增益放大器。
13.如权利要求8所述的发送器,其特征在于:
上述控制部设置在基带控制电路内。
14.一种移动体通信终端,包括:具有确定移动体通信终端的最大发送功率的限制器的基带电路、可变增益放大器、放大发送信号的高频功率放大器、前端模、以及天线;该移动体通信终端的特征在于:
上述基带电路具有将在终端控制部中生成的发送增益控制信号经由限制器提供给上述可变增益放大器的功能,
上述高频功率放大器包括放大输入高频信号的高频功率放大电路、匹配电路、偏置控制电路、以及检测出构成高频功率放大电路的晶体管的由上述输入高频信号得到的集电极电压并作为上述可变增益放大器的增益控制信息进行输出的第一检测部,上述前端模块包括发送接收的切换开关、检测出从上述高频功率放大器输出的发送信号的输出电平的输出检测电路、以及生成提供给上述可变增益放大器的输出控制信号的自动功率控制电路,
具有由上述基带电路生成对上述偏置控制电路的控制电流,并且,监视因该移动体通信终端和基站的位置关系而引起的信号的品质,生成用于调整上述可变增益放大器的发送电平的发送电平调整信息的功能,
具有基于上述发送电平调整信息和从上述第一检测部输出的上述增益控制信息来变更上述限制器的限制值的功能。
15.如权利要求14所述的移动体通信终端,其特征在于:
包括进行W-CDMA信号的调制和解调的调制解调电路。
16.如权利要求14所述的移动体通信终端,其特征在于:
包括进行增强型数据GSM环境方式的调制和解调的调制解调电路。
17.如权利要求14所述的移动体通信终端,其特征在于:
具有基于上述发送电平调整信息、上述增益控制信息、以及上述高频功率放大器的电源电压信息,来变更上述限制器的限制值的功能。
18.如权利要求14所述的移动体通信终端,其特征在于:
上述高频功率放大器包括
至少1级的放大级,放大来自上述可变增益放大器的输入信号;
输出匹配电路,连接于上述放大级的输出侧;以及
第一检测部,检测出构成上述放大级的晶体管与上述输出匹配电路的连接点处的由上述输入信号得到的电压振幅,作为上述可变增益放大器的增益控制信息进行输出。
19.如权利要求18所述的移动体通信终端,其特征在于:
还包括第二检测部,其在上述连接于放大级的输出侧的输出匹配电路内、或者上述输出匹配电路与输出端子之间具有定向耦合器,将该定向耦合器的输出信号作为上述可变增益放大器的增益控制信息进行输出,
具有使用上述发送电平调整信息和从上述第一检测部得到的上述增益控制信息、以及上述高频功率放大器的电源电压信息和从上述第二检测部得到的增益控制信息,来变更上述限制器的限制值的功能。
20.如权利要求19所述的移动体通信终端,其特征在于:
上述定向耦合器和天线之间不经由隔离器地相连接。

说明书全文

高频功率放大器以及使用了它的发送器和移动体通信终端

技术领域

[0001] 本发明涉及高频移动体通信终端中所使用的高频功率放大器、和使用了该高频功率放大器的发送器,特别涉及降低了放大器特性的负载阻抗依赖性的高频功率放大器、以及使用了该高频功率放大器的发送器。

背景技术

[0002] 作为现有的降低了对负载阻抗的特性依赖性的放大器的结构,在专利文献1中公开了其一个例子。专利文献1的放大器,在功率放大器和天线之间的传送线路上的多个点进行检波,根据其电平差检测驻波的产生、即负载的不匹配,限制功率放大器的输入。
[0003] 另外,在专利文献2中,公开了对末级晶体管的输出进行电压检波,并反馈到末级晶体管的偏置电压的结构。
[0004] 专利文献1:日本特开2000-341143号公报
[0005] 专利文献2:美国专利6,720,831号说明书

发明内容

[0006] 在高频移动体通信终端所使用的功率放大器中,依赖于天线周围的状况,从天线向功率放大器会产生功率的反射。在产生了这种反射时,可以发现从功率放大器往天线看的负载阻抗似乎发生了变动。如果从放大器看的负载阻抗发生变动,则构成放大器的输出级的晶体管的负载阻抗也变动,其结果是,放大器表现出与本来设计的特性不同的特性。
