具有驱动电机的车辆

申请号 CN201480008828.X 申请日 2014-03-12 公开(公告)号 CN104995055B 公开(公告)日 2017-10-13
申请人 宝马股份公司; 发明人 U·坎泽弗; I·古斯耶夫;
摘要 本 发明 涉及一种车辆,其包括驱动 电机 、 制动 装置和挡位选择装置,其中,所述电机构造为 电流 激励式同步电机,该车辆具有一控制单元并且所述控制单元配置于所述电流激励式同步电机,所述控制单元对 转子 的励磁电流进行调节,根据在所述挡位选择装置上调定的选用挡位实施对励磁电流的调节,并且根据所述制动装置的制动 踏板 的 位置 实施对励磁电流的调节。
权利要求

1.车辆,其包括驱动电机制动装置和挡位选择装置,
其特征在于:
-所述电机构造为电流激励式同步电机,
-该车辆具有一控制单元并且所述控制单元配置于所述电流激励式同步电机,-能够通过所述控制单元对转子的励磁电流进行调节,
-根据在所述挡位选择装置上调定的选用挡位实施对励磁电流的调节,并且-根据所述制动装置的制动踏板位置实施对励磁电流的调节。
2.如权利要求1所述的车辆,其特征在于:
-所述挡位选择装置具有可调定的用于驻车的第一选用挡位,
-所述挡位选择装置具有可调定的用于断开车轮合联接的第二选用挡位,-所述挡位选择装置具有可调定的用于车辆前进行驶运行的第三选用挡位,-所述挡位选择装置具有可调定的用于车辆倒车行驶运行的第四选用挡位,并且-能够将关于调定的选用挡位的信息传输给所述控制单元。
3.如权利要求2所述的车辆,其特征在于:
-该车辆包括一测量装置,
-所述测量装置测定制动踏板关于预定的制动踏板行程的相对位置,该制动踏板行程由最小制动踏板值和由最大制动踏板值给定,并且
-能够将所测定的制动踏板相对位置传输给所述控制单元。
4.如权利要求3所述的车辆,其特征在于:
-所述控制单元在第一选用挡位时和在第二选用挡位时关断励磁电流。
5.如权利要求3所述的车辆,其特征在于:
-所述控制单元在第三选用挡位时且在制动踏板值处于最大制动踏板值与第一临界制动踏板值之间时关断励磁电流,以及
-所述控制单元在第四选用挡位时且在制动踏板值处于最大制动踏板值与第一临界制动踏板值之间时关断励磁电流。
6.如权利要求4所述的车辆,其特征在于:
-所述控制单元在第三选用挡位时且在制动踏板值处于最大制动踏板值与第一临界制动踏板值之间时关断励磁电流,以及
-所述控制单元在第四选用挡位时且在制动踏板值处于最大制动踏板值与第一临界制动踏板值之间时关断励磁电流。
7.如权利要求3至6之任一项所述的车辆,其特征在于:
-所述控制单元在第三选用挡位时且在制动踏板值处于最小制动踏板值与第二临界制动踏板值之间时调节励磁电流,以及
-所述控制单元在第四选用挡位且在制动踏板值处于最小制动踏板值与第二临界制动踏板值之间时调节励磁电流。

说明书全文

具有驱动电机的车辆

技术领域

[0001] 本发明涉及一种具有驱动电机制动装置和挡位选择装置的车辆。

背景技术

[0002] 混合动车和电动车具备一驱动电机。对此经常使用永久激励式(permanenterregt)同步电机。在永久激励式同步电机中,对于转子使用永磁体,这些永磁体在无外部激励的情况下产生一磁场,该磁场与定子的三相励磁互相配合而在转子轴上产生转矩。这个转矩可以从转子轴取用,用于牵引车辆之目的。通过车辆的制动装置、挡位选择装置和加速踏板,可以对车辆的牵引进行调整。此内容例如可以从文献EP 0 096 468A2中得知。

