利用汽车电池无功功率供给系统及方法

申请号 CN201110399456.6 申请日 2011-12-05 公开(公告)号 CN102545236A 公开(公告)日 2012-07-04
申请人 SK新技术; 发明人 李佶洙; 梁正焕; 朴相炫;
摘要 本 发明 涉及利用 汽车 电池 的 无功功率 供给系统及方法,更具体地涉及一种利用作为汽车电池与 电动车 充电设备的双向充电器来向小规模系统(Micro Grid,微 电网 )供给无功功率的无功功率供给系统及方法。
权利要求

1.利用汽车电池无功功率供给系统,其包括:
混合动汽车、插电式混合动力汽车或者电动车的高电压电池,其与设置于家里的插座相连接;
功率因数监测控制器,其通过所述汽车或电动车中构成的通信部来接收所述汽车或电动车中构成的BMS(Battery ManagementSystem,电池管理系统)生成的高电压电池的状态信息,对与所述家里设置的至少一个负载及所述高电压电池相关的功率因数进行监测,并计算出功率因数补偿值;
双向充电器,其向所述高电压电池供给电源,或者将来自所述高电压电池的电源向外部送电;以及
控制部,其控制所述双向充电器,将计算出的所述功率因数补偿值大小的电源从所述高电压电池向外部送电,以进行所述功率因数补偿值大小的补偿操作。
2.如权利要求1所述的利用汽车电池的无功功率供给系统,所述双向充电器作为车载充电器(On-Board Charger),包括PFC(PowerFactor Control,功率因数控制)电路
3.如权利要求1或2所述的利用汽车电池的无功功率供给系统,还包括系统(Micro Grid,微电网),其向所述双向充电器供给电源或者从所述双向充电器接收所述高电压电池的电源。
4.如权利要求1或2所述的利用汽车电池的无功功率供给系统,所述高电压电池的电源用作超前负载(Leading Load)。
5.利用汽车电池的无功功率供给方法,其包括:
混合动力汽车、插电式混合动力汽车或者电动车的高电压电池与设置于家里的插座相连接的步骤;
功率因数监测控制器通过所述汽车或电动车中构成的通信部来接收所述汽车或电动车中构成的BMS(Battery Management System,电池管理系统)生成的高电压电池的状态信息,对与所述家里设置的至少一个负载及所述高电压电池相关的功率因数进行监测,并计算出功率因数补偿值的步骤;
双向充电器向所述高电压电池供给电源,或者将来自所述高电压电池的电源向外部送电的步骤;以及
控制部控制所述双向充电器,将计算出的所述功率因数补偿值大小的电源从所述高电压电池向外部送电,以进行所述功率因数补偿值大小的补偿操作的步骤。
6.如权利要求5所述的利用汽车电池的无功功率供给方法,所述双向充电器作为车载充电器(On-Board Charger),包括PFC(PowerFactor Control,功率因数控制)电路。
7.如权利要求5或6所述的利用汽车电池的无功功率供给方法,还包括系统(Micro Grid,微电网)向所述双向充电器供给电源或者从所述双向充电器接收所述高电压电池的电源的步骤。
8.如权利要求5或6所述的利用汽车电池的无功功率供给方法,所述高电压电池的电源用作超前负载(Leading Load)。

说明书全文

利用汽车电池无功功率供给系统及方法

技术领域

[0001] 本发明涉及利用汽车电池的无功功率供给系统及方法,更具体地涉及一种利用作为汽车电池与电动车充电设备的双向充电器来向小规模系统(Micro Grid,微电网)供给无功功率的无功功率供给系统及方法。