[0007] 作为一例,图1示意性地表示了负载阻抗变动对放大器的增益、即输入输出特性的影响。在图1中,横轴表示向放大器的输入FRin,纵轴表示功率放大器的输出FRout。特性(2)是本来的输入输出特性,根据天线周围的状况,有时产生如下特性:本来增益更高、但却被饱和输出的低的特性(1),或者本来增益较低但却饱和输出的高的特性(3)。
[0008] 现在,在要求功率放大器作为线性放大器而动作的CDMA方式的情况下,图1的特性(1)那样的特性是比本来的线性最大输出低的输出,输出饱和,因此,存在有时产生超过了系统容许值的失真的问题。
[0009] 对于该问题,如专利文献1的图5所示,在天线和功率放大器之间插入隔离器(isolator),使来自天线的反射功率不返回到放大器的方案是有效的对策,但是存在如下问题:隔离器成本高,并且功率放大器不能小型化。
[0010] 另外,在专利文献1的图1所记载的以往例中,通过测量输出匹配电路上的不同的3点处的电压振幅,读取在传送线路上产生的驻波的振幅的差,来检测出产生了反射波这一情况,限制控制电压电平。但是,在该结构中,存在如下问题:需要波长的1/6左右的长度的传送线路长度和3个电压检测电路,功率放大器不能小型化。
[0011] 另一方面,在专利文献2的图2A记载的例子中,为了在传感用晶体管的输出端进行电压检测,用一个电压检测器即可,但是其目的在于用检测器检测过电压,防止功率晶体管的破坏,在检测到过电压时,使上述功率晶体管的偏置电流减少。该例子存在如下问题:由于没有考虑功率放大器的线性,所以有可能功率放大器的线性恶化而产生失真。
[0012] 本发明的目的在于解决上述问题,提供一种不论负载阻抗的变动如何,都能保持良好的线性,并且容易进行小型化的高频功率放大器,以及使用了该高频功率放大器的发送器。
[0013] 本发明具有代表性的装置的一例如下。
[0014] 即,本发明的高频功率放大器是在高频移动体通信终端中使用的高频功率放大器,其特征在于,包括:至少1级的放大级,放大来自可变增益放大器的输入信号;输出匹配电路,连接于上述放大级的输出侧;第一检测部,检测出构成上述放大级的晶体管与上述输出匹配电路的连接点的电压振幅,作为上述可变增益放大器的增益控制信息进行输出。
[0015] 根据本发明,可以提供一种不论负载电阻的变动如何,都能保持良好的线性的高频功率放大器,以及使用了该高频功率放大器的发送器。附图说明
[0016] 图1是表示伴随负载阻抗的变动,功率放大器的输入·输出特性的变化的示意图。
[0017] 图2是本发明实施例1的功率放大器的电路图。
[0018] 图3是作为本发明的实施例2的发送机的框图
[0019] 图4A是表示本发明实施例1或2中的、因负载阻抗的变动而引起的晶体管的动态负载曲线的示意图。
[0020] 图4B表示集电极电流·集电极电压特性、与由实施例1或2的集电极交流电压检测部检测出的Vdetout的关系。
[0021] 图5A是表示本发明实施例1或2中的、伴随负载阻抗的相位变动的功率放大器的失真和集电极端的交流电压振幅的图。
[0022] 图5B是本发明的实施例2的动作特性的说明图。
[0023] 图6A是表示作为本发明的实施例3的W-CDMA方式的移动体通信终端的结构例的图。
[0024] 图6B是本发明实施例3的动作特性的说明图。
[0025] 图7是作为本发明的实施例4的功率放大器的电路图。
[0026] 图8是使用了本发明实施例4的功率放大器的发送机的框图。
[0027] 图9是表示针对本发明的实施例4,伴随电源电压变动而产生失真的原理的示意图。
[0028] 图10是本发明实施例4的动作特性的说明图。
[0029] 图11是作为本发明的实施例5的功率放大器的电路图。
[0030] 图12使用了本发明实施例5的功率放大器的发送机的框图。
[0031] 图13是作为本发明的实施例6的功率放大器的电路图。
[0032] 图14使用了本发明实施例6的功率放大器的发送机的框图。

具体实施方式

[0033] 针对本发明的实施方式,下面一边参照附图一边进行详细说明。
