医疗器械用的抗菌

申请号 CN93107703.6 申请日 1993-05-18 公开(公告)号 CN1082625A 公开(公告)日 1994-02-23
申请人 韦斯泰姆技术有限公司; 发明人 R·E·伯勒尔; L·R·莫里斯;
摘要 提供抗菌 镀 膜 及其在医疗器械表面形成的方法。此镀膜是用气相淀积技术淀积一种 生物 相容的金属形成的,在镀膜中产生 原子 无序使其能持续地释放足以产生抗菌作用的 金属离子 。产生原子无序的优选条件包括比正常低的底基 温度 、比正常高的工作气压、镀料流比正常小的入射 角 。还提供用机械处理产生原子无序的抗菌的 金属粉末 。此方面延伸至其它同样地形成以增大 溶解度 的金属膜和粉末。
权利要求

1.一种改良的材料,包括:一种或多种以充分原子无序为特征形式的金属,当与其溶剂接触时,以较其有序晶态更快的速率释放至少一种金属的原子、离子、分子或原子束。
2.权利要求1的材料,所述材料呈粉未或薄片形式。
3.权利要求1的材料,所述材料呈膜的形式。
4.权利要求2的材料,所述材料用冷处理产生原子无序。
5.权利要求3的材料,所述材料用气相淀积形成。
6.权利要求5的材料,所述材料用物理气相淀积形成。
7.权利要求1,2或3的材料,其中至少一种金属为抗菌金属,旦其中材料制成充分的原子无序,以能在一中可持续的基础上释放该抗菌金属的原子、离子、分子或原子束。
8.权利要求1,4或6的材料,其中金属选自、金、铂、钯、铱、、锑、铋、锌或它们的合和化合物。
9.权利要求1,4或6的材料,其中金属为银、金、或含有一种或多种这些金属的合金和化盒合物。
10.一种形成含有一种或多种金属的改良材料的方法,该方法包括:在材料中产生原子无序,条件为限制扩散,以使该材料能保持原子无序,能以较其有序晶态更快间速率释放至少其中一种金属的原子、离子、分子和原子束。
11.权利要求10的方法,其中材料为一种或多种金属的粉末和薄片,原子无序状态由冷处理产生。
12.权利要求11的方法,其中粉未或薄片处理的温度低于其重结晶温度,以保持原子无序。
13.权利要求12的方法,其中材料为毫微米结晶的粉未。
14.权利要求12的方法,其中至少一种金属为抗菌金属且产生充分的原子无序,使其能在可持续的基础上释放该抗菌金属的原子、离子、分子和原子束。
15.权利要求12的方法,其中至少一种金属选自银、金、铂、铝、铱、锡、铜、锑、铋、锌或含有一种或多种这些金属的合金和化合物。
16.权利要求12的方法,其中至少一种金属是银、金、钯或含有一种或多种这些金属的合金和化合物。
17.权利要求12的方法,其中至少一种金属是银或含银的合金和化合物。
18.权利要求10的方法,其中材料为用气相淀积的方法在底基上形成的一种镀膜、淀积条件是:在淀积过程中限制扩散,淀积之后限制退火和重结晶。
19.权利要求18的方法,其中材料由物理气相淀积产生。
20.权利要求19的方法,其中材料为用真空蒸镀、溅射镀膜,磁控溅射镀膜或离子镀膜在底基上形成的一种或多种金属的镀膜。
21.权利要求20的方法,其淀积条件为底基温度与被淀积金属或金属化合物熔点之比保持低于0.5。
22.权利要求21的方法,其中的比率保持低于0.3。
23.权利要求21的方法,其中镀膜时镀膜流与底基间的入射低于75°。
24.权利要求21的方法,其中电弧蒸镀在室温和大于约0.01毫乇的工作气压下进行。
25.权利要求21的方法,其中气体散射蒸镀在大于约20毫乇的工作气压下进行。
26.权利要求21的方法,其中溅射镀膜在大于约75毫乇的工作气压下进行。
27.权利要求21的方法,其中磁控溅射镀膜在大于约10毫乇的工作气压下进行。
28.权利要求21的方法,其中离子镀膜在大于约200毫乇的工作气压下进行。
29.权利要求20的方法,其中至少一种金属是抗菌金属,产生充分的原子无序,使材料能在可持续的基础上释放该抗菌金属的原子、离子、分子和原子束。
30.权利要求21,23,27的方法,其中至少一种金属是抗菌金属,产生充分的原子无序,使材料能在可持续的基础上释放该抗菌金属的离子、原子、分子和原子束。
31.权利要求20的方法,其中复合镀膜的形成方法是在具有与第一种金属不同的材料的分子的原子的基质中,同时,相续或活性反应地淀积第一种金属以便在基质中产生原子无序。