背景技术

[0002] 利用电动车的功率等的方式已经被公开。作为公开这些技术的现有文献,已知有韩国公开专利第10-2009-0119833号等。
[0003] 这些现有文献中记载的方式是将电动车的电等合并使用的形式。详细说明的话,是将各个电资源与相应的网桥相结合并连接至电力系统(称之为系统网络)的方式。
[0004] 但是,在利用这样的方式对多个电动汽车同时充电时,会发生无功功率不足的现象。由此,无功功率不足的话会降低功率的传送效率,并导致系统电压降低的影响,随着该无功功率使电压下降,最终会导致停电(Black-out)事态。
[0005] 因此,一般利用作为无功功率补偿装置的同步调相机、并联电容器(shunt Capacitor)、柔性交流输电系统(Flexible AC TransmissionSystem,FACTS)。
[0006] 在现有技术的情况下,为了避免这样的停电事态,要在系统中设置昂贵的无功功率补偿装置,因此存在所需费用过多的问题。

发明内容

[0007] 【要解决的技术问题】
[0008] 本发明目的在于,为了克服现有技术中发生的缺点,提供一种利用汽车电池的无功功率供给系统及方法,其能够稳定有效地向小规模系统(Micro Grid,微电网)供给所需的无功功率,以不出现无功功率不足的现象。
[0009] 并且,本发明的另一目的在于,提供一种利用汽车电池的无功功率供给系统及方法,其即使在系统中没有设置昂贵的无功功率补偿装置,也能够通过向小规模系统供给并获取无功功率,从而提高系统的稳定度。
[0010] 【技术方案】
[0011] 本发明为了达到上述目的而提供一种利用汽车电池的无功功率供给系统。该利用汽车电池的无功功率供给系统包括:混合动力汽车、插电式混合动力汽车或者电动车的高电压电池,其与设置于家里的插座相连接;功率因数监测控制器,其通过所述汽车或电动车中构成的通信部来接收所述汽车或电动车中构成的BMS(Battery ManagementSystem,电池管理系统)生成的高电压电池的状态信息,对与所述家里设置的至少一个负载及所述高电压电池相关的功率因数进行监测,并计算出功率因数补偿值;双向充电器,其向所述高电压电池供给电源,或者将来自所述高电压电池的电源向外部送电;以及控制部,其控制所述双向充电器,将计算出的所述功率因数补偿值大小的电源从所述高电压电池向外部送电,以进行所述功率因数补偿值大小的补偿操作。
[0012] 并且,该无功功率供给系统,其特征在于,还包括系统(MicroGrid,微电网),其向所述双向充电器供给电源或者从所述双向充电器接收所述高电压电池的电源。
[0013] 另一方面,本发明的另一实施例的利用汽车电池的无功功率供给方法,其包括:混合动力汽车、插电式混合动力汽车或者电动车的高电压电池与设置于家里的插座相连接的步骤;功率因数监测控制器通过所述汽车或电动车中构成的通信部来接收所述汽车或电动车中构成的BMS(Battery Management System,电池管理系统)生成的高电压电池的状态信息,对与所述家里设置的至少一个负载及所述高电压电池相关的功率因数进行监测,并计算出功率因数补偿值的步骤;双向充电器向所述高电压电池供给电源,或者将来自所述高电压电池的电源向外部送电的步骤;以及控制部控制所述双向充电器,将计算出的所述功率因数补偿值大小的电源从所述高电压电池向外部送电,以进行所述功率因数补偿值大小的补偿操作的步骤。
[0014] 并且,该无功功率供给方法,还可以包括系统(Micro Grid,微电网)向所述双向充电器供给电源或者从所述双向充电器接收所述高电压电池的电源的步骤。
[0015] 此时,所述双向充电器作为车载充电器(On-Board Charger),其特征在于,包括PFC(Power Factor Control,功率因数控制)电路
[0016] 此时,所述高电压电池的电源用作超前负载(Leading Load)。
[0017] 【有益效果】
[0018] 根据本发明,汽车电池的电能供给系统时,通过负载(InvertingDuty)反相控制来进行超前运行(1eading operating)的话,依靠电池改善系统的功率因数,从而可以补偿无功功率的不足部分。
[0019] 并且,本发明另外的效果在于,利用汽车电池,通过供给及获取小规模系统的无功功率,从而可以提高系统的稳定度。附图说明
[0020] 图1为本发明一实施例的利用汽车电池及双向充电器的无功功率供给系统的结构图。
[0021] 图2为图1中图示的汽车100的系统结构图。
[0022] 图3为图1中图示的双向充电器260的电路结构图。
[0023] 图4为图3中图示的PFC(Power Factor Control,功率因数控制)控制器300的电路结构图。
[0024] 图5为图示本发明一实施例的功率因数补偿过程的流程图
[0025] 标记说明:
[0026] 100:汽车 110:家
[0027] 111,112:插座 113:家用电器
[0028] 115:配电盘 170:功率因数监测控制器
[0029] 180:电气线路 200:充电操作部
[0030] 210:发动机 211:
[0031] 213:马达控制器 220:反相器
[0032] 230:高电压电池
[0033] 240:HCU(Hybrid Control Unint,混合动力控制单元)
[0034] 250:BMS(Battery Management System,电池管理系统)
[0035] 260:双向充电器 261:双向接头
[0036] 270:控制部 280:通信部
[0037] 290:EMS(Engine Management System,发动机管理系统)
[0038] 300:PFC(Power Factor Control,功率因数控制)电路
[0039] 311:EA(Error Amplifier,误差放大器)

