无磁微波消融针制造方法

申请号 CN201410631162.5 申请日 2014-11-11 公开(公告)号 CN104323856A 公开(公告)日 2015-02-04
申请人 南京维京九洲医疗器械研发中心; 发明人 杨婷;
摘要 本 发明 涉及一种无磁 水 冷 微波 消融 针制造方法,该制造方法针对无磁材料微波消融针而设计,其工艺过程合理,装配 质量 好,生产效率高。生产的无磁水冷微波消融针,适用于核 磁共振成像 环境下的微波 肿瘤 消融手术,有助于主疗医生清晰地确定肿瘤的 位置 ,提高穿刺 精度 ,对整个手术过程具有更好的可控性,提高手术的成功率,在有效灭活肿瘤的前提下尽可能的减少对周围正常组织的破坏,减轻患者的痛苦,缩短康复周期。
权利要求

1. 无磁微波消融针制造方法,包括以下步骤:
S1、将同轴电缆首尾端的外导体剥离,裸露出介质层,然后剥离裸露介质层的前段,露出内导体;所述同轴电缆的外导体和内导体均为材质;
S2、将铜质极芯与同轴电缆的内导体冷压变形连接牢固,连接后极芯与同轴电缆同心;
S3、在极芯外表面和化锆刺头内孔涂抹陶瓷胶,将极芯插入氧化锆刺头内孔,并进行干燥粘结;
S4、依次将铜质的堵水轴和引水管套在同轴电缆上,堵水轴的头部抵住氧化锆刺头后端面,堵水轴的尾部与同轴电缆外导体密封焊接,将引水管的前端套在堵水轴的抬肩外圆上,并与堵水轴焊接固定,不得有虚焊;
S5、铜质针杆前端套装在氧化锆刺头的外圆上,使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行固定,并进行铆接
S6、将铜质的射频同轴连接器焊接于同轴电缆的尾部;
S7、安装进水套、进水腔、出水腔、水嘴和手柄
2. 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:步骤S3中,干燥粘结的方法是,在空气中自然干燥2-4小时,随后在干燥恒温箱中加热2-4小时,干燥恒温箱内的温度为93℃。
3. 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:步骤S5中,将环氧树脂胶分别涂覆于堵水轴表面和氧化锆刺头的后轴外圆上,将针杆推至刺头尾面,要求无缝隙,将消融针放入干燥恒温箱加热25-35分钟,干燥恒温箱内的温度为140-160℃。
4. 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:所述进水管前部为斜面,并在背部开设出水孔,堵水轴为两段式,两段的内孔径相同,且与同轴电缆外导体相适应,前段部分的外径与针杆内径相适应,后端部分的外径小于针杆内,径形成抬肩外圆,所述进水管斜面的前端与堵水轴抬肩外圆焊接固定。
5. 根据权利要求1所述的无磁水冷微波消融针制造方法,其特征在于:所述氧化锆刺头的尾部外圆的外径与堵水轴前段部分的外径相等。
6. 依据权利要求1-3任一项方法制造获得的消融针,主要包括有:氧化锆刺头、极芯、同轴电缆、堵水轴、引水管、针杆,所述极芯插入刺头的中心孔内,极芯后端与半刚同轴电缆的内导体冷压固接,堵水轴套在同轴电缆上,其头部抵住氧化锆刺头后端面,尾部与同轴电缆外导体密封焊接,引水管的前端套在堵水轴外圆上,并与堵水轴焊接固定,针杆前端套装在氧化锆刺头的外圆上,并使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行粘结固定;射频同轴连接器与同轴电缆的尾部焊接。
7. 根据权利要求6所述的消融针,其特征在于:所述进水管前部为斜面,并在背部开设出水孔,堵水轴为两段式,两段的内孔径相同,且与同轴电缆外导体相适应,前段部分的外径与针杆内径相适应,后端部分的外径小于针杆内,径形成抬肩外圆,所述进水管斜面的前端与堵水轴抬肩外圆焊接固定。
8. 根据权利要求1所述的消融针,其特征在于:所述氧化锆刺头的尾部外圆的外径与堵水轴前段部分的外径相等。