[0034] <实施例1>
[0035] 首先,使用图2来说明本发明的高频功率放大器的实施例1的结构。图2是本发明的实施例1的高频功率放大器10的电路图。
[0036] 根据本发明的实施例1,高频功率放大器10检测出在最末放大级晶体管的输出端子的交流电压振幅,在该电压振幅超过了预先确定的规定值时,输出抑制功率放大器的输入信号振幅的信号。
[0037] 即,在图2所示的高频功率放大器10中,1和3是放大器的输入匹配电容,2是输入匹配用电感。100是初级放大晶体管,200是末级放大晶体管,30是集电极交流电压检测部(第一检测部)。202是MMIC(Microwave Monolithic IC:单片微波集成电路),将输入匹配电容3、初级放大用晶体管100、末级放大用晶体管200、级间匹配电容251、以及集电极交流电压检测部30集成在1个芯片上。
[0038] 功率放大器10具有输入RF输入信号Rfin的输入端子4、输出RF输出信号RFout的输出端子5、以及输出集电极交流电压检测部(第一检测部)30的检波输出Vdetout的输出端子6。第一检测部的检波输出Vdetout被作为向输入端子4供给RF输入信号的可变增益放大器的控制用的信息来使用。
[0039] 端子221和端子222分别提供初级放大用晶体管100和末级放大用晶体管200的基极偏压Vbb1、Vbb2。231是初级放大用晶体管100的基极偏压电压供给用RF信号隔离电感(isolation inductor),232是末级的放大用晶体管200的基极偏置电压供给用RF信号隔离电感。260是提供电源电压Vcc的电源端子,241和261是各初级和末级的放大用晶体管的电源用扼流电感。242和262是电源电压稳定用旁路电容器。
[0040] 集电极交流电压检测部30具有电压检测用二极管300、电压检测用电阻301、电压检测用电容元件302。由输出匹配用电容器281、282、283和输出匹配用传送线路285、286构成放大器的输出匹配电路280。
[0041] 根据本实施例,通过第一检测部30,在放大级的末级的放大用晶体管与输出匹配电路的连接点检测出电压振幅Vdetout,将所检测出的该电压振幅作为向输入端子4供给RF输入信号的可变增益放大器的控制信息来输出。通过使用该检波输出Vdetout,能够根据与负载阻抗的变动对应的放大晶体管的输出电压振幅Vdetout,进行可变增益放大器的增益的控制。由此,能够对功率放大器的输入信号振幅、即可变增益放大器的输出进行控制,使得高频功率放大器总是处于输出不产生失真的线性动作区域,能够抑制负载阻抗变动时的失真的产生。由于不需要在天线和功率放大器之间插入隔离器,所以成本也不会增加。
[0042] 另外,构成本实施例的高频功率放大器的各级晶体管是自偏置方式,即,当输入RF输入信号Rfin时,伴随于此,偏置电流也增加。由此,成为在负载阻抗变动时的失真发生时减小RF输入信号的振幅,而不减小各级晶体管功率放大器的偏置电流的结构。换言之,RF输入信号Rfin的振幅处于与RF输入电压对应的自偏置方式的动作范围内。因此,当RF输入信号的振幅被减小后,与此对应,偏置电流也被减小。从这一点上,即使在负载阻抗变动时的失真发生时,各级晶体管也在正常的动作范围内动作。由此,确保在线性区域内进行动作。
[0043] 另外,由于集电极交流电压检测部30的输出端子6连接在末级的放大用晶体管200的集电极上,所以集电极交流电压检测部30的输出被加进了电源电压的信息,对抑制失真的产生是有效的。
[0044] <实施例2>
[0045] 作为本发明的实施例2,使用图3~图5C说明使用了第一实施例的功率放大器的发送机的例子。
[0046] 首先,图3是表示使用了图2所示的功率放大器的发送机的方结构例的图。功率放大器10的RF输入信号Rfin用的端子4与外部的可变增益放大器12相连接,RF输出信号RFout用的端子5与天线14相连接。另外,输出功率放大器10的集电极交流电压检测部30的交流电压振幅输出Vdetout的端子6,经由A/D转换器16连接在控制电路18上。该控制电路18设置在发送机内,优选设置在其基带控制电路(基带IC)内。
