静電アクチュエーター、可変容量コンデンサー、電気スイッチおよび静電アクチュエーターの駆動方法

申请号 JP2014509896 申请日 2012-04-09 公开(公告)号 JP5801475B2 公开(公告)日 2015-10-28
申请人 パイオニア株式会社; パイオニア・マイクロ・テクノロジー株式会社; 发明人 埴原 甲二;
摘要
权利要求

基板上に設けられた固定電極と、 前記固定電極に対面して配設され、前記固定電極との間の静電気により、前記固定電極に近接する可動電極と、 前記固定電極と前記可動電極との近接状態において、前記固定電極および前記可動電極のいずれか一方の電極に接触し、前記固定電極と前記可動電極との間に所定のエアギャップを形成するスペーサーと、を備え、 前記スペーサーは、絶縁体を介して前記一方の電極に接触すると共に、少なくとも前記近接状態において、前記一方の電極と同一の電位を有するスペーサー電極部を有することを特徴とする静電アクチュエーター。前記一方の電極および前記スペーサー電極部は、基準電位点に接続され、 前記固定電極および前記可動電極のいずれか他方の電極は、前記静電気力を生じさせるための所定のプルイン動作電圧を印加する印加電源に接続されていることを特徴とする請求項1に記載の静電アクチュエーター。前記スペーサーは、前記基板上に設けられると共に、前記近接状態において前記可動電極に接触して前記所定のエアギャップを形成し、 前記固定電極および前記スペーサー電極部は、同一高さに形成されていることを特徴とする請求項1に記載の静電アクチュエーター。前記固定電極および前記可動電極は、相互の露出部分で対面していることを特徴とする請求項1に記載の静電アクチュエーター。請求項1に記載の静電アクチュエーターと、 前記静電アクチュエーターを駆動源として静電容量を可変する可変容量素子と、を備えたことを特徴とする可変容量コンデンサー。請求項1に記載の静電アクチュエーターと、 前記静電アクチュエーターを駆動源としてスイッチ駆動するスイッチ素子と、を備えたことを特徴とする電気スイッチ。基板上に設けられた固定電極と、 前記固定電極に対面して配設され、前記固定電極との間の静電気力により、前記固定電極に近接する可動電極と、 前記固定電極と前記可動電極との近接状態において、前記固定電極および前記可動電極のいずれか一方の電極に絶縁体を介して接触するスペーサー電極部を有し、前記固定電極と前記可動電極との間に所定のエアギャップを形成するスペーサーと、を備えた静電アクチュエーターの駆動方法であって、 前記一方の電極および前記スペーサー電極部に、基準電位点を接続すると共に、前記固定電極および前記可動電極のいずれか他方の電極に、前記静電気力を生じさせるための所定のプルイン動作電圧を印加することを特徴とする請求項1に記載の静電アクチュエーターの駆動方法。

说明书全文

本発明は、固定電極とこれに対面する可動電極とを有し、静電気を利用して、固定電極に対し可動電極を離接させる静電アクチュエーター、可変容量コンデンサー、電気スイッチおよび静電アクチュエーターの駆動方法に関するものである。

従来、可変容量コンデンサーとして、シグナル線とこれに対向する電極とからなる可変容量部と、可変容量部の両側に連なるブリッジ構造の一対のアクチュエーター部と、を備えたものが知られている(特許文献1参照)。各アクチュエーター部は、可動側の上部電極と、これに対向する固定側の下部電極とを有している。そして、上部電極および下部電極間に電圧を印加することで、上部電極および下部電極の間に電位差を与える。その結果、上部電極および下部電極の間に静電気力が生じ、上部電極および下部電極を近接させる。また、下部電極は、絶縁膜で覆われており、両電極の近接状態において、上部電極と下部電極とがこの絶縁膜を介してほぼ全域で接触した状態になる。