32.权利要求31的方法,其中的第一种金属是一种抗菌金属,其中不同的材料是在淀积过种中由工作气氛淀积到基质中去的不同原子或分子。
33.权利要求31的方法,其中的第一种金属是一种抗菌金属,其中不同的材料是选自一种生物相容的惰性金属的化物、氮化物、化物、化物、硫化物和卤化物的原子和分子。
34.一种在用于醇和电解液接触的器械表面产生抗菌镀膜的方法,包括:用气相淀积在器械的表面镀上一层含抗菌金属的膜,使这层金属薄膜含有原子的无序,当此膜与醇和水基电解液接触时,能持续地释放该金属的离子、原子、分子和原子束进入电解液,其浓度足以提供局部的抗菌作用。
35.权利要求34的方法,其中淀积作用是用物理气相淀积,选自真空蒸镀、溅射镀膜、磁控溅射镀膜或离子镀膜,其条件是在淀积过程中限制扩散、淀积过程后限制退火和重结晶。
36.权利要求35的方法,其中镀膜时被镀表面的温度与金属熔点之比保持低于约0.5。
37.权利要求36的方法,其中镀膜时镀料流与医疗器械表面之间的入射角小芍75°。
38.权利要求36或37的方法,用电弧蒸镀进行淀积时环境或工作气压大于0.01毫乇。
39.权利要求36或37的方法,用气体散射蒸镀时工作气压大于约20毫乇。
40.权利要求36或37的方法,用溅射镀膜进行淀积时工作气压大于约75毫乇。
41.权利要求36或37的方法,用磁控溅射镀膜进行淀积时工作气压大于约10毫乇。
42.权利要求36或37的方法,用电离镀膜进行淀积时工作气压大于约200毫乇。
43.权利要求36或37的方法,其中金属选自银、金、铂、钯、铱、锡、铜、锑、铋、锌或含有一种或多种这些金属的合金和化合物。
44.权利要求36或37的方法,其中金属为银、金、钯或含有一种或多种这些金属的合金和化合物。
45.用于与醇和水基电解液接触的医疗器械,其表面有一层抗菌镀膜,包括:由持续地不与生物反应的材料制成的医疗器械;和在医疗器械表面形成的抗菌镀膜。该膜由一种或多种抗菌金属形成,有充分的原子无序,在膜与一种醇和水基电解液接触时,此镀膜可以持续地释放该金属的离子、原子、分子和原子团进入醇和水基电解液,浓度足以提供局部的抗菌效果。
46.权利要求45的医疗器械,其中镀膜由选自真空蒸镀、溅射镀膜、磁控溅射镀膜或电离镀膜的物理气相淀积技术产生。
47.权利要求46的医疗器械,其中金属选自银、金、铂、钯、铱、锡、铜、锑、铋、锌或含有一种或多种这些金属的合金和化合物。
48.权利要求46的医疗器械,其中金属为银、金、钯或含有一种或多种这些金属的合金和化合物。
49.权利要求6的材料,其中镀腊为复合镀膜,由至少一种第一种金属(即释放的金属)在含有与第一种金属不同的原子和分子的不同材料基质中形成,不同材料的原子和分子在其质中形成原子的无序。
50.权利要求49的材料,其中不同的材料选自第一种金属或金属化合物的活化种类;吸收或捕获的氧、氮、氢、硼、硫、卤素的原子和分子;和第二种金属。
51.权利要求50的材料,其中第一种金属是一种抗菌金属;不同的材料选自一种抗菌金属和第二种金属的氧化物、氮化物、氢化物、卤化物、硼化物和碳化物;以及吸收或捕获的含有氧、氮、氢、硼、硫、卤素的原子或分子。
52.权利要求49的材料,其中主第一种金属是一种抗菌金属、不同的材料是选自钽、、铌、、铪、锌、钼、和铝的惰性金属的一种氧化物、氮化物、硼化物、硫化物、卤化物或氢化物。
53.权利要求49的材料,包括氧化银、金属银以及选择性地吸收和捕获的含氧、氮、氢、硼硫和卤素的原子或分子。
54.权利要求18的方法,其中的改良材料是一种复合膜,由同时、相继或活性反应地择第一种金属淀积到含有与第一种金属不同的原子或分子的基质中产生,在基质中产生原子无序。
55.权利要求53的方法,其中第一种金属为一种抗菌金属,不同的材料选自含有氧、氮、氢、硼、硫和卤素的原子或分子,从气相淀积的气体中吸收或捕获入基质中。
56.权利要求54的方法,其中第一种金属为银,不同的材料选自含有氧、氮、氢、硼、硫和卤素的原子或分子。
57.权利要求55的方法,其中第一种金属为一种抗菌金属,不同的材料是选自钽、钛、铌、钒、铪、锌、钼、硅、铝等惰性金属的一种氧化物、氮化物、碳化物、硼化物、卤化物、硫化物或氢化物。
58.权利要求57的方法,其中第一种金属为银,不同的材料为钽、钛、铌的一种氧化物。

