一种轨迹修正装置

申请号 CN201280042929.X 申请日 2012-09-12 公开(公告)号 CN103782562A 公开(公告)日 2014-05-07
申请人 亚琛工业大学; 发明人 俊清·关; 雷纳托·内格拉;
摘要 本 发明 公开了一种轨迹修正装置;用于数字传输的发送装置中,其中,待发送的 信号 被数字以及复合调制,当从第一信号状态变化到第二信号状态时产生了轨迹,其特征在于,所述的装置包括:第一输入(I1;I3)和第二输入(I2,I4):用于接收待发送的复合信号分量;第一输出(O1):用于提供待发送的所修正后信号的振幅分量;第二输出(O2):用于提供待发送的所修正后信号的 相位 分量,以及一个处理单元:所述处理单元基于所接收的待发送信号的分量,提供修正后的分量,其中,通过原点附近或 接触 原点的轨迹被修正,所修正的轨迹相距原点的距离更远。
权利要求

1.一种轨迹修正装置,用于数字传输的发送装置中,其中,待发送的信号被数字以及复合调制,当从第一信号状态变化到第二信号状态时产生了轨迹,其特征在于,所述的装置包括:
第一输入(I1;I3)和第二输入(I2,I4):用于接收待发送的复合信号分量;
第一输出(O1):用于提供待发送的所修正后信号的振幅分量;
第二输出(O2):用于提供待发送的所修正后信号的相位分量,以及
一个处理单元:所述处理单元基于所接收的待发送信号的分量,提供修正后的分量,其中,通过原点附近或接触原点的轨迹被修正,所修正的轨迹相距原点距离更远。
2.如权利要求1所述的装置,其特征在于,所述修正后的轨迹不接触在所述原点周围形成的近似圆形的区域。
3.如前述权利要求中任一项所述的装置,其特征在于,所述的处理单元使用一个或多个所接收分量的信号状态,用于轨迹修正计算。
4.如前述权利要求中任一项所述的装置,其特征在于,所述修正后的轨迹在所述第一和第二信号状态区域中是不变的。
5.如前述权利要求中任一项所述的装置,其特征在于,两个相邻的信号状态以及最小振幅之间的最大相位变化是受限的。
6.如权利要求5所述的装置,其特征在于,基于边界条件,动态地确定需要的所述信号状态的数目,使所述修正后的轨迹尽可能接近原始轨迹。
7.如前述权利要求中任一项所述的装置,其特征在于,从所述待发送的信号振幅分量和待发送的信号相位分量获得正交分量。
8.如前述权利要求1-4中任一项所述的装置,其特征在于,在所述第一输入和所述第二输入(I1、I2;I3、I4)处直接收到正交分量,待发送信号的振幅分量和相位分量是从极性转换获得。
9.如前述权利要求中任一项所述的装置,其特征在于,所述处理单元为FPGA、DSP、ASIC、微控制器微处理器
10.如前述权利要求中任一项所述的装置,其特征在于,所述装置设置应用在无线或有线数字传输系统中。