特開2008−278634号公報

しかしながら、このような従来の構成では、近接状態において、両電極が絶縁膜を介してほぼ全面で接触した状態になるため、長時間近接状態が続いた場合や多数回近接動作を行った場合に、絶縁膜に電荷が蓄積される(チャージング)。その結果、絶縁膜に蓄積した電荷によって上部電極と下部電極とが固着してしまう。すなわち、スティクション(スティッキング)が生じてしまうという問題があった。 これに対し、例えば、単に基板上に絶縁体で形成されたスペーサーを設け、近接状態において上部電極を当該スペーサーに接触させて、上部電極と下部電極との間に所定のエアギャップ(空隙)を生じさせる構成とすると、絶縁体であるスペーサー自身に電荷が蓄積され、スティクションが生じてしまう。特に、スペーサーを半導体基板上に設けた場合、コンデンサーの様に上部電極と半導体基板との間で正負の電荷が蓄積し、その影響で当該スペーサーに電荷が蓄積してしまう。

本発明は、簡単な構成で、スティクションを防止することができる静電アクチュエーター、可変容量コンデンサー、電気スイッチおよび静電アクチュエーターの駆動方法を提供することを課題としている。

本発明の静電アクチュエーターは、基板上に設けられた固定電極と、固定電極に対面して配設され、固定電極との間の静電気力により、固定電極に近接する可動電極と、固定電極と可動電極との近接状態において、固定電極および可動電極のいずれか一方の電極に接触し、固定電極と可動電極との間に所定のエアギャップを形成するスペーサーと、を備え、スペーサーは、絶縁体を介して上記一方の電極に接触すると共に、少なくとも近接状態において、一方の電極と同一の電位を有するスペーサー電極部を有することを特徴とする。

この構成によれば、スペーサー(ストッパー)のスペーサー電極部が、絶縁体を介して上記一方の電極に接触し、固定電極と可動電極との間に所定のエアギャップを生じさせる。このとき、スペーサー電極部が一方の電極と同一の電位を有することで、一方の電極とスペーサー電極部との間で正負の電荷が蓄積せず(電界が生じず)、その間に介在した絶縁体に電荷が蓄積することがない。このように、両電極はもちろん、スペーサー自身にも電荷が蓄積することがなく、簡単な構成で、スティクションを防止することができる。なお、当該構成において、固定電極とスペーサー電極部とは非導通になるように構成されている。

この場合、一方の電極およびスペーサー電極部は、基準電位点に接続され、固定電極および可動電極のいずれか他方の電極は、静電気力を生じさせるための所定のプルイン動作電圧を印加する印加電源に接続されていることが好ましい。

スペーサー電極部を上記一方の電極と同一の電位にするため、上記一方の電極にプルイン動作電圧を印加する場合、それに合わせてスペーサー電極部にプルイン動作電圧を印加する必要が出てくる。これでは、静電アクチュエーターにおける電位制御が煩雑になってしまう。 これに対し、上記構成によれば、他方の電極にプルイン動作電圧を印加するため、上記一方の電極の電位は変化せず、スペーサー電極部に電圧を印加する必要がない。よって、電位制御を容易に行うことができる。なお、「所定のプルイン動作電圧」は、静電気力により可動電極の近接移動(プルイン)が生じる電圧(いわゆるプルイン電圧)以上の電圧である。

また、スペーサーは、基板上に設けられると共に、近接状態において可動電極に接触して所定のエアギャップを形成し、固定電極およびスペーサー電極部は、同一高さに形成されていることが好ましい。

この構成によれば、固定電極とスペーサー電極部との膜厚を同一になるので、MEMS(Micro Electro Mechanical Systems)のプロセス技術により本静電アクチュエーターを作製する場合に、固定電極とスペーサー電極部とを一体のプロセスで形成することができる。

さらに、固定電極および可動電極は、相互の露出部分で対面していることが好ましい。

固定電極および可動電極が、絶縁膜で覆われた部分で対面していると、両電極間にエアギャップが形成されていたとしても、両電極間の電界により、絶縁膜に電荷が蓄積してしまう可能性がある。 これに対し、固定電極および可動電極が、相互の露出部分(エアギャップへの露出部分)で対面していることで、電荷の蓄積を回避し、スティクションをより確実に防止することができる。