[0047] 基于想要发送的信息,将对载波进行了相位调制的高频的发送信号Fr0输入到可变增益放大器12,在此进行放大,作为高频信号RFin输入到功率放大器10。该信号在功率放大器10中进一步被放大,作为高频信号RFout被输出,驱动天线14进行发送。检波输出Vdetout作为可变增益放大器12的增益控制用的信息来使用。即,控制电路18根据由集电极交流电压检测部30检测出的交流电压振幅的输出Vdetout,来控制可变增益放大器12的增益。
[0048] 根据本实施例,由控制电路18监视作为增益控制用的信息的Vdetout,在成为在功率放大器10的输出产生失真的条件时,换言之,在放大晶体管的输出电压振幅超过了预先确定的阈值时,生成限制可变增益放大器12的增益那样的控制信号。即,根据放大晶体管200的输出电压振幅来控制可变增益放大器12的增益。在负载阻抗为通常范围以下的大小时,可变增益放大器12的增益基于预定的参数进行设定。在成为功率放大器10的输出产生失真的条件时,换言之,在随着负载阻抗的增大,放大晶体管200的输出电压振幅Vdetout超过了预先确定的阈值时,进行限制,使得成为比通常时的可变增益放大器12的增益低的增益。由此,高频功率放大器10在其输出不产生失真的区域内进行动作。
[0049] 这样,高频功率放大器10不论负载阻抗的变动如何,都能保持良好的线性。由此,可变增益放大器12的输出、即功率放大器的输入信号振幅被控制,使得高频功率放大器处于输出不产生失真的区域,能够抑制负载阻抗变动时的失真发生。
[0050] 根据第一实施例的功率放大器或者本实施例的发送机的结构,能够抑制负载阻抗变动时的失真发生。下面详细说明这一点。
[0051] 图4A示意性地表示功率放大器10的输出级晶体管的集电极电流·集电极电压特性、以及RF大信号放大动作时的集电极端子的电压Vc与集电极电流Ic的关系、即动态负载曲线。由于负载阻抗的实部相当于图4A所示的动态负载曲线的斜率,所以图1的(1)~(3)大致相当于图4A的(1)~(3)。
[0052] 另外,图4B表示集电极电流·集电极电压特性(1)~(3)和对应于此的由集电极交流电压检测部30检测出的Vdetout(1)~(3)的关系。
[0053] 图4A的(2)、(3)中难以产生失真,但在(1)中,在低电压侧动态负载曲线没有描绘出椭圆形而是有所变形。这样,由于动态负载曲线变形,所以如图1的(1)所示,是在比本来的输入输出特性(2)低的输出处产生输出饱和。
[0054] 现在,在图4A的(1)的动态负载曲线中,在低电压侧动态负载曲线变形,并且负载曲线更延伸到更高电压侧。另一方面,在图4A的(3)的情况下,电压限于低电压。因此,认为失真的发生与集电极端的RF电压有关。
[0055] 功率放大器10的输出匹配电路280,通常在50欧姆的阻抗获得匹配。因为在该功率放大器10连接有不同于50欧姆的负载时,产生来自负载的反射,所以输入输出特性如图1的(1)或(3)所示那样,输出产生失真,该情况如前所述。
[0056] 现在,在W-CDMA方式的便携终端中,来自天线的反射通过插入在功率放大器10和天线14之间的部件的损耗而衰减,在功率放大器的输出端子5,输出Rfout的不匹配为电压驻波比(VSWR)大致在4∶1以下。
[0057] 因此,在VSWR=4∶1时,通过电路仿真求出图2所示的放大器10的晶体管200的集电极端的交流电压振幅Vdetout和作为表示W-CDMA信号的失真的指标的相邻信道泄露功率(ACLR),其表示在图5A中。在该仿真中,为了使VSWR为4∶1,负载阻抗设为20欧姆,在负载和功率放大器10之间插入传送线路,表示了来自天线14的反射的相位。通过使传送线路的相位旋转从0°变化到180°,而成为往复0~360°的相位旋转,所有的情况都包含在内。进行了仿真的功率放大器在50欧姆负载时的特性是,电源电压Vcc=3.5V、输入功率为1dBm、输出功率为27.5dBm,此时的ACLR为-42dBc。