具体实施方式

[0040] 本发明可以进行多种变更并具备多种实施例,其特定的实施例在附图中例示并详细说明。但本发明不由其特定的实施例所限定。应理解为,本发明的思想及技术范围所包含的全部变更、等同物、甚至替换物均属于本发明的保护范围。在对各附图进行说明时,相似的参照标记对应相似的结构部件。
[0041] 尽管“第一”、“第二”等用语可用于说明多种的结构部件,但所述结构部件不因所述用语而受到限定。所述用语的使用目的是为了将一个结构部件与另一个结构部件相区分。比如,在不脱离本发明权利范围的情况下,第一结构部件可以命名为第二结构部件,相类似地,第二结构部件也可以命名为第一结构部件。“及/或者”之类的用语表示多个相关联的项目的结合或者包含多个相关联的项目中的任一项。
[0042] 在言及某一结构部件“连接”或者“接续”至另一结构部件时,尽管可以理解为直接连接或者接续于该另一结构部件,但也可理解为中间有可能还存在另外的结构部件。在言及某一结构部件“直接连接”或者“直接接续”至另一结构部件时,则必须理解为中间不存在另外的结构部件。
[0043] 本说明书中使用的用语只用于说明特定的实施例,并不旨在限定本发明。单数表达在上下文中如果没有明确表示不具备其他含义的话,则包括复数表达的含义。本申请中,“包括”或者“具备”等用语应该理解为,其指定存在说明书中记载的特征、数字、工艺、操作、结构部件、零件或者上述内容的组合,但不预先排除还存在一个或多个另外的特征、数字、工艺、操作、结构部件、零件或者上述内容的组合或者附加可能性。
[0044] 如果没有别的定义,包括技术或者科学方面的用语,在此处使用的所有用语都具有与本发明所属领域的技术人员一般理解的含义相同的意思。如一般使用的字典中定义的用语应解释为其含义与相关技术的上下文中具有的含义一致,只要本申请没有明确定义,就不能解释为理想或过度形式的含义。
[0045] 下面,结合附图对本发明一实施例的利用汽车电池及双向充电器的无功功率供给系统及方法进行详细说明。
[0046] 图1为本发明一实施例的利用汽车电池及双向充电器的无功功率供给系统的结构图。如图1所示,无功功率供给系统由汽车100、该汽车100中构成的充电操作部200、功率因数监测控制器170以及与该功率因数监测控制器170连接并接受汽车100中的无功功率的系统180(Micro Grid,微电网)等构成。其中,该功率因数监测控制器170与该充电操作部200连接,用于对汽车100的无功电能的功率因数进行监测。
[0047] 汽车100可以是以电池作为电源的混合动力汽车、插电式混合动力汽车或者电动车。汽车100中构成有充电操作部200,展示包含该充电操作部200的汽车100的电子系统的结构图如图2所示,图2将在后述内容中进行说明。
[0048] 充电操作部200与设置在家110里的插座111、115连接,从系统180接收功率,或者与功率因数监测控制器170连接,将汽车100的电池(未图示)产生的无功功率传送至功率因数监测控制器170。此时,充电操作部200与功率因数监测控制器170之间的通信可利用电力线通信网络(Power Line Control,PLC)、控制器局域网(Controller AreaNetwork,CAN)等来完成。
[0049] 功率因数监测控制器170被称为自动功率因数控制器或者自动功率因数控制装置等,是根据无功功率或者功率因数的设定值来接入或截断电容器的装置。并且,是能够避免因功率因数低而引起费用增加的负担、抑制电压变化与谐波的产生并能够节约能源的机器。该功率因数监测控制器170不仅仅与汽车200,而且还通过配电盘115与家用电器113连接。该家用电器113成为家中的负载。
[0050] 一般情况下,作为节省能源的方案,控制峰值(peak)功率来避免瞬间功率不足现象的峰值功率控制(Peak Demand Control,峰值需求控制)以及控制超前无功电容器来使无功功率最小化的功率因数控制(Power Factor Control)可称作代表性的方案。