本発明の可変容量コンデンサーは、上記の静電アクチュエーターと、静電アクチュエーターを駆動源として静電容量を可変する可変容量素子と、を備えたことを特徴とする。

この構成によれば、スティクションを防止することができる静電アクチュエーターを用いることで、安定性の高い可変容量コンデンサーを提供することができる。

本発明の電気スイッチは、上記の静電アクチュエーターと、静電アクチュエーターを駆動源としてスイッチ駆動するスイッチ素子と、を備えたことを特徴とする。

この構成によれば、スティクションを防止することができる静電アクチュエーターを用いることで、安定性の高い電気スイッチを提供することができる。

本発明の静電アクチュエーターの駆動方法は、基板上に設けられた固定電極と、固定電極に対面して配設され、固定電極との間の静電気力により、固定電極に近接する可動電極と、固定電極と可動電極との近接状態において、固定電極および可動電極のいずれか一方の電極に絶縁体を介して接触するスペーサー電極部を有し、固定電極と可動電極との間に所定のエアギャップを形成するスペーサーと、を備えた静電アクチュエーターの駆動方法であって、一方の電極およびスペーサー電極部に、基準電位点を接続すると共に、固定電極および可動電極のいずれか他方の電極に、静電気力を生じさせるための所定のプルイン動作電圧を印加することを特徴とする。

この構成によれば、一方の電極およびスペーサー電極部に基準電位点を接続することで、スペーサー電極部が一方の電極と同一の電位を有することになる。これにより、一方の電極とスペーサー電極部との間で正負の電荷が蓄積せず(電界が生じず)、その間に介在した絶縁体に電荷が蓄積することがない。このように、両電極はもちろん、スペーサー自身にも電荷が蓄積することがなく、簡単な構成で、スティクションを防止することができる。また、他方の電極にプルイン動作電圧を印加するため、上記一方の電極の電位は変化せず、スペーサー電極部に電圧を印加する必要がない。よって、電位制御を容易に行うことができる。

実施形態に係る可変容量コンデンサーの断面図である。

可変容量コンデンサーの平面図である。

静電アクチュエーターの断面図である。

静電アクチュエーターにおける両駆動電極の近接動作および離間動作を示した説明図である。

第2実施形態に係る電気スイッチの断面図である。

(a)および(b)は、静電アクチュエーターの第1変形例の断面図であり、(c)および(d)は、静電アクチュエーターの第2変形例の断面図である。

(a)は、静電アクチュエーターの第3変形例の断面図であり、(b)は、静電アクチュエーターの第4変形例の断面図であり、(c)は、静電アクチュエーターの第5変形例の断面図であり、(d)は、静電アクチュエーターの第6変形例の断面図であり、(e)は、静電アクチュエーターの第7変形例の断面図である。

[実施例1] 以下、添付の図面を参照し、本発明の一実施形態に係る静電アクチュエーター、可変容量コンデンサーおよび電気スイッチについて説明する。第1実施形態では、静電アクチュエーターを用いた可変容量コンデンサーを例示する。この可変容量コンデンサーは、MEMS(Micro Electro Mechanical Systems)デバイスであり、半導体集積回路作製技術を用いて、シリコン基板(半導体基板)上に、電子回路および機械構造を作りこむことで構成されている。なお、本可変容量コンデンサーでは、スペーサーおよび電位制御により、静電アクチュエーターにおけるスティクションを防止する構造を有している。

図1および図2に示すように、可変容量コンデンサー1は、シリコン基板(基板)2と、シリコン基板2上に配設された可変容量素子3と、シリコン基板2上に配設され、可変容量素子3の両側に連結した一対の静電アクチュエーター4と、を備えている。すなわち、可変容量コンデンサー1は、一対の静電アクチュエーター4を駆動源として可変容量素子3の静電容量を可変する。また、シリコン基板2の表面には、絶縁層5が形成されており、この絶縁層5上に、可変容量素子3および一対の静電アクチュエーター4が配設されている。なお、本実施形態では、一対の静電アクチュエーター4が可変容量素子3に連結する方向を、X軸方向とし、それに直交する方向を、Y軸方向とする。