说明书全文

无磁微波消融针制造方法

技术领域

[0001] 本发明涉及无磁水冷微波消融针制造方法,制造获得的消融针特别适合在核磁共振环境下实施介入治疗

背景技术

[0002] 随着现代科技与肿瘤学的进步,近十年来,国内微波肿瘤消融技术取得了突破性的紧张。微波肿瘤消融是利用微波能作用组织即可产生热效应,在数分钟到十数分钟的时间内,其热场中心温度可达100℃以上,肿瘤组织在瞬间高温下被凝固、灭活,达到肿瘤消融治疗的目的。微波肿瘤消融术是将微波消融针介入人体组织的病灶,由其前端持续发射微波能,以实施手术,因其效率高,窗口小,并且对组织的作用深度及范围大小均可控,适用于全身实体肿瘤的消融手术。
[0003] 微波消融手术属于成像引导的微创手术,目前普遍在声波成像环境下实施。作为主流的超声波成像技术,其在判断肿瘤的边界方面有一定局限性。为了能够完整的灭活肿瘤组织,手术主疗医生通常会加大加热范围,这样往往对人体正常组织产生不利影响,一旦穿刺位置不准,则带来更大的隐患。
[0004] 相比而言,核磁共振成像技术具有较高的准确性,其成像的直观性和清晰程度是超声波成像技术所无法比拟的。然而,由于受到现有消融针在材料技术方面的限制,使其无法在核磁共振环境下使用,一定程度上限制了微波消融手术的发展。

发明内容

[0005] 本发明所要解决的技术问题是,克服现有技术的上述缺点,提供一种无磁水冷微波消融针制造方法,以及依据该方法获得的消融针。
[0006] 为了解决以上技术问题,本发明提供的无磁水冷微波消融针制造方法,包括以下步骤:S1、将同轴电缆首尾端的外导体剥离,裸露出介质层,然后剥离裸露介质层的前段,露出内导体;所述同轴电缆的外导体和内导体均为材质;
S2、将铜质极芯与同轴电缆的内导体冷压变形连接牢固,连接后极芯与同轴电缆同心;
S3、在极芯外表面和化锆刺头内孔涂抹陶瓷胶,将极芯插入氧化锆刺头内孔,并进行干燥粘结;
S4、依次将铜质的堵水轴和引水管套在同轴电缆上,堵水轴的头部抵住氧化锆刺头后端面,堵水轴的尾部与同轴电缆外导体密封焊接,将引水管的前端套在堵水轴的抬肩外圆上,并与堵水轴焊接固定,不得有虚焊;
S5、铜质针杆前端套装在氧化锆刺头的外圆上,使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行固定,并进行铆接
S6、将铜质的射频同轴连接器焊接于同轴电缆的尾部;
S7、安装进水套、进水腔、出水腔、水嘴和手柄
[0007] 为了解决上述问题,本发明还具有如下进一步的特征:1、步骤S3中,干燥粘结的方法是,在空气中自然干燥2-4小时,随后在干燥恒温箱中加热2-4小时,干燥恒温箱内的温度为93℃。
[0008] 2、步骤S5中,将环氧树脂胶分别涂覆于堵水轴表面和氧化锆刺头的后轴外圆上,将针杆推至刺头尾面,要求无缝隙,将消融针放入干燥恒温箱加热25-35分钟,干燥恒温箱内的温度为140-160℃。
[0009] 3、所述进水管前部为斜面,并在背部开设出水孔,堵水轴为两段式,两段的内孔径相同,且与同轴电缆外导体相适应,前段部分的外径与针杆内径相适应,后端部分的外径小于针杆内,径形成抬肩外圆,所述进水管斜面的前端与堵水轴抬肩外圆焊接固定。
[0010] 5、所述氧化锆刺头的尾部外圆的外径与堵水轴前段部分的外径相等。
[0011] 此外,本发明还保护利用上述制造方法制造获得的消融针或消融针的主体部件。
[0012] 该消融针主要包括有:氧化锆刺头、极芯、同轴电缆、堵水轴、引水管、针杆,所述极芯插入刺头的中心孔内,极芯后端与半刚同轴电缆的内导体冷压固接,堵水轴套在同轴电缆上,其头部抵住氧化锆刺头后端面,尾部与同轴电缆外导体密封焊接,引水管的前端套在堵水轴外圆上,并与堵水轴焊接固定,针杆前端套装在氧化锆刺头的外圆上,并使用环氧树脂胶将针杆与氧化锆刺头、堵水轴进行粘结固定;射频同轴连接器与同轴电缆的尾部焊接。
[0013] 本发明微波消融针使用无磁材料生产,适用于核磁共振成像环境下的微波肿瘤消融手术,有助于主疗医生清晰地确定肿瘤的位置,提高穿刺精度,对整个手术过程具有更好的可控性,提高手术的成功率,在有效灭活肿瘤的前提下尽可能的减少对周围正常组织的破坏,减轻患者的痛苦,缩短康复周期。
[0014] 针对这种无磁材料的微波消融针,本发明提出了相应的制造方案,其工艺过程合理,装配质量好,成本率高。本发明消融针结构简单,零部件一定程度上进行了优化和减少,装配效率和质量得到了提高。经试验表明,装配后的产品质量达到设计要求。附图说明
[0015] 下面结合附图对本发明作进一步的说明。
[0016] 图1是本发明无磁水冷消融针前端部分剖视图。
[0017] 图2是本发明无磁水冷消融针整体结构示意图。
[0018] 图中标号示意如下:1-氧化锆刺头,2-极芯,3-同轴电缆,4-堵水轴,5-引水管,6-针杆,7-内导体,8-外导体,9-介质层,10-出水腔,11-进水腔,12-水嘴,13-隔水圈,
14-固定套。