[0051] 交流电路的电压或电流正弦波(sin波)形状变化,则出现两者的正弦波相位一定会不一致的情况。该情况下,电压与电流之间产生相位差,由此,本来以VI显示的功率* *的值则会显示为VIcosθ=有功功率(此处,I 为复合电流)。此时,cosθ为功率因数(Power Factor)。功率因数表示所供给的功率值用于实际做功的效率。
[0052] 继续说明图1,这样的功率因数监测控制器170的控制方式有根据C/k值的循环控制(loop control)、顺序控制方式(优先顺序控制方式)(sequential control)等。此处,C/k值(Smallest Capacitor Current,最小电容电流)的意思是系统额定电压、电流与最小的电容器容量的比值或者最小的电容器容量的电流。
[0053] 功率因数监测控制器170的构造与组成相关的内容已为公知,因此省略对其进一步的说明。
[0054] 为了提供高功率品质,系统(Micro Grid,微电网)180由采用可独立控制有效及无效功率的燃料电池及微型涡轮机等绿色可靠电力源的微源(Micro-Source)构成。并且,系统180是独立于现有的广域电力系统的、将分散电源作为中心的局部电力供给系统。当然,在本发明中可以作为系统来描述,也可以为智能电网
[0055] 系统180连接家110中设置的配电盘115,通过插座111、112向汽车100、家用电器113等供给商用电源。此处,家用电器可以包括洗衣机箱、空调等。
[0056] 当然,系统180也能够与功率因数监测控制器170连接来接收汽车100的无功功率供给。
[0057] 图2为图1中图示的汽车100的系统结构图。尤其是,图2为混合动力汽车的系统结构图。如图2所示,该系统结构图包括:用作汽车行驶驱动源的发动机210及马达211、用于进行反转以从发动机向马达变化驱动源的反相器220、作为混合动力电池的高电压电池230、向高电压电池230供给电压或者将该高电压电池230的无功功率向功率因数监测控制器(图1的170)供给的双向充电器260、控制高电压电池230的BMS(Battery Management System,电池管理系统)250以及控制BMS250及双向充电器260的控制部270等。
[0058] 当然,附图中图示出发动机210与马达211直接连接,这是为了便于理解本发明一实施例而进行的图示,因此,也可以构成为分离的结构。
[0059] 如图2所示,对结构部件的说明如下所述。
[0060] EMS(Engine Management System,发动机管理系统)290起到对发动机210进行统合管理的作用,其基于接收到的感知发动机210运转状态的各种传感器信号,控制最合适的液体燃料喷射量及点火时机等,以使汽车能够发挥最佳的行驶性能。
[0061] 为了驱动马达,反相器220起到将直流电源转变为三相交流电源的作用。该反相器可以主要包括:PWM(Pulse Width Modulation,脉冲宽度调制)方式的开关元件(未图示)、IGBT(Insulated Gate BipolarTransistor,绝缘栅双极型晶体管)以及向该开关元件施加信号的栅极驱动部(未图示)。上述结构是为了便于理解本发明一实施例,此外还可以利用将高电压电池230输出的电源进行反转,再提供给马达211的另外的结构图。
[0062] 高电压电池230作为镍金属电池、离子电池等混合动力电池,起到向马达120供给电源的作用。当然,为了便于理解本发明一实施例,而仅标示出了电池,但也可以为由串联或并联排列的电池单元构成电池组,还可以为由多个电池组所构成。
[0063] BMS250可以对高电压电池230进行管理及控制,并将高电压电池230的状态信息传送至控制部270。