可変容量素子3は、シリコン基板2上に敷設した固定側の固定容量電極11と、固定容量電極11に上方から対面する可動側の可動容量電極12と、を備えている。また、両容量電極11、12には、可変容量素子3の電気接点(入力端子)をそれぞれ配しており、電圧印加により両容量電極11、12上に電荷が蓄積される。そして、静電アクチュエーター4によって、固定容量電極11に対し、可動容量電極12を近接・離間させることで、可変容量素子3の静電容量を2段階で可変する。また、固定容量電極11は、絶縁膜13で覆われており、両容量電極11、12の近接状態においては、当該絶縁膜13を介して、固定容量電極11と可動容量電極12とが接触する。なお、本実施形態では、両容量電極11、12の近接状態において、絶縁膜13を介して、固定容量電極11と可動容量電極12とが接触するものを示したが、近接状態において、エアギャップを介して、固定容量電極11と可動容量電極12とが対面する構成であっても良い。

図2および図3に示すように、各静電アクチュエーター4は、シリコン基板2上に敷設した固定側の固定駆動電極(固定電極)21と、固定駆動電極21に上方から対面する可動側の可動駆動電極(可動電極)22と、可動駆動電極22のX軸方向位一端部(可変容量素子3側に対する逆側)を、弾性(バネ性)を持って支持するビーム23と、ビーム23の基端部を支持すると共にシリコン基板2上に立設されたアンカー24と、シリコン基板2上に立設されると共に、可動駆動電極22を規制して、固定駆動電極21および可動駆動電極22間に所定のエアギャップ(空隙)を維持する一対のスペーサー25と、を備えている。

可動駆動電極22は、ビーム23およびアンカー24により、固定駆動電極21に対し近接・離間自在に支持されると共に、固定駆動電極21および一対のスペーサー25に対面している。すなわち、可動駆動電極22は、X軸方向において、固定駆動電極21および一対のスペーサー25を包含する長さを有している。また、可動駆動電極22は、X軸方向一端部で、絶縁体の連結部26を介して可動容量電極12を連結している。すなわち、可動容量電極12は、一対の静電アクチュエーター4の一対の可動駆動電極22にX軸方向両側で連結されている(図1参照)。これにより、可動容量電極12が、一対の可動駆動電極22と一体に変位して離接する。さらに、可動駆動電極22は、グラウンド(基準電位点)Gに接続されており、常に基準電位(ゼロ電位)を有している。

固定駆動電極21は、シリコン基板2上に敷設されると共に、可動駆動電極22に対面している。固定駆動電極21は、所定のプルイン動作電圧(所定の駆動電圧)を印加する印加電源Wに接続されており、当該所定のプルイン動作電圧の印加により、固定駆動電極21と可動駆動電極22との間に静電気力(静電吸引力)を生じさせる。この静電気力により、可動駆動電極22を近接させる。なお、当該所定のプルイン動作電圧は、静電気力により可動駆動電極22の近接移動(プルイン)が生じる電圧(いわゆるプルイン電圧)以上の電圧である。

一対のスペーサー25は、固定駆動電極21に隣接し且つY軸方向に延在してシリコン基板2上に敷設されると共に、可動駆動電極22に対面している。また、一対のスペーサー25は、固定駆動電極21をX軸方向で挟みこむように配設されており、可動駆動電極22が固定駆動電極21に近接したとき、可動駆動電極22のX軸方向両端部に接触し、可動駆動電極22のX軸方向両端部を支持する。これにより、一対のスペーサー25は、両駆動電極21、22の近接状態において、固定駆動電極21と可動駆動電極22との間に所定のエアギャップを形成する。

各スペーサー25は、シリコン基板2上に敷設されたスペーサー電極部31と、絶縁体で形成されると共にスペーサー電極部31を覆う絶縁体部32と、を有している。そして、スペーサー電極部31は、両駆動電極21、22の近接状態において、絶縁体部32を介して、可動駆動電極22に接触する。また、スペーサー電極部31は、グラウンドGに接続されており、常に基準電位(ゼロ電位)を有している。すなわち、当該スペーサー電極部31と、可動駆動電極22とは、常に同一の電位を有している。なお、スペーサー電極部31、固定容量電極11および固定駆動電極21は、同一材料(例えば、ポリシリコン等)で且つ同一高さに形成されている。