具体实施方式

[0019] 如图1、2所示,为本发明实施例所要制造的无磁水冷微波消融针,主要包括有:氧化锆刺头1、极芯2、同轴电缆3、堵水轴4、引水管5、针杆6,极芯2插入刺头的中心孔内,极芯2后端与半刚同轴电缆3的内导体7冷压固接,堵水轴4套在同轴电缆3上,其头部抵住氧化锆刺头1后端面,尾部与同轴电缆3外导体8密封焊接,引水管5的前端套在堵水轴4外圆上,并与堵水轴4焊接固定,针杆6前端套装在氧化锆刺头1的外圆上,并使用环氧树脂胶将针杆6与氧化锆刺头1、堵水轴4进行粘结固定;射频同轴连接器与同轴电缆3的尾部焊接。如图所示,进水管前部为斜面,并在背部开设出水孔,堵水轴4为两段式,两段的内孔径相同,且与同轴电缆3外导体8相适应,前段部分的外径与针杆6内径相适应,后端部分的外径小于针杆6内,径形成抬肩外圆,进水管斜面的前端与堵水轴4抬肩外圆焊接固定。氧化锆刺头1的尾部外圆的外径与堵水轴4前段部分的外径相等。图中,13为隔水圈,14为固定套。
[0020] 本实施例无磁水冷微波消融针制造方法,包括以下步骤:S1、将同轴电缆3首尾端的外导体8剥离,裸露出介质层9,然后剥离裸露介质层9的前段,露出内导体7;所述同轴电缆3的外导体8和内导体7均为铜材质。
[0021] S2、将铜质极芯2与同轴电缆3的内导体7冷压变形连接牢固,连接后极芯2与同轴电缆3同心。
[0022] S3、在极芯2外表面和氧化锆刺头1内孔涂抹陶瓷胶,将极芯2插入氧化锆刺头1内孔,并进行干燥粘结。
[0023] 本步骤中,干燥粘结的方法是,在空气中自然干燥2-4小时,随后在干燥恒温箱中加热2-4小时,干燥恒温箱内的温度为93℃。
[0024] S4、依次将铜质的堵水轴4和引水管5套在同轴电缆3上,堵水轴4的头部抵住氧化锆刺头1后端面,堵水轴4的尾部与同轴电缆3外导体8密封焊接,将引水管5的前端套在堵水轴4的抬肩外圆上,并与堵水轴4焊接固定,不得有虚焊。
[0025] S5、铜质针杆6前端套装在氧化锆刺头1的外圆上,使用环氧树脂胶将针杆6与氧化锆刺头1、堵水轴4进行固定,并进行铆接。
[0026] 本步骤中,将环氧树脂胶分别涂覆于堵水轴4表面和氧化锆刺头1的后轴外圆上,将针杆6推至刺头尾面,要求无缝隙,将消融针放入干燥恒温箱加热25-35分钟,干燥恒温箱内的温度为140-160℃。
[0027] S6、将铜质的射频同轴连接器焊接于同轴电缆3的尾部。
[0028] S7、安装进水套、进水腔11、出水腔10、水嘴12和手柄。
[0029] 除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。
QQ群二维码
意见反馈