发明内容

[0003] 本发明的目的是,介绍一种具有驱动电机、制动装置和挡位选择装置的改进的车辆。
[0004] 此目的通过本发明的车辆得以实现,其包括驱动电机、制动装置和挡位选择装置。根据本发明,电机构造为电流激励式(stromerregt)同步电机,该车辆具有一控制单元,所述控制单元配置于所述电流激励式同步电机,该控制单元对转子的励磁电流进行调节,根据在挡位选择装置上调定的选用挡位实施对励磁电流的调节,并且,根据制动装置的制动踏板的位置实施对励磁电流的调节。
[0005] 这意味着:对所述电流激励式同步电机的励磁电流的调节既取决于在挡位选择装置上的调定也取决于制动踏板的位置。
[0006] 根据一个优选的实施方式,特别有益的是:挡位选择装置具有可调定的用于驻车的第一选用挡位,挡位选择装置具有可调定的用于断开车轮的力合联接的第二选用挡位,挡位选择装置具有可调定的用于车辆前进行驶运行的第三选用挡位,挡位选择装置具有可调定的用于车辆倒车行驶运行的第四选用挡位,并且,能够将关于调定的选用挡位的信息传输给所述控制单元。
[0007] 在下文中,所述可调定的第一选用挡位还称为“Parken”(驻停),所述可调定的第二选用挡位还称为“Neutral”(空挡),所述可调定的第三选用挡位还称为“Drive”(行驶),而所述可调定的第四选用挡位还称为“Reverse”(倒车)。
[0008] 因此,所述挡位选择装置允许车辆的操作者选择某一行驶模式,其功能与传统车辆中传动机构/变速箱的功能相当。
[0009] 根据本发明的另一个变型方案,该车辆包括一测量装置,所述测量装置测定制动踏板关于预定的制动踏板行程的相对位置,该制动踏板行程由最小制动踏板值和由最大制动踏板值给定。能够将所测定的制动踏板相对位置传输给所述控制单元。
[0010] 特别有益的是:控制单元在选用挡位“Parken”时和在选用挡位“Neutral”时关断励磁电流。
[0011] 这意味着:转子磁场在选用挡位“Parken”时和在选用挡位“Neutral”时是被去激励的。在这些选用挡位中没有设定对车辆的牵引,也就是说,没有设定行驶运行。因此可以解除转子的电流激励(Stromerregung)。
[0012] 此外,若控制单元在选用挡位“Dauer”(持续)时且在制动踏板值处于最大制动踏板值与第一临界制动踏板值之间时关断励磁电流,以及控制单元在选用挡位“Reverse”时且在制动踏板值处于最大制动踏板值与第一临界制动踏板值之间时关断励磁电流,则产生特别的优点。
[0013] 通过这种方式保障了:符合需要地关断励磁电流。如若制动踏板值向着最大制动踏板值超过一个第一临界值,则关断同步电机的励磁电流。
[0014] 根据本发明的另一个变型方案,控制单元在选用挡位“Dauer”时且在制动踏板值处于最小制动踏板值与第二临界制动踏板值之间时调节励磁电流。另外,控制单元在选用挡位“Reverse”时且在制动踏板值处于最小制动踏板值与第二临界制动踏板值之间时调节励磁电流。
[0015] 如若制动踏板值向着最小制动踏板值的方向超过第二临界值,则调节同步电机的励磁电流。由此保障了:同步电机的励磁电流回路在制动功率或制动力微弱时被激活,并且可以随时向同步电机要求牵引力矩。
[0016] 本发明以下列思想为基础
[0017] 在电动车和混合动力车中,出于能量效率和功率效率之原因而在宽泛的应用范围中使用永久激励式同步电机。对于这种电机类型,转子持续受激励,因为是使用永磁体来产生磁场。
[0018] 作为另选方案,可以使用电流激励式同步电机,所述电流激励式同步电机在转子内没有磁性材料。取而代之的是,由绕组以电磁方式产生励磁磁场。可以根据运行策略对产生这个磁场的电流进行调整,也就是说,与永久激励式电机中的情形不同,该励磁电流在设备(电机)运行时构成了一个附加的自由度
[0019] 这意味着:在电机上所产生的转矩不是仅仅与形成力矩的电流和形成场的电流有关,而且还与励磁电流有关。
[0020] 励磁线圈通常具有大的电感和小的欧姆电阻。这便导致一个高的时间常数,该时间常数与电感成比例关系并且与欧姆电阻成间接比例关系。因此,一项挑战性的任务就是提供运行策略用于具有很高的时间动态特性(zeitliche Dynamik,适时动力学特性)的转矩要求。附图说明
[0021] 参照本发明的以下实施例对一种运行策略加以说明,该运行策略允许实现对混合动力车或电动车中电流激励式同步电机的动态转矩要求并且对励磁磁场的比较迟钝的动态特性进行平衡补偿。
[0022] 图1示出了根据制动压力对一个电流激励式同步电机的转子的励磁电流的调节。
[0023] 由此可得知本发明的其他细部、优选实施方式和发展设计。