[0064] HCU(Hybrid Control Unit,混合动力控制单元)240与EMS290、BMS250及控制部270交换控制信息,用于对汽车进行控制。即,HCU240在发动机210运转的情况下,与EMS290交换有关发动机210的控制信息来控制发动机210。与之不同,在马达211运转的情况下,与马达控制器213、BMS250交换有关马达211及高电压电池230的控制信息。
[0065] 马达控制器230为了控制马达211,与HCU240及BMS250互相交换控制信息。并且,为了控制马达211的旋转数,从马达211获得马达211的RPM(Revolutions Per Minute,每分钟转速)信息,该信息用于控制马达211。当然,尽管以马达211使用三相交流电源来进行了说明,但不受本发明一实施例所限定,单相也可以。
[0066] HCU240、马达控制器213、BSM250、EMS290及控制部270等之间的通信一般利用CAN(Controller Area Network,控制器局域网)通信方式,但并不受其限制,也可以使用其他的通信方式。
[0067] 双向充电器260可以利用双向接头261从插座111接收商用电,并向高电压电池230供给电压,或者将该高电压电池230的无功功率供给功率因数监测控制器(图1的170)。
[0068] 控制部270由微型计算机构成,接收来自EMS290的发动机210或马达211的运转控制信息,同时接收来自BMS250的高电压电池230的电池状态信息,包括以这些信息为基础决定是否将高电压电池230的无功功率传送给功率因数监测控制器(图1的170)的算法。并且,控制部270中构成有用于实现这样的算法的存储器(未图示)。
[0069] 该存储器可以为设置于控制部270内部的存储器,也可以是独立的存储器。因此,可以使用硬盘驱动器、闪存、EEPROM(Electricallyerasable programmable read-only memory,电可擦可编程只读存储器)、SRAM(Static RAM,静态随机存取存储器)、PRAM(Phase-changeRAM,相变存储器)、MRAM(Magnetic RAM,磁性存储器)等之类的非易失性存储器
[0070] 通信部280用于使控制部270与功率因数监测控制器(图1的170)进行通信。为此,通信部280可以为电力线通信网络(Power LineControl,PLC)、控制器局域网(Controller Area Network,CAN),但不限于此,也可以利用红外线通信(IrDA)、蓝牙等无线通信方式。
[0071] 除此之外,尽管没有在图2中图示,但仍构成有向反相器220、HCU240、BMS250等供给电源的电源电池(未图示)等。
[0072] 图3为图1中图示的双向充电器260的电路结构图。尤其是,双向充电器260作为车载充电器(On-Board Charger)起到将AC电源转换为DC电源的作用。如图3所示,电源电压(VAC)输入由多个二极管(D1至D4)构成的AC桥式整流器301,通过PFC电路300的同时转换为DC形态的输出电压电源(VDC)。
[0073] 因此,双向充电器260可以将来自系统(图1的180)的AC电源转换为DC电源并供给高电压电池(图2的230),或者将高电压电池230输出的DC电源转换为AC电源。
[0074] 此处,PFC电路300一般为开关稳压器的形态,展示其的一实施例图示于图4中。当然,图4中开关稳压器的一种形态并不能限定本发明。
[0075] 图4为图3中图示的PFC(Power Factor Control,功率因数控制)电路300的电路结构图。如图4所示,反馈PFC输出电压(INV)并输入至误差放大器(EA)。同时,如图3所示,输出电压(VCC)输入至内部稳压器320,内部稳压器320生成电源电压(VDD)及偏压(BiasVoltage)。
[0076] 内部稳压器320中生成的电压(VDD,偏压)用作比较器312、330、331和误差放大器311的偏压及基准电压。通过AC桥式整流器301整流的信号(RECTI)及误差放大器311的输出信号输入至乘法器310。该乘法器310的输出信号与CS信号输入至比较器312。随之,比较器312的输出信号输入至存器350的复位端(R)。