絶縁体部32は、スペーサー電極部31を被覆した絶縁膜33で形成されている。可変容量素子3側のスペーサー電極部31を被覆した絶縁膜33は、当該スペーサー電極部31周りから固定容量電極11までシリコン基板2上を延在しており、固定容量電極11を被覆する絶縁膜13と一体に形成されている(図1参照)。一方、可変容量素子3側に対する逆側のスペーサー電極部31を被覆した絶縁膜33は、当該スペーサー電極部31周りからアンカー24までシリコン基板2上を延在しており、アンカー24と絶縁層5との間に介在されている。すなわち、厳密には、アンカー24は、絶縁層5および絶縁膜33を介して、シリコン基板2上に立設されている。なお、絶縁膜33は、固定駆動電極21上を避けて形成されており、固定駆動電極21および可動駆動電極22は、絶縁膜33のない相互の露出部分(エアギャップへの露出部分)で対面している。

ここで図4を参照して静電アクチュエーター4における両駆動電極21、22の近接動作および離間動作について説明する。なお、図4では、一方の静電アクチュエーター4のみを図示している。また、近接動作は、両駆動電極21,22が離間した定常状態から開始し、離間動作は、両駆動電極21,22が近接したプルイン状態から開始するものとする。図4(a)に示すように、定常状態(両駆動電極21、22の離間状態)では、プルイン動作電圧を印加しておらず、固定駆動電極21、可動駆動電極22および一対のスペーサー25は同一の電位(基準電位)を有している。

図4(b)に示すように、近接動作では、静電アクチュエーター4は、印加電源Wの制御し、固定駆動電極21に所定のプルイン動作電圧を印加する。プルイン動作電圧を印加すると、固定駆動電極21および可動駆動電極22に正負相違の電荷が蓄積し、その電圧差で両駆動電極21、22の間に静電気力が生じる。ここで生じた静電気力により、可動駆動電極22がビーム23の復元力を抗して降下していき、可動駆動電極22が、固定駆動電極21に対する離間位置から近接位置に移動する。すなわち、可動駆動電極22が、固定駆動電極21に近接する。これにより、静電アクチュエーター4が、定常状態からプルイン状態に移行する。

図4(c)に示すように、プルイン状態(両駆動電極21、22の近接状態)では、可動駆動電極22が上記近接位置で一対のスペーサー25に接触し、固定駆動電極21と可動駆動電極22との間に所定のエアギャップが形成される。このとき、絶縁体部32を介して接触した可動駆動電極22およびスペーサー電極部31は、同一の電位(基準電位)を有し、固定駆動電極21は、所定のプルイン動作電圧が印加され続けているため、プルイン動作電圧に伴う所定の電位を有している。

図4(d)に示すように、離間動作では、静電アクチュエーター4は、印加電源Wを制御し、プルイン動作電圧の印加を停止する。プルイン動作電圧の印加を停止すると、両駆動電極21、22間の静電気力が解除される。その結果、ビーム23の復元力により、可動駆動電極22が上昇していき、可動駆動電極22が、固定駆動電極21に対する近接位置から離間位置に移動する。すなわち、可動駆動電極22が、固定駆動電極21から離間する。これにより、静電アクチュエーター4が、プルイン状態から定常状態に移行する。なお、「プルイン動作電圧の印加を停止する」と記載したが、必ずしもゼロ電位にする必要はない。すなわち、固定駆動電極21への印加電圧を、印加に伴う静電気力がビーム23の復元力に負ける電圧まで下げる構成であっても良い。

[実施例2] 次に図5を参照して、第2実施形態について説明する。第2実施形態では、静電アクチュエーター4を用いた電気スイッチ41を例示する。この電気スイッチ41は、第1実施形態と同様、MEMSデバイスであり、半導体集積回路作製技術を用いて、シリコン基板2上に、電子回路および機械構造を作りこむことで構成されている。