具体实施方式

[0024] 这里是基于一种具有挡位选择装置的混合动力车或电动车,所述挡位选择装置包括多个可调定的选用挡位。其包括至少四个选用挡位:“Drive”、“Reverse”、“Neutral”和“Parken”。在此,“Drive”代表这样一个模式,在该模式中,车辆做好行驶准备,而“Reverse”代表在倒车档中做好行驶准备的选用挡位。当车辆在未处于运行模式或准备模式中的情况下驻停时,选择所述选用挡位“Parken”。在选用挡位“Neutral”中,车辆虽然是在运转中,但不存在到车轮的力锁合(动力啮合),因为车辆的传动机构处于机械空转中。
[0025] 电流激励式同步电机可以提供用于牵引车辆之目的的转矩。基本上通过驾驶者以操纵两个踏板的形式实现对同步电机的转矩要求,即一个制动踏板和一个加速踏板。
[0026] 根据图1用于激励转子的运行策略规定:在确定的时刻对励磁电流的调节基本上是取决于调定的选用挡位和制动踏板位置。通过一个配置于同步电机的控制单元来实施对励磁电流的调节。
[0027] 在调定选用挡位“Parken”时和在调定选用挡位“Neutral”时,为了对转子磁性地去激励(去励磁),控制单元将励磁电流关断。
[0028] 在调定选用挡位“Drive”时和在调定选用挡位“Reverse”时,励磁电流的调节取决于制动踏板位置。通过一个适当的测量装置(例如通过一个适合于测定制动踏板度的制动踏板传感器)来确定制动踏板位置。在图1中示例性地示出了制动压力的数值大小,该数值大小如此地与制动踏板位置相互关联,即:在制动踏板未被操作时制动压力最小(min),而在制动踏板被完全踏下时制动压力最大(max)。
[0029] 如果作为可选或补充在制动踏板未被操作的行驶状态中操作该制动踏板,使得制动压力向着最大制动力的方向超过第一临界制动压力(1),则控制单元关断转子的励磁电流。
[0030] 如果制动压力向着最小制动压力的方向下降并且低于第二临界制动压力(2),则控制单元调节励磁电流。这样保障了:在制动压力下降时建立起转子的励磁场,如若在制动压力进一步下降和可能接着通过加速踏板产生转矩要求的情况下,在降至低于第二临界制动压力与出现转矩要求之间的时间段被用来建立励磁场。由此,在出现转矩要求时已经很高程度地构成了励磁场,这便使得直接的转矩输出成为可能。因此对提高带有电流激励式同步电机的车辆的纵向动力学特性 做出了决定性的贡献。
[0031] 如若没有通过加速踏板实施转矩要求并且取而代之的是开始提高制动压力,作为可选或补充,根据上述说明在超过第一临界制动压力时关断励磁电流。
[0032] 这种根据制动踏板对励磁电流的调节适合于:对在建立励磁场时的惯性/迟钝进行平衡补偿,以及,与取决于加速踏板位置的励磁电流调节相比动态地执行对设备(电机)的转矩要求。例如,在电感为0.4亨利和阻抗为1.5欧姆的情况下在电流激励式同步电机中建立起最大值的95%的励磁场需要800毫秒的时间,该时间在此称为等待时间。图1所示出的运行策略保障了:等待时间至少部分地处于制动阶段之内,也就是说,在没有转矩要求之时。
[0033] 第一临界制动踏板压力向着制动压力上升的方向至少取第二临界制动踏板压力的值,也就是说,作为可选或补充,第一临界制动踏板压力与第二临界制动踏板压力的两个值重合。当两个临界制动踏板压力的值彼此分散时,实现了对励磁电流调节的去抖(Entprellung)。
[0034] 图1所示的运行策略保障了电流激励式同步电机的动态的和有效率的运行。
QQ群二维码
意见反馈