说明书全文

一种轨迹修正装置

技术领域

[0001] 本发明涉及一种轨迹修正装置是一种用于修正轨迹的装置。

背景技术

[0002] 许多数据传输系统在数据传输期间都使用复合调制信号。尤其是在无线通信领域中,存在发展这样的装置的趋势,即,该装置被设计成可以操作几种传输标准,例如3G以及LTE或者是未来的4G。这种趋势的一个结果是传输装置向着数字侧增加移位。然而,另一方面,应当注意的是,朝着CMOS技术以及到具有65nm及以下的结构的技术转变具有不利的高频率特性。
[0003] 首先,基于输入DATA数据信号适当地生成这些复合调制信号,随后将其放大到所需的信号电平,使得所放大的调制信号随后可以通过适当的无线或有线传输介质发送到接收器。如果做出从一个复合信号状态到另一个复合信号状态的切换,那么该信号完成了一个轨迹。
[0004] 使用复合调制信号的原因是它们所增加的频谱效率。然而,这些调制技术的一个特征是非常高的信号的峰均功率比(PAPR)。因此,必须向这些传输系统提供放大器,这些传输系统具有用于峰值信号的必要的功率储备,而大部分时间里只需要平均功率。然而,一般地,在部分负荷的范围内,放大器的效率被实质性地降低。
[0005] 然而,这种较低的能量效率是不利的,这是因为能量被不必要地消耗并且热量不必要地产生。这两种结果在便携式装置中是特别不利的,这是因为它们会影响电池寿命,同时还需要更有效的冷却装置。
[0006] 为此提供一种补救办法以及同时实现放大器较好准的效率以及良好的线性的一种可能的方式就是引入所谓的极性的技术。在这种技术中,其中,图1示出了一种示例性表示,通过使用高频包络信号来调制放大器V的供电电压。在这个过程中,复信号的数字正交分量I、Q被转换成它们的极性等同的分量A、Phi。该振幅分量A在包络放大器中被放大并且其可以调制放大器级V的供电电压,同时相位分量Phi在数字至RF相位转换器DtP中被转换并且被用于调制高频信号的载波,随后使其作为输入信号对放大器V可用。这种布置使得放大器在大部分时间里能够在接近或是处于饱和的状态下进行工作,从而改善了能量效率。
[0007] 然而,应当注意的是,正交分量I、Q到极性等同分量A、Phi的转换是非线性的。因此,振幅和相位的带宽被增加,例如增大4至10倍。因此,该包络放大器和相位转换器必须能够处理明显更大的带宽。对于当今的无线传输系统标准来说,这将意味着几百MHz的带宽。这种放大器将是既昂贵又难以制造的。整个带宽上的线性将会产生特别的问题。
[0008] 其缺点还在于,尤其在低振幅下线性将是非常低的,这是因为调相载波信号在低振幅下漂移,因此产生低的放大器供电电压。
[0009] 尽管原则上可以认为,将星座的低振幅以及快速相位变化用作通过原点的交叉的指示或需要校正的到达原点的方法,然后向其加入“校正的”偏移向量,这种方法将是相当粗糙的并且将检测到比所需多得多的点,这将导致明显的失真。
[0010] 原则上,也可以使用振幅递增的圆相切偏移冲孔算法,以便于基于两个连续星座来避免原点周围的预定的圆内的交叉。然而,这种方法将无法解决所增加的相位变化的带宽的问题,也不会产生这样的效果,即,其在带内失真和带外辐射方面甚至能够满足更严格的要求。因为这种方法在大多数情况下需要重复执行,所以它通常将不允许实时处理并且将需要大量的处理功率和存储量。
[0011] 也可以添加高斯形状的信号或可以使用汉宁窗噪声整形器,以便消除位于某一阈值以下的信号,从而防止频谱散射。然而,其伴有严重的带内失真,这些失真可能会使实际信号不可用。而且,这种方法不适合解决关于快速相位变化的问题,因此也不适于解决关于相位信号的带宽的问题。

发明内容

[0012] 因此,本发明的目的在于提供一种弥补现有技术中一个或多个已知的缺点的装置和方法。
[0013] 这种目的可以通过一种轨迹修正装置来实现,该装置用于数字传输的发送装置中,其中,待发送的信号被复合调制,并且当从第一信号状态到第二信号状态的变化发生时,产生轨迹;该装置包括第一输入和第二输入,以用于接收待发送的复合信号的分量。而且,该装置还具有第一输出,用于提供待发送的修正后的信号振幅分量,其还具有第二输出,用于提供待发送的修正后的信号相位分量,以及一个处理单元,该处理单元基于所接收的待发送的信号的分量来提供修正后的分量,其中,通过原点附近或接触原点的轨迹被修正,使得修正后的轨迹相距原点距离更远。
[0014] 根据本发明的另外的实施例构成了从属权利要求的主题。
[0015] 在下文中,本发明将参照附图作进一步的详细说明:

附图说明

[0016] 图1示出了现有技术中极性发射机的简化框图
[0017] 图2示出了根据本发明的第一实施例的极性发射机的简化框图;
[0018] 图3示出了根据本发明的第二实施例的极性发射机的简化框图;
[0019] 图4示出了本发明的一个方面的简化框图;
[0020] 图5示出了信号的向量图;
[0021] 图6示出了处于相位0和π之间的相变统计;
[0022] 图7示出了信号振幅统计;
[0023] 图8示出了复合调制的星座;
[0024] 图9a、9b示出了带信号轨迹的复合调制的星座;
[0025] 图10示出了在使用本发明期间示例性的信号轨迹;
[0026] 图11示出了在使用本发明期间示例性的解调的星座;
[0027] 图12示出了用于20MHz下LTE上行链路的标准化的功率密度频谱模板;
[0028] 图13示出了根据本发明一个实施例的简化流程图
[0029] 图14示出了复合正交分量和极坐标表示之间的数学关系式,以及
[0030] 图15示出了三个示例性信号状态/星座。

具体实施方式

[0031] 图1示出了现有技术中数字极性发射机的简化框图;这种发射机接收待编码的输入信号DATA,该信号DATA在调制器MOD中被转换成复合信号分量、同相分量I和正交分量Q。通常,对于某一码片速率fc到达的信道编码器的数据DATA进行处理,并且在调制器MOD中对其进行调制。插入的样本保持装置S&H对已调制的信号I和Q进行扫描,其中,低的带外噪声是通过以扫描频率fs进行的过采样滤波实现的。随后,以这种方式得到的复合信号I、Q到达转换器RtP,该转换器根据分量I、Q生成相应的极坐标A、Phi。对于这两种关系之间的数学关系式参见图14。现在,该振幅分量A被馈送到包络放大器EA,同时相位分量Phi被馈送到数字至HF相位转换器DtP。接下来,放大器PA放大从数字至HF相位转换器DtP中接收的驱动相位信号,其中,放大器PA的输入电压可以通过包络放大器EA来变得可用。随后,也可以发送当前已放大的信号以便于在频带滤波器BF中进行频带滤波,以便于限制实际可用的频带的频谱分量的外部。随后,将已调制的高频信号馈送到天线ANT或到其它适合的介质,例如,电缆
[0032] 图5示出了扫描频率fs下产生的已调制信号的轨迹。此处可以观察到许多通过原点或处于原点附近(接近零的交叉)的交叉。这些零交叉或者甚至是接近零的交叉既具有较低的振幅又在π的区域中具有部分快速的相位变化(类似于极坐标表示中原点处的反射)。为了举例,使用图15中的符号同样将其示出。从信号状态Z1到信号状态Z2的变化没有引起低振幅的变化,并且,另外,从信号状态Z1到信号状态Z3的变化导致了π的最大的相位变化。
[0033] 然而,如上所述,低振幅导致线性很差以及放大器PA的一部分效率很低,同时强烈的相位变化使该数字至HF转换器DtP加载。为了定量相位变化,使用频率偏差其中,此处的θ代表相位,Ts根据扫描频率fs导出。据此,接下来,可得出最大频率偏差应该是max0≤ΔθsπΔf=fs/2。
[0034] 在现代的高比特率数据传输系统中,这种最大的频率偏差可达数百MHz。这导致在扫描周期内在严格的相位噪声要求下以及设置范围内,在实现高频振荡器的调制方面会出现上述困难。
[0035] 图6示出了在相邻信号状态之间的相位变化的概率密度函数(PDF),其中,示出了0和2π之间的相位变化。图7示出了在相邻信号状态之间振幅变化的概率密度函数(PDF)。尽管,从统计学上来说,快速相位变化以及低振幅在统计学上相当少见,不仅是这些失真的信号状态,而且相邻的信号状态也是如此,使得误差向量振幅(EVM)以及比特误差率(BER)大得不可接受。