说明书全文

发明涉及制备能在持续的基础上高速释放金属物的改良材料如金属膜式粉末的方法。在一个特定方面,本发明涉及形成生物相容的金属抗菌镀膜和粉末的方法。此金属镀膜和粉末在与体液或组织接触时,能持续释放抗菌金属物种。

医学界需要一种有效的抗菌镀膜。内科和外科医生所用的医疗器械和装置,从矫形针、板、移植物以至伤口包扎用品和导尿管均需能持久地抗感染。一种便宜的抗菌镀膜还可用于消费者保健和个人卫生用品以及生物医学和生物技术实验室设施等医疗器械方面。此处及权利要求中的术语“医疗器械”泛指所有此类产品。

金属离子、金、铂、钯、铱(即贵金属)、、锑、铋和锌的抗菌作用是已知的(见Morton,H.E.Pseudomonas  in  Disinfection,Sterilization  ond  Preservation,ed.S.S.BLock,Lea  and  Febiger,1977t  Grier,H.,Silver  and  It,s  Compounds  in  Disinfection,Sterlization  and  Dreservation,ed.S.S.Block,Lea  and  Febiger,1977)。在具有抗菌特性的金属离子中,银因其在低浓度下具有极好的生物活性而最为著名。这一现象被称为微量活动作用反应。在现代医疗实际中,银的有机和无机的可溶性盐均用于防止和治疗细菌感染。尽管这些化合物作为可溶性盐很有效,但由于游离银离子的迁移损失和络合作用,它们不能提供持久的保护作用,必须经常重复施用以克服这一问题。重复施用却并不总是可行的,尤其是对内在的或植入的医疗器械。

已试图用产生含有低溶解度的含银络合物的方法来减慢治疗过程中银离子的释放。例如,美国专利2,785,153公开了一种为此而用的胶质银蛋白,此化合物常配制成乳液状,因其效用有限,在医疗领域没有广泛使用。其银离子释放速率非常缓慢,另外,此化合物形成的膜也因为附着性、耐磨性和储存期限问题而且有局限性。