図5に示すように、電気スイッチ41は、シリコン基板2と、シリコン基板2上に配設されたスイッチ素子(スイッチ)42と、シリコン基板2上に配設され、スイッチ素子42の両側に連結した一対の静電アクチュエーター4と、を備えている。すなわち、電気スイッチ41は、一対の静電アクチュエーター4を駆動源としてスイッチ素子42をスイッチ駆動する。なお、一対の静電アクチュエーター4は、第1実施形態と同様の構成を有しており、ここではその説明を省略する。

スイッチ素子42は、シリコン基板2上に敷設した固定側の固定スイッチ電極43と、固定スイッチ電極43に上方から対面する可動側の可動スイッチ電極44と、を備えている。また、両スイッチ電極43、44には、スイッチ素子42の電気接点(入力端子)をそれぞれ配しており、両スイッチ電極43、44の接触に伴って電流を通電する。そして、可動スイッチ電極44は、一対の静電アクチュエーター4の可動駆動電極22にX軸方向両側で連結されており、一対の可動駆動電極22を駆動することで、これに連動して、固定スイッチ電極43に対し可動スイッチ電極44が近接・離間する。これによって、スイッチ素子42上で電流を通電・遮断し、スイッチ素子42のスイッチ駆動を行う。

以上のような構成によれば、プルイン状態において、スペーサー25(ストッパー)のスペーサー電極部31が可動駆動電極22と同一の電位を有することで、可動駆動電極22とスペーサー電極部31との間で正負の電荷が蓄積せず(電界が生じず)、その間に介在した絶縁体部32に電荷が蓄積することがない。このように、両駆動電極21、22はもちろん、スペーサー25自身にも電荷が蓄積することがなく、簡単な構成で、スティクションを防止することができる。

また、固定駆動電極21側にプルイン動作電圧を印加するため、可動駆動電極22の電位は変化せず、スペーサー25のスペーサー電極部31に電圧を印加する必要がない。よって、電位制御を容易に行うことができる。

さらに、固定駆動電極21およびスペーサー電極部31は、同一高さに形成することで、固定駆動電極21とスペーサー電極部31との膜厚を同一になるので、固定駆動電極21とスペーサー電極部31とを一体のプロセスで形成することができる。

またさらに、固定駆動電極21および可動駆動電極22が、絶縁膜33のない相互の露出部分(エアギャップへの露出部分)で対面していることで、電荷の蓄積を回避し、スティクションをより確実に防止することができる。

なお、上記各実施形態においては、スペーサー25を、固定駆動電極21を挟み込むように一対配設する構成であったが、これに限るものではない。例えば、各静電アクチュエーター4で、スペーサー25を1個のみ備えた構成であっても良い。ひいては、1個のスペーサー25を、2個の静電アクチュエーター4で兼用する構成であっても良い。

また、上記各実施形態においては、固定駆動電極21および可動駆動電極22が、絶縁膜33のない相互の露出部分で対面し、固定駆動電極21および可動駆動電極22がエアギャップのみを介して対面する構成であったが、固定駆動電極21上にも絶縁膜33を形成し、プルイン状態において固定駆動電極21および可動駆動電極22がエアギャップおよび絶縁膜33を介して対面する構成であっても良い。

さらに、上記各実施形態においては、可動駆動電極22およびスペーサー25をグラウンドGに接続し、固定駆動電極21を印加電源Wに接続する構成であったが、固定駆動電極21をグラウンドGに接続し、可動駆動電極22およびスペーサー25を印加電源Wに接続する構成であっても良い。

またさらに、上記各実施形態においては、可動駆動電極22およびスペーサー25が、常に同一の電位を有する構成であったが、可動駆動電極22およびスペーサー25が少なくともプルイン状態において同一の電位を有する構成であれば、これに限るものではない。すなわち、定常状態のときや定常状態からプルイン状態に移行するときには、可動駆動電極22の電位とスペーサー25の電位とが相違し、プルイン状態のときには、可動駆動電極22の電位とスペーサー25の電位とを同一にする構成であっても良い。例えば、可動駆動電極22およびスペーサー25を印加電源Wに接続した構成において、プルイン状態のときだけ、スペーサー25に電圧を印加する構成であっても良い。