[0058] 在图5A中,上方的轨迹是交流电压振幅Vdetout,下方的轨迹是相邻信道泄露功率ACLR。从图5A可知,交流电压振幅的输出Vdetout与相邻信道泄露功率ACLR之间存在很好的相关性。在图5A中用箭头表示的Vdetout<3V的区域中,ACLR即使最差也是-34dBc,处于W-CDMA方式的标准即3GPP标准的ACLR最差值-33dBc以下,将Vdetout=3V作为阈值电压,图3的控制部18对可变增益放大器12进行控制,使得Vdetout<3V,从而实现满足ACLR标准的动作。
[0059] 在本实施例中,基于由第一检测部30得到的信息,根据放大晶体管的输出电压振幅对可变增益放大器12的增益进行控制,所以如图5B所示,在负载阻抗较大时,可变增益放大器12的输出、即功率放大器的输入信号振幅被抑制在小于P1的值P2。因此,功率放大器在P2左侧的输出不产生失真的区域内动作。
[0060] 实际上,在50欧姆匹配的通常动作时的规定输出下,通过在不产生对增益控制放大器12的输出抑制信号的范围内设定阈值电压,在负载阻抗变动时,能进行在更低失真状态下的动作。此情况对在后面所述的其他实施例也是一样。
[0061] 另外,在多级地构成可变增益放大器12的情况下,在负载阻抗较大时,只要分别限制各级的增益,使整体的增益成为预定的值即可。
[0062] 实际做成图2所示的功率放大器10,构成图3示出的发送系统来进行实验,并进行上述阈值的最优化的结果,在VSWR=4∶1以下的负载变动条件下,得到ACLR<-36dBc。
[0063] 另外,根据本实施例,用于确保线性的电路结构简单,该电路结构的追加,对高频功率放大器、或者使用了该高频功率放大器的发送机的尺寸和成本的影响较小。即,在本实施例的结构中,追加到通常的功率放大器10的电路仅是在图2中用附图标记30表示的电压检测部。其中,电压检测用二极管300可以通过晶体管的二极管连接来实现。另外,电压检测用电阻301、电容302都可以用通常的MMIC工序做成。在面向W-CDMA的功率放大器中装入上述电压检测电路30后,MMIC芯片面积的增加在5%以下。
[0064] 如上所述,根据本实施例,检测出图4B所示那样的最末放大级晶体管200的输出端子的交流电压振幅Vdetout,在成为产生失真的条件时,即放大晶体管的输出电压振幅超出了预先确定的阈值时,由于输出抑制功率放大器的输入信号振幅的信号,所以功率放大器的动作区域被限制。由此,不论负载电阻的变动如何,都能保持良好的线性。并且,与通常的功率放大器10相比,MMIC芯片面积的增加部分极小,能够提供小型、低成本的高频功率放大器,以及使用了该高频功率放大器的移动体通信终端。
[0065] <实施例3>
[0066] 用图6A、图6B说明本发明的实施例3。该实施例是将图2或者图3所示的高频功率放大器应用于W-CDMA方式的移动体通信终端的例子。
[0067] 图6A的移动体通信终端具有包含能够进行W-CDMA信号的调制和解调的调制解调电路、并被半导体集成电路化了的高频信号处理电路。即,由电子器件600、高频功率放大器(功率模块)700、前端模块800构成。
[0068] 相当于图3的基带控制电路(基带IC)的电子器件600,将能够进行W-CDMA信号的调制和解调的调制解调电路、基于发送数据(基带信号)生成I、Q信号或处理从接收信号抽取出的I、Q信号的基带电路610、从发送信号中除去高次谐波成分的带通滤波器(BPF1)650、从接收信号中除去杂波的带通滤波器(BPF2)651等安装在1个封装中。
[0069] 该实施例的电子器件600,将包含处理高频信号的终端控制部620的基带电路610、接收部630和发送部640、放大调制后的发送信号的发送可变增益放大器(GCA)611和661、向上变换(up-converter)放大了的发送信号的混频器(Tx-MIX)652、放大接收信号的低噪声放大器(LNA)612、向下变换(down-converter)放大了的接收信号混频器(Rx-MIX)653等,形成在一个半导体芯片上。