有人建议使用银的金属镀膜来抗菌。例如,见Deitch  et  al,Antimicrobial  Agents  and  Chemotlerapy,Vol  23(3),1983,pp.356-359和Mackeen  et  al.,Antimicrobial  Agents  and  Clemotherapy,Vol.31(1),pp.93-99。然而,普遍认为这样的镀膜本身不能提供所需效,因为银离子从金属表面的扩散是微不足道的。

美国的Spire  Corporation生产一种商标为SPI-ARGENT的金属银镀膜。此种镀膜由一种离子束辅助淀积IBAD镀覆工艺产生。此种抗感染的镀膜据称用抑菌圈试验证实在溶液中是非浸提性的,从而更加证实了金属银的表面不能释放抗菌量的银离子。

由于不能用金属银层产生足够的抗菌功效,其它的研究者尝试新的活化方法。一种技术是利用电活化金属银移植物(见Marino et al.,Tournal of Biological Physics,Vol.12,1984,pp,93-98),电激活金属银并非总是可行的,尤其是对于运动着的病人。还尝试通过电化反应就地产生电流的方法解决此问题。不同金属的金属带或层沉积在一个装置上形成薄膜层。当两种金属互相接触置于电导液中时就形成了一个原电池。其中一种金属作为阳极,溶于电解液中;第二种金属则作为阴极驱动电池。例如,如果为交替的铜和银层,则铜是阳极,释放Cu+离子进入电解液。而较贵的金属银作为阴极,很大程度上不产生离子进入溶液。美国专利4,886,505(1989年12月12日授权给Haynes等人)描述了具有此种特性的一种典型器械。该专利公开了两种或多种不同金属的溅射镀膜,其中一种金属与开关相连,当开关闭合时,就可释放金属离子。

先有技术表明,由不同种金属(如银和铜)交替的层合件形成的膜如果表面首先被浸蚀即可溶解。有这种情况下,浸蚀过程产生高度起纹的表面(见M.Tanemura  and  F  Okuyuma,J.Vac.Sci.Technol.,5,1986,pp  2369-2372)但是,制造这样的多层膜是费时和昂贵的。

金属镀膜的电激活并没有适当地解决这一问题。应注意到的是,只有电解液存在且如果电偶的两种金属之间存在电连接时才会产生电泄反应。由于电化学腐蚀主要发生于两种金属的金属界面,电接触不能持续,因此持续长时间释放金属离子也是不可能的。而且,电泄反应释放银这样的金属也是很难实现的。如上所述,具有最显著抗菌作用的金属均为贵金属离子,如银、金、铂、钯几乎没有更为惰性的金属可作为阴极材料以驱动阳极银这样的贵金属释放。

第二种活化金属银表面的方法是用热或化学物质。美国专利4,476,590和4,615,705(1984年10月16日和1986年10月7日授权给Scale  et  al)分别公开了用加热至180℃以上或与过化氢作用的方法使内取代移植物的银表面膜活化,而具有生物侵蚀能力。这种处理局限于基质/器械能被镀膜和活化的情况。

仍然需要一种具有以下特性的有效的、不昂贵的抗菌材料:·持续释放一种治疗活性水平的抗菌介质,·可运用于不同的器械和材料,·有效的存储时限,·对哺乳动物毒性低,典型地,金属镀覆层由如溅射这样的气相淀积技术产生。金属、合金半导体和陶瓷的薄膜已广泛用于电子元件的制造过程。这些及其它的用途要求薄膜为致密、晶状的结构具有最少的瑕疵。淀积之后,将膜退火加速晶粒长大和重结晶并产生稳定的特性。淀积镀金属膜的技术在文献(R.F.Bunshah  et  al,“Deposition  Technologies  tor  Filin  and  Coatings”,Hoyes  Publications,H.J.,1982和J.A.Thornton,“Influence  of  Apparatus  Geometry  and  Deposition  Conditions  on  the  Structure  and  Topography  of  Thick  Sputteved  Coatings”,J.Vac.Sci.Technol.,11(4),666-670,1974)中有论述。