[0036] 接下来,图8示出了原始的星座而不考虑任何误差向量,也就是说,该图示仅示出了在调制器MOD的输出处出现的信号状态。在使用OFDM(OFDM-orthogonal frequency division multiplexing,正交频分多路复用)调制的20-MHz单载波的实例中进一步调制之后,例如,特征,例如,对于LTE上行链路中的SCFDMA信道来说,其可获得复信号的轨迹,例如图9a中所示的。为了清楚起见,在此处添加两个圆KI、KO,它们用于进一步解释本发明。
[0037] 外圆KO表示所需的最大振幅,其使得该放大器PA仍然在线性范围内并且在接近饱和以及饱和状态下进行操作。内圆KI表示所需的最小振幅,因此放大器PA仍然在线性范围内进行操作。另外,从图9b示出了图9a中的一部分,还示出了具有很大相位化的信号状态,这种相位变化位于所表示的阈值Δθmax的上方。此处可以清楚地看出,强烈的相位变化不仅发生在直接相邻的星座,而且发生在距离更远的星座。
[0038] 本发明的目的是修正轨迹,使得所修正的轨迹被定位在内圆KI和外圆KO之间,这样做的结果是,最大相位变化受到限制并且最小振幅也总是可用的。换句话说,所修正的振幅将处于[Rmin,Rmax]之间,其中Rmin对应于该内圆KI的振幅并且Rmax对应于外圆K0的振幅。
[0039] 为此,在此提供的本发明的方法和本发明的装置使用值Rmin,Rmax,Δθmax作为边界条件,并且将在某一扫描频率fs下发生的轨迹的点修正成满足边界条件的点。这种修正的结果示于图10中。如图中所示的,所有的修正后的轨迹都满足有关振幅的边界条件,也就是说修正后的轨迹所有的点都具有位于[Rmin,Rmax]内部的半径。一般而言,可以将内圆表征为空穴,而外圆可被表征为边界圆。而且,在此提供的本发明的方法和本发明的装置还消除了图9b中所示的相位变化,该相位变化大于Δθmax,因此将导致频率偏差Δfmax处于所述阈值之上。
[0040] 在边界条件的基础上进行的轨迹的修改也影响到了产生的EVM。一个容许的EVM范围对于每个传输系统来说是指定的。据此,必须选择边界条件对修改产生的影响。例如,图11示出了解调的星座图,其带有约3.4%的EVM,因此,达到8%的LTE系统的容许值很容易实现。因此,为同样会对EVM产生影响的传输系统的其它部件留下储备。
[0041] 图12又示出了轨迹修改后复合基带信号的标准化功率谱密度。此处,虚线示出了用于带有20MHz带宽的LTE上行链路的频谱模板。可以清楚地看到,也可通过这种方法来保证带外发射,这是因为相应的功率密度位于该模板以下,在10MHz的偏移频率下约10dB的储备仍然是可用的,甚至在20MHz的偏移频率下5dB仍然是可用的。这种储备是为传输系统的其它部件预留的,例如影响线性的那些部件。
[0042] 因此,本发明并不是改变调制方案本身,而是被设计成能够被引入到任意系统中-甚至是在事后。合适的系统是处理复合值信号的传输系统,比如说,例如PWPM,ΔΣ,LINC和极性发射机。此外,该方法非常灵活,因此,它可在很宽范围的处理阶段以及在很宽的频率范围内被引入。产生的EVM可以适于通过边界条件的适当选择。
[0043] 该方法将在下面进一步进行说明。为此,首先将假设待修正的信号是,并且边界条件是Rmin,Rmax,Δθmax。修正之后,这些信号被表示为
[0044] 所述修改是基于这样的标准,即,其提供在最佳情况下的最小的EVM:
[0045]
[0046] 通过应用这个标准,可以使失真最小化,而同时可以遵守边界条件。
[0047] 为了减小这种条件的复杂性以及同时可以在低的计算负荷和高效率下确保进行实时处理,并且为了使满足该准则所导致的折衷最小化,可以降低复杂性。
[0048] 图13示出了根据本发明的一个实施例的轨迹修正的简化的流程图。首先,在步骤100中,参数被配置为Rmin,Rmax,Δθmax。随后可以获得2个或更多信号点pn的值的数量。