[0070] 进而,在电子器件600中设置有保存输出控制电流时所参照的表数据的非易失性存储器613,以及对从该存储器中读出、并由基带电路610的终端控制部620处理了的数据进行DA转换,作为模拟电流进行输出的DA转换电路614、615。
[0071] 高频功率放大器(功率模块)700,将放大高频信号的高频功率放大电路710、匹配电路714、A/D转换器680、偏置控制电路720、集电极交流电压检测部(第一检测部)730等安装在一个陶瓷基板上。
[0072] 无线通信系统还包括:设置在前端模块800中的发送接收的切换开关(DUPLEXER)810;检测出从功率模块700输出的发送信号的输出电平的、由耦合器构成的输出检测电路(PDT)740;除去包含在发送信号中的高次谐波等噪声的滤波器(LPF)830;基于检测电路740的输出检测信号和来自基带电路610的功率控制信号PCS,生成提供给电子器件600内的发送可变增益放大器(GCA)611和661的输出控制信号Vapc的自动功率控制电路(APC电路)670等。
[0073] 在该实施例的无线通信系统中,提供给功率模块700内的偏置电路720的控制电流和模式控制信号,由电子器件600的基带电路610供给。另外,输入到偏置电路720内的电压-电流变换电路和补偿电流施加电路的基准电压,也由基带电路610供给。
[0074] 在该实施例中,在通过从基带电路610供给的控制电流Ic1、Ic2等,使功率放大器710的初级放大用晶体管和末级放大用晶体管的增益保持恒定的状态下,从控制输出电平的自动功率控制电路670输出的输出控制信号被提供给电子器件600内的发送可变增益放大器611和661,发送可变增益放大器611和661的增益由输出控制信号Vapc控制。由此,进行控制使得功率放大器710的输出功率发生变化。此外,通过使向功率放大器710提供偏置的偏置电路720具有电源补偿功能,即使因电池的充电和消耗,电源电压发生变化,也能使功率放大器710的增益几乎保持恒定,接收带噪声特性可以满足标准。另外,作为根据从基站供给的输出要求电平,生成向自动功率控制电路670提供的功率控制信号PCS的基础的表数据,也保存在非易失性存储器613中。
[0075] 在该实施例中,通过移动体通信终端的天线14接收来自基站的下行接收信号,并通过发送接收分离滤波器(DUPLEXER)810输入到低噪声放大器(LNA)612之后,经由带通滤波器651,在混频器653中进行降频,由接收可变增益放大器调整为所希望的电平之后,变换为接收基带信号。该接收基带信号在接收部630中被抽出。另外,接收基带信号被分支发送到增益控制部621,在此生成使接收基带信号成为所希望的一定电平的接收增益控制信号,来控制接收可变增益放大器。
[0076] 在发送部640中生成的发送基带信号,通过正交调制器等被变换为发送中间频率,在由可变增益放大器611调整了发送电平之后,通过混频器652、基带滤波器650等,由功率放大器710放大为所希望的发送输出之后,通过定向耦合器、发送接收分离滤波器(DUPLEXER)810,作为上行发送信号从天线14发射出去。另外,控制可变增益放大器611和661的增益的发送增益控制信号Va1和Va2,经由限制器622供给到发送可变增益放大器
611和661,进行控制使得发送可变增益放大器611和661的增益不过大。限制值由终端控制部620来设定。
[0077] 作为发送可变增益放大器611和661中的发送电平的调整,为了保证基站的上行信号线路的品质,使得在移动体通信终端处于远离基站的位置时,移动体通信终端以较大的功率发送,在离基站较近时减小发送功率。基站监视上行线路的信号的品质,如果有恶化趋势,则在下行线路信号中进行指示,使移动体通信终端的发送功率提高,如果上行线路的信号品质在预定的品质以上,则进行指示,使移动体通信终端的发送功率降低。移动体通信终端在接收部630中抽取出这些信息,发送到终端控制部620的增益控制部621。另外,在集电极交流电压检测部730中检测出的可变增益放大器611和661的增益控制信息,也被发送到增益控制部621。增益控制部621使用这些信息生成发送增益控制信号Va。