また、上記各実施形態においては、固定駆動電極21をシリコン基板2上に敷設し、各スペーサー25をシリコン基板2上に配設する構成であったが、これに限るものではない。具体的には、図6に示すように、固定駆動電極21を絶縁体基板51内(絶縁層5の下)に埋め込んで配設し、各スペーサー25をその固定駆動電極21上に配設する構成であっても良い。かかる場合、固定駆動電極21およびスペーサー電極部31が非導通になるように、固定駆動電極21とスペーサー電極部31との間に絶縁層5を介在させる。このように、各スペーサー25と固定駆動電極21とを重畳して配設し、固定駆動電極21および可動駆動電極22の間に介在させることで、長さ方向もしくは幅方向のスペースを削減することができる。また、かかる場合、図6(a)および(b)に示すように、両駆動電極21、22の対面部分を避けて絶縁層5および絶縁膜33を形成し、両駆動電極21、22が相互の露出部分でエアギャップを介して対面する構成であっても良いし、図6(c)および(d)に示すように、当該対面部分にも絶縁層5および絶縁膜33を形成し、両駆動電極21、22が絶縁層5、絶縁膜33およびエアギャップを介して対面する構成であっても良い。

さらに、上記各実施形態においては、一対のスペーサー25をシリコン基板2や固定駆動電極21(固定駆動電極21側)に配設する構成であったが、可動駆動電極22側に配設する構成であっても良い。かかる場合、一対のスペーサー25が可動駆動電極22と一体に変位し、プルイン状態において固定駆動電極21に接触して、上記所定のエアギャップを形成する。無論、一対のスペーサー25の一方を、シリコン基板2や固定駆動電極21側に配設し、他方を、可動駆動電極22側に配設する構成であっても良い。また、スペーサー25を可動駆動電極22側に配設する構成として、スペーサー25を絶縁部61を介して可動駆動電極22の直下部に配設する構成(図7(a)参照)と、スペーサー25を、絶縁部61を介して可動駆動電極22に連結して配設する構成(図7(b)参照)と、可動駆動電極22を支持部材62を介して支持させ、スペーサー25を当該支持部材62上に配設する構成(図7(c)参照)とが考えられる。かかる場合、同図に示すように、固定駆動電極21は、X軸方向において、可動駆動電極22および一対のスペーサー25を包含する長さを有するように形成される。

またさらに、上記各実施形態においては、絶縁体部32と、絶縁体部32を介して一方の駆動電極21、22に接触するスペーサー電極部31とを一体として、固定駆動電極21側および可動駆動電極22側の一方に配設する構成であったが、スペーサー電極部31および絶縁体部32を別体とし、これらを固定駆動電極21側および可動駆動電極22側のそれぞれに配設する構成であっても良い。例えば、図7(d)に示すように、スペーサー電極部31をシリコン基板2上に配設し、絶縁体部32を可動駆動電極22の直下部に配設する構成であっても良いし、図7(e)に示すように、スペーサー電極部31を可動駆動電極22の直下部に配設し、絶縁体部32をシリコン基板2上に配設する構成であっても良い。これらの場合、各スペーサー25は、スペーサー電極部31のみにより構成されている。すなわち、当該各スペーサー25(スペーサー電極部31)は、別体の絶縁体部32を介して対面の駆動電極21、22に接触する構成となっている。

1:可変容量コンデンサー、 2:シリコン基板、 3:可変容量素子、 4:静電アクチュエーター、 21:固定駆動電極、 22:可動駆動電極、 25:スペーサー、 31:スペーサー電極部、 32:絶縁体部、 41:電気スイッチ、 42:スイッチ素子、 51:絶縁体基板、 G:グラウンド、 W:印加電源

QQ群二维码
意见反馈