例如,这些值是极坐标A、Phi。在步骤300[sic;“200”的表观误差-tr.]中检查每个信号点以查看该振幅是否在范围Rmin,Rmax内。如果不在,那么在步骤300中对相应的幅值进行处理,即,或者将其升高到Rmin或者将其降低到Rmax。随后,将修正后的振幅值转移到移位寄存器FIFO。如果振幅处于范围Rmin,Rmax内,那么幅值被直接转移到移位寄存器FIFO。另外,2个或更多信号点pn的相应的相位值被读入移位寄存器FIFO。
[0049] 一旦来自两个相邻信号点的相位值是已知的,就可以确定相位变化。现在,可以在步骤400中比较这种相位变化以查看是否已经超出最大相位变化Δθmax。在该过程中,也可以基于所接收的同相以及正交分量I、Q来确定该相位变化。如果该相位变化大于预定阈值,那么必须修正信号点。为此,在步骤500中确定必须处理多少信号点,即,有多少连续的信号点导致相位变化超出限制。鉴于待处理的点的数目m,该相位值在移位寄存器被读出并且在步骤600中被处理,其中,可保证低至最小的EVM。
[0050] 随后所修正的相位值在相应的位置上再次被读入移位寄存器。随后,以这种方式,形成修正后的轨迹的所修正的信号点可以被输出。已经很清楚,待修正的信号点的数量可以不同,其中,此处提供了适当尺寸的移位寄存器FIFO。换句话说,不仅可以使用两个相邻信号点,而且可以使用大量的信号点。
[0051] 既然可以考虑多于两个的相邻信号点,那么以这种方式可以防止失真,这是因为目前一种相位变化可以分布到多个信号点。然而,由于不需要任何类型的迭代,该方法是快速的并且能实现实时处理.
[0052] 例如,本发明可以以硬件软件、或硬件与软件的组合来实施。硬件解决方案的实施例在图2和3中示出。
[0053] 其中,图1中[示出]的装置是一种用于修正轨迹T-MOD的装置,其用于数字传输中的发送装置,其中,对待发送的信号进行数字以及复合调制,并且当从第一信号状态变化到第二信号状态时产生了轨迹。
[0054] 同样在图4中示出的用于修正轨迹T-MOD的这种装置具有第一输入I1,所述I1用于接收待发送的信号的振幅分量A,还具有第二输入I2,所述I2用于接收待发送的信号的相位分量Phi。可选择地或者另外,一种用于修正轨迹T-MOD的装置具有第三和第四输入I3、I4,用于接收待发送的信号的正交分量I、Q。换句话说,该装置至少有两个输入,以便于接收复合信号的表示,即,同相分量I和正交分量Q或振幅分量A和相位分量Phi。无需在这一点上进一步研究,相应的振幅分量A和相位分量Phi每个都可以根据同相分量I和正交分量Q进行计算,相反地,同相分量I和正交分量Q又可以根据每个振幅分量A和相位分量Phi计算。而且,一种用于修正轨迹T-MOD的装置具有第一输出O1,所述O1用于提供待发送的所修正的信号的振幅分量,其还具有第二输出O2,所述O2用于提供待发送的所修改的信号的相位分量,以及还具有一个处理单元,所述处理单元基于所接收的待发送信号的分量,提供修正后的分量,其中,在原点附近相交或者接触原点的轨迹被修正,所修正的轨迹在相距原点更远距离相交。
[0055] 基于所接收的振幅分量和相位分量和/或所接收的同相和正交分量,可以决定是否需要修正轨迹。
[0056] 例如,按照这种方式,根据本发明的适当的装置可以仅仅接收作为输入信号的同相和正交分量I、Q,并且可以根据所接收到的分量值来确定必须进行修正。随后,在振幅分量A和相位分量Phi极性转换之前或振幅分量和相位分量极性转换之后,可以进行修正。
[0057] 另一方面,也可以只接收作为输入信号的振幅分量和相位分量A、Phi,随后,可以确定根据所接收到的分量来确定是否需要修改,或者是首先进行到同相和正交分量的转换,然后基于这些分量来确定进行修正的必要性。
[0058] 通常,不管怎样,两种表示的数字复合信号都可作为输入信号,因此可以基于接收到的振幅分量A,以一种快速且节省存储器的方式通过参考振幅来做出决定,同时可以基于同相和正交分量I、Q,以一种快速且节省存储器的方式来执行相位条件,以及同时又根据接收到的振幅和相位分量A、Phi,进行实际修正。