[0077] 此处,CS信号的含义是根据电源开关Q1的On/Off信号来变换电流。
[0078] 并且,ZCD信号用于将电源电流(比如,从变压器等输出的输出电源)与乘法器310的输出相比较,从而将电源开关Q1打开,输入至锁存器350的复位端(R)的信号在感应器(未图示)的电流与乘法器310的输出信号接触处关闭电源开关Q1,从而使感应器电流降至零。
[0079] 并且,根据复位信号打开电源开关Q1并使感应器电流为零时,ZCD信号输入至比较器330、331与预先设定的基准电压(1.6V、0.15V)进行比较,其比较结果输入至加法器340形成置位信号,该置位信号向锁存器350的置位端(S)传达信号。因此,从锁存器350接收到信号的驱动器360打开电源开关Q1,增大感应器(未图示)的电流。
[0080] 因此,PFC电路300持续感知从系统(图1的180)向汽车(图1的100)侧输入的电流,使其跟随AC桥式整流器301的输入电压波形,最终使电压与电流同相位。
[0081] 这样,因涉及PFC电路的内容是已经众所周知的技术,为了使本发明易于理解,而省略掉更进一步的说明。
[0082] 图5为图示本发明一实施例的功率因数补偿过程的流程图。如图5所示,功率因数监测控制器(图1的170)对家(图1的110)里的家用电器(图1的113)、汽车(图1的100)等负载的功率因数进行监测(步骤S500)。
[0083] 功率因数的监测结果,计算出功率因数补偿值(步骤S510)。具体而言,由于家里使用的家用电器(图1的113)中会有线圈电路等之类的消耗性电路元件,家用电器113所需的消耗功率为10KW,但韩国电力公司则必须以12KW来送电。因此,计算出功率因数补偿值,汽车(图1的100)补偿该功率因数补偿值的话,韩国电力公司则不必以12KW来送电。
[0084] 易于理解地来进行说明的话,具体而言,功率因数为1的情况下,供给的功率实际上全部用于做功,功率因数为0的情况下,为供给的功率在功率传送过程中全部损失掉的意思。因此,功率因数降低的情况下,为了提高功率使用的效率而补偿功率因数(Power Factor),该情况称作功率因数校正。补偿的方法根据线圈与电抗成分,在电流相位滞后于电压相位的情况下,投入使电流相位比电压相位更靠前的电容成分,从而减少电流与电压的相位差来增加功率因数。
[0085] 并且,本发明对改善家庭内部功率因数进行了说明,但无功功率也可以通过功率因数监测控制器170向系统(图1的180)传送。
[0086] 计算出功率因数补偿值的话,汽车(图1的100)中设置的充电操作部(图1的200)补偿该功率因数补偿值(步骤S520)。具体而言,控制部(图2的270)接收功率因数监测控制器(图1的170)中计算出的功率因数补偿值来计算功率因数补偿值,并将该功率因数补偿值大小的无功功率从高电压电池(图2的230)传送至功率因数监测控制器(图
1的170)。
[0087] 补偿功率因数补偿值之后,功率因数监测控制器170监测功率因数,并判断是否达到作为目标而设定的功率因数值(步骤S530)。
[0088] 判断结果,达到目标功率因数值的话,控制部(图2的200)则不将无功功率传送至功率因数监测控制器(图1的170)。
[0089] 与之不同,若没能达到目标功率因数值的话,反复执行步骤510至步骤S530。
[0090] 因此,通过将汽车的电池电源灵活用作超前负载(Leading Load),从而可以改善家庭内功率因数。即,具备与FACTS(Flexible ACTransmission,柔性交流输电系统)之类的功率补偿供给源设置于家庭单位负载端一样的效果。
[0091] 并且,通过将汽车的电池电源灵活用作超前负载(Leading Load),也可以向系统(图1的180)送电。
QQ群二维码
意见反馈