1982年4月20日授权给Menzel的美国专利4,325,776公开了一种从某类金属制造用于集成电路的粗晶或单晶金属膜的方法。此种金属膜是通过在一种冷的底基(低于-90℃)上淀积形成的,因此此金属层呈无定形相。这种金属层然后通过加热至约室温而退火。最终产物据称具有大的粒径和很高的均匀性,从而得到较电流密度而不会产生电迁移失效。

本发明的发明人开始研制一种抗菌的金属镀膜,他们发现,与以前的看法相反,在限制扩散的条件下用汽相淀积技术使材料产生原子无序状态,即“凝固”原子的无序状态,可以由抗菌的金属材料形成金属镀覆层。经发现,用此法制成的抗菌镀覆层能持续地释放抗菌的金属物进入溶液,产生抗菌作用。

把“原子无序”与增大溶解度相联系的这一基本发现具有广泛的用途。本发明人证明了产生溶解性的原子无序可以其它材料形式(如金属粉末)产生。本发明还拓展到应于抗菌金属以外的材料,包括任何金属,金属合金或金属化合物,包括半导体或陶瓷材料在内,这类材料释放出所需的金属进入溶液。例如,具有增大或控制的溶解度的材料可用于传感器开关、保险丝、电极和电池。

本文中的术语“原子无序”包括高密度的晶格内的点缺降空位,线缺陷如位错,间隙原子,非晶区域,晶界和亚晶界和其它相对于正常有序的结晶状态的缺陷等等。原子无序导致了毫微米水平的表面分布状况的不均匀和结构的不均匀。

本文中的术语“正常有序的结晶状态”指在铸造、锻制和电镀金属产物形成的批量金属材料、合金或化合物中有的正常的结晶状态。此类材料只有低密度的原子缺陷,如空位,晶界和位错。

术语“扩散”指所形成的材料表面或基体间的原子和/或分子扩散。

本文中的术语“金属”包括一种或多种金属,不管它们是较纯的金属、合金还是化合物如氧化物、氮化物、化物、硫化物、卤化物或氢化物。

从广义上说,本发明延伸到制造一种包含一种或多种金属的改良材料的方法。该方法包括在限制扩散以保持足够的原子无序的条件下使材料产生“原子无序”以供释放(最好在持续的基础上)至少其中一种金属的原子、离子、分子或原子束进入该材料的溶剂。已知原子束为小组原子、离子等,其描述可见于文献(R.P.Andres  et  al.“Researcl  Opportunities  on  Clusters  and  Cluster-Assemble  Materials”,J.Mater.Res,Vol.4,No.4,1989,P.704)。

本发明的具体优选实施例表明原子的无序状态可在冷处理金属粉末和薄片,和在低的底基温度下用汽相淀积洁沉积金属镀覆层而产生。

从另一广义方面来说,本发明提供一种包含一种或多种金属的改良材料,其特点是有足够的原子无序,当此材料与其溶剂接触时能够释放至少包含其中一种金属的原子、离子、分子和原子束,最好在持续的基础上,以相对于其正常有序结晶状态更为快速的速率释放。

在本发明推荐的实施例中,此改良材料为在冷处理条件下机械加工挤压产生和维持原子无序状态的金属粉末。

此处术语“金属粉末”是指包含较大范围颗粒尺寸的金属颗粒,从毫微米的粉末直至片状粉末。

此处术语“冷处理”指此材料在低于其重结晶的温度下进行如研磨、锻打、挤压等机械加工,以保证原子的无序状态可保持在加工后的材料中。

在另一个推荐的实施例中,这种改良材料是用汽相淀积技术在底基上形成的一种金属层,此类技术包括真空蒸镀、溅射镀膜、磁控溅射镀膜或电离镀膜等。形成的条件是在淀积过程中限制扩散,淀积后限制退火和重结晶。在镀覆层中用来产生原子无序的适宜淀积条件与正常状态下制造缺陷、致密、光滑的薄膜的操作条件不同,这种正常操作为公知(见例如R.F.Bunshah等,Supra)。淀积最好在低的底基温度下进行,以使底基温度与沉积的金属或金属化合物的熔点之比(T/Tm)至少保持在约0.5以下,以少于约0.35更好,最好低于0.3。此比率的温度为开氏绝对温度。该最适宜的温度比依不同金属而变化并随合金或杂质含量而增加。其它产生原子无序状态的适宜的淀积条件包括高于正常工作气压、镀料流低于正常的入射度和高于正常的镀料流量之中的一种或多种。