[0059] 在本发明的一个优选实施例中,对轨迹进行修正,使得修正后的轨迹不接触在原点周围形成的近似圆形的区域KI。因此,激励相位信号不会发生漂移,从而使失真最小化。
[0060] 此外,在本发明的优选实施例中,所述处理单元进一步建立这样的轨迹,使得在远距离处引导穿过原点的轨迹被修正,以使所修正的轨迹在距离原点较近的距离处通过。另外,设计本发明的优选实施例,使得所修正的轨迹不离开原点周围的近似圆形的区域。因此,轨迹保留在外圆K0内部,使得放大器PA在接近饱和或恰好饱和的状态下进行工作,从而防止非线性。
[0061] 在本发明的一个实施例中,该实施例在图3中示出,一种用于根据极性分量IQR产生正交分量I、Q的装置被设置在用于修正轨迹T-MOD的装置的上游。随后,从待发送信号的振幅分量A以及待发送信号的相位分量Phi来获得正交分量I、Q。该装置IQR的供给使得即使在无法直接使用正交分量I、Q的发射机中使用装置T-MOD成为可能。
[0062] 作为对此的替代,用于修正轨迹T-MOD的装置在所述第一输入和所述第二输入(I1、I2;I3、I4)处直接接收正交分量I、Q,待发送的信号的振幅分量A和相位分量Phi是从极性转换RtP获得。
[0063] 在本发明的一个实施例中,处理单元为FPGA、DSP、ASIC、微控制器微处理器等等。
[0064] 在本发明的另一个实施例中,该装置旨在用于无线数字传输系统中,例如3G、LTE、4G、WiMAX、DVB-T、DVB-H、DVB-S、DVB-S2、DMB、DAB、DAB+,或有线数字传输系统,例如xDSL系统。
[0065] 在本发明的又一个实施例中,处理单元使用两个或多个所接收的分量的信号状态来计算所修正的轨迹。因此,可以进一步最小化失真。
[0066] 在本发明的再一个实施例中,第一和第二信号状态的区域中所修改的轨迹的是基本不变的,使得误差向量幅度EVM保持较小,从而在传输系统的系统参数内实现可靠的检测。
[0067] 在本发明的再一个实施例中,两个相邻的信号状态和最小振幅之间的最大相位变化是受限的。
[0068] 根据本发明的另一个实施例,基于边界条件,动态地确定需要的所述信号状态的数目,使所述修正后的轨迹尽可能接近原始轨迹。因此,可以防止失真。
[0069] 根据再一个实施例,对于所修改的信号状态不进行同样地移位,但优选地是,仅修改那些与原点距离较短的信号状态,因此再次最小化失真。
[0070] 本发明使极坐标转换的带宽扩展最小化和/或通过从一个信号状态到另一个信号状态的向量轨迹的修改来实现最小振幅。
[0071] 此处提供的方法和装置可实现轨迹的精确处理。例如,本发明仅能够实现对具有零交叉的轨迹或者很接近地经过原点的轨迹进行处理,从而使得即使在修改轨迹后,甚至是对应于原点附近的星座的信号也可以被可靠地进行检测。
[0072] 而且,提供的本发明也使得将几个信号视作修改的基础成为可能。因此,以简单的方法不能实现的方式可以满足在带内失真和带外辐射方面甚至更严格的要求。
[0073] 而且,本发明就能够以硬件或软件或硬件和软件的组合来实现成本有效的且实时的实施。
[0074] 此外,对于新计算出的信号状态,可仅修改那些更靠近原点的信号状态,以便于使失真最小化,而不是以相同的方式修改所有的受影响的状态。为此,在本发明的特别有利的实施例中,首先在步骤500中确定受影响的状态的数目。随后,对于每一连续对的信号点/状态来说,要确定所需的相位变化并且在两种状态(步骤600)之间分配所需的相位变化,其中这两个状态没有受到同样的影响。换句话说,所需的相位变化是以加权的方式基于该状态距离原点的距离进行分布的,以使位于较靠近原点的位置的状态比距离原点较远的状态经受了更大的相位变化。该加权可以用不同方式实现,例如随着线性减少或随着距离d的函数减少,例如, 等等。这样,优选地是,应当同时确保既满足所计算出的相位变化,又使所修改的状态和原始状态之间的距离被最小化。此外,还可以考虑,新计算出的状态与原点的距离应该大于最小值。
QQ群二维码
意见反馈