[0078] 发送增益控制信号Va1和Va2控制发送可变增益放大器611和661的增益。发送增益控制信号Va1和Va2经由限制器622供给到发送可变增益放大器611和661,进行控制使得发送可变增益放大器611和661的增益不过大。这是为了避免:在基站要求的上行发送功率过大时,在功率放大器710等中发送信号失真,由此,产生向附近频率的频谱扩展,而成为向该频率的干扰。
[0079] 因此,限制器622具有图6B所示的输入输出特性。例如,基于信道频率信息等基本信息,对于预定值以上的限制输入,进行限制在限制值(=limit-1)的限制动作。该限制值决定移动体通信终端的最大发送功率。
[0080] 在本实施例中,除上述基本信息外,可变增益放大器611和661的增益控制信息也被发送到终端控制部620的增益控制部621。由此,即使是在上述限制值(=limit-1)以内,在由集电极交流电压检测部730检测出的Vdetout超过了预定值时,也将限制值变更为更小的值(=limit-2),抑制最大发送功率。
[0081] 根据本实施例,不论负载阻抗的变动如何,都能够保持良好的线性,并且容易小型化的W-CDMA方式的移动体通信终端。
[0082] <实施例4>
[0083] 接着,使用图7~图10说明本发明实施例4的结构。图7的功率放大器10是在图2的功率放大器10中进行如下变更的功率放大器:将集电极交流电压振幅检测电路(第一检测部)30的输出和电源电压Vcc输入到信号处理电路(Signal Processor)305,并将该信号处理电路305的信号处理结果作为交流电压振幅的输出Vdetout来输出。
[0084] 图8是表示应用了图7的功率放大器10的W-CDMA方式的便携终端中的发送机的方块结构例的图。功率放大器10的高频信号Rfin的输入端子4与外部的可变增益放大器12连接,高频信号Rfout的输出端子5与天线14连接。另外,与电源电压Vcc连接的电源端子260经由A/D转换器161与控制电路(基带IC)18连接。进而,从功率放大器10的集电极交流电压检测部30的输出端子6输出的交流电压振幅输出Vdetout经由A/D转换器
162输入到控制电路(基带IC)18。
[0085] 向功率放大器10输入载波被相位调制了的高频信号Rfin,被放大后的高频信号RFout驱动天线14进行发送。控制电路18根据电源电压Vcc和交流电压振幅的输出Vdetout,控制可变增益放大器12的增益。
[0086] 如图9所示,存在如下情况:即使是在功率放大器10的通常动作时的电源电压时不产生失真的条件下,当电源电压Vcc下降时,也产生失真。图10是用功率放大器10的输入·输出特性表示该情况的图。在电源电压下降的同时饱和输出也下降,成为更低的输出,且失去线性,产生失真。
[0087] 在本实施例中,为了抑制因该电源电压下降而引起的失真发生,通过对电源电压和集电极交流电压振幅进行信号处理,控制可变增益放大器12,使得可变增益放大器的增益抑制阈值根据电源电压的下降而变化,使功率放大器10的输入信号振幅在预定值以下。由此,抑制电源电压下降时的失真的发生。另外,由于是偏置电流根据功率放大器的RF输入信号Rfin的振幅而变化的自偏置方式,所以当RF输入信号的振幅被减小时,偏置电流也被减小。由此,更加确保线性动作区域。
[0088] 作为比较例,将上述阈值电压固定在3V,使取得了图5A的特性的放大器10动作,在从标准的3.5V开始降低电源电压的情况下,将电源电压下降到3.2V时,ACLR的最差值超过-33dBc,不满足3GPP标准。
[0089] 另一方面,在使本实施例的信号处理电路最优化时,即使电源电压下降到2.8V,ACLR的最差值也止于-36dBc,相对于3GPP标准,能够取得极限值。