淀积或冷处理的温度也不可太低,以防止当材料温度上升至室温或其使用温度(例抗菌材料的体温)时发生退火或重结晶。如果淀积温度与使用温度之间的温度差(△T)太大,就会发生退火,消除原子的无序状态。△T随金属种类不同和所用的淀积技术变化。例如对银来源,物理汽相淀积过程中底基温度以-20至200℃为宜。

淀积一般要求的致密、光滑、无缺陷的金属薄膜的正常或环境工作气压根据所用的物理气相淀积方法而变化。一般地,溅射镀膜的正常工作气压为低于75mT(毫乇),磁控溅射镀膜的则低于10mT,电离镀膜则低于200mT。真空蒸发法的正常环境气压变化如下:电子束或电弧蒸镀,从0.001mT至0.01mT;气体散射蒸镀(压力镀膜)和反应性电弧蒸镀,达200mT,但典型地低于20mT。因此,按照本发明的方法,除了用低的底基温度达到原子的无序状态以外,可采用比正常值高的工作(环境)气压来增加镀膜中原子的无序程度。

在本发明的镀覆层中还发现另一影响原子无序程度的条件是淀积时镀料流的入射角。正常地要产生致密、光滑的镀膜,此角度应保持在约90°±15°。按照本发明,除了淀积过程中低的底基板温度可产生原子的无序外,小于约75°的入射角也可用于增加镀膜中原子的无序程度。

还有另一工艺参数影响原子的无序程度,即为原子流向镀膜表层的流量。高速沉积可增加原子的无序性,但高淀积速率也会增加镀膜温度。因此,最适宜的淀积速率决定于喷镀技术,镀膜材料和其它过程参数。

用于镀膜或粉末的金属是那些具有抗菌作用,且生物适应的(非毒性)的金属。较适宜的金属包括银、金、铂、钯、铱(这些为贵金属)、锡、铜、锑、铋、和锌,以及含有一种或多种此类金属的化合物或合金。这些金属下文被称为“抗菌金属”。最适宜的是银及其合金和化合物。本发明的防菌材料最好有足够的原子无序以使其能持续释放该材料的原子,离子,分子或原子团于醇和水基的电解液。此处术语“在持续的基础上”,一方面用于区分批料金属释放情况,其释放金属离子等的速度和浓度太低不足以起抗菌作用;另一方面用于区分高度可溶性盐的释放情况,例如硝酸银,在乙醇或水基电解液中实际为瞬时释放。相反地,本发明的抗菌材料是以足够的速度,浓度释放该抗菌材料的原子、离子、分子或原子束,在足够时间内提供抗菌作用。

此处的术语“抗菌作用”指该防菌金属的原子、离子、分子或原子束释放到电解液时,该材料以足够的浓度抑制材料附近的细菌生长。测定抗菌作用的最常见方法是测量当此物质置于细菌菌苔中时产生的抑菌圈(zoⅠ)。相对小或无抑菌圈(例如如小于1mm)表示无有效的抗菌作用,而较大的zoⅠ(例如大于5mm)则表示高效抑菌作用。下面的实施例将陈述zoⅠ试验的步骤。

本发明还延及到器具,例如由这种抗菌粉末和镀膜制造掺和、载带和外包膜的医疗器械。这种抗菌镀膜可直接用汽相淀积法镀膜于诸如导管、缝合线、移植物、烧伤包扎材料等医疗器械上。可以在器械和抗菌镀膜之间运用一层粘着层,如钽。还可用现有技术已知的方法增加粘着力。如浸蚀底板,用同时溅射镀膜和浸蚀的方法在底板和镀膜之间形成一个混合的界面。抗菌的粉末可用现有已知技术混合入乳液,高聚物、陶瓷、涂料和其它基质中。