[0090] <实施例5>
[0091] 用图11~图12说明作为本发明的第五实施例的高频功率放大器。如图11所示,在第五实施例中,除图2所示的集电极交流电压检测部(第一检测部)30外,还具有第二检测部40。即,作为第二检测部40,在输出匹配电路中设置定向耦合器306,由检测电路40检测其输出信号,作为Cplout从端子403输出。第二检测部40由电压检测用二极管400、电压检测用电阻401、电压检测用电容元件402构成。
[0092] 图12是表示应用了图11的功率放大器10的W-CDMA方式的便携终端中的发送机的方块结构例的图。功率放大器10的信号输入端子Rfin4与外部的可变增益放大器12连接,输出端子Rfout5与天线14连接。另外,从功率放大器10的集电极交流电压检测部30的输出端子6输出的交流电压振幅输出Vdetout经由A/D转换器162与控制电路(基带IC)18连接。进而,输出匹配电路的定向耦合器306的输出信号Cplout的端子403,作为第二检测部40,经由A/D转换器163与控制电路(基带IC)18连接。
[0093] 向功率放大器10输入按照想发送的信息对载波进行了相位调制的高频信号RFin,被放大了的高频信号RFout驱动天线14进行发送。控制电路18根据电源电压Vcc和交流电压振幅的输出Vdetout,控制可变增益放大器12的增益。
[0094] 如图5A所示,伴随于信号负载阻抗变动的放大器的特性变动,相对于负载阻抗的相位为几乎对称的形状。在图5A中,其对称轴为1/2相位的值,为30°和120°。因此,得到用于由第二检测部检测从功率放大器10向天线14的行波的功率的、来自定向耦合器306的输出Cplout,并得到因上述行波和来自天线14的反射波的重叠而获得的、对集电极端子的交流电压进行检波的第一检测部的输出Vdetout的信息,由此,能够知道行波振幅、反射波的振幅以及相位。因此,通过处理这些信号,不仅达到本发明的本来目的,即降低放大器的失真,还能实现更高级的功能。
[0095] 例如,在图4A的(3)的状态下,因负载阻抗的变动,末级晶体管200的集电极电流变得过大,但是如果使用本实施例的电路,就可以从行波输出、反射波的反射量及其相位的信息,确定集电极电流变得过大这一状况,此时降低可变增益放大器12的增益,抑制过大电流流过。另外,由于通过这些信息能够检测出来自天线14的反射量,所以也可以知道来自天线的辐射。由此,能够进行如下控制:在不发生失真的范围内,即使天线周围的状况发生变化,也使来自天线的辐射量保持恒定,从而降低因天线周围的状况的变化使辐射输出发生变动而引起的线路被切断的可能性。
[0096] <实施例6>
[0097] 图13~图14表示本发明第六实施例的高频放大器。
[0098] 图13所示电路图的高频放大器,是能够对第四实施例所示的电源电压输出和第五实施例所示的使用了定向耦合器的行波输出这两者进行检测的高频放大器,兼有第四实施例和第五实施例的特征。
[0099] 另外,图14是使用了本实施例的功率放大器的发送机的结构框图。即,对应于电源电压的变动,使用能抑制失真的最佳的阈值进行可变增益放大器的增益控制,从而保证信号品质地使终端的输出为最大,并通过利用第二检测部的信息,在失真不成为问题的低输出时,即使在天线中产生了反射的情况下,也使来自天线的辐射输出保持恒定,能够提高终端的线路连接的稳定性
[0100] 根据以上的各实施例,可以提供一种不论负载阻抗的变动如何,都保持良好的线性,并且容易进行小型化的高频功率放大器,以及使用了该高频功率放大器的发送机。
[0101] 此外,显然,将实施例4至实施例6所示的高频放大器和发送机适用于图6所示的W-CDMA方式等的移动体通信终端,也能够取得同样的效果。
[0102] 另外,本发明也同样适用于使用了GSM方式、TDMA方式的便携电话网的数据传送技术之一,即EDGE(Enhanced Data GSMEnvironment:增强型数据GSM环境)方式。
QQ群二维码
意见反馈