本发明更为广泛的方面来说,改良材料被制备成含有原子无序的合成金属镀膜。在此情况下,待释放到溶液中的一种或多种金属或化合物的镀膜构成了含有不同材料的原子或分子的基质。不同原子和分子的存在使金属基质产生原子的无序状态,如由于不同规格的原子的作用。不同的原子或分子可以是一种或多种第二金属、金属的合金或化合物,它们能被同时或顺次地沉积在要释放的第一种金属上。另一方面在反应性汽相淀积中也会从工作气体中吸收或捕获不同的原子或分子。原子无序的程度,以及因此产生的溶解度,是不同的原子和分子混杂产生,随不同材料而不同。为了保持和增加复材料中的原子的无序程度,结合包含不同原子或分子,可运用一种或多种上述汽相淀积条件。这些条件指低的底基温度,高工作气压,小的入射角度和高镀料流量。

抗菌用优选的复材料是通过在淀积抗菌金属时在工作气氛中包括含氧、氮、氢、硼、硫或卤素的原子和分子形成的。这些原子或分子结合到镀膜中,或是通过被薄膜吸收或捕获,或是通过与沉积的金属发生反应实现的。下文中这样的淀积机制均被称为“反应性沉积”。含有这些元素的气体,如氧气、氢气和水蒸汽可以连续加入或脉冲或依次加入。

抗菌复合材料最好由同时或依次沉积一种抗菌金属和一种或多种生物相容的惰性金属而制备。惰性相容金属选自钽、、铌、锌、、铪、钼、。另外,复合材料还可同时、相继或反应性沉积一种或多种抗菌金属的氧化物、化物氮化物、硼化物、硫化物或卤化物与惰性金属的氧化物、碳化物、氮化物、硼化物、硫化物或卤化物而制备。特别推荐的复合材料是单独含有银和/或金的氧化物,或其与一种或多种钽、钛、锌和铌的氧化物。

如上所述,本发明的应用范围不仅仅是抗菌材料。尽管如此,在此公开的关于抗菌金属的发明只是其它金属、金属合金和金属化合物使用情况的说明。推荐的金属包括铝、硅以及元素周期表以下族在第4.5.6周期的金属元素:ⅢB、ⅣB、ⅤB、ⅥB、ⅦB、ⅧB、ⅠB、ⅡB、ⅢA、ⅣA和ⅤA(包括砷),(见Merck  Index  ioth  Ed.,1983,Merck  and  Co.Inc.,Rahway,N.J.,Martha  Windholz出版的元素周期表)。不同的金属有不同的溶解度。然而,本发明的原子无序状态的产生和保持会改善金属离子、原子、分子或原子束溶解(释放)到适当的溶剂(即某种材料的溶剂),特别是极性溶剂的情况,超过该材料在正常有序结晶状态下的溶解度。

掺入、载带或镀覆本发明的抗菌材料制成的医疗器械一般与含有体液(例如血液、尿液或唾液)和身体组织(如皮肤、肌肉或骨髂)的醇或水基电解液接触任意一段时间,以便能在器械表面生长微生物。术语“醇或水基电解液”还包括醇或水基的凝胶体。大多数情况下这些器械为医疗器械如导管、移植物、导气管、矫形针、胰岛素、伤口挡板、引流管、包扎材料、分流器、连接器、假体、起搏器导管、针、外科器械、牙科修补物、呼吸器导管及其它。而且,本发明不应局限于此类器械,还可为其它有用的保健消耗器,例如无菌包装材料,无菌衣服和袜,个人卫生用品如尿布和卫生垫,生物医学或生物工程实验室的设备,如工作台、罩和墙表面及其它。此处及权利要求中的“医疗器械”广义地泛指所有此类器械。

这种器械可由任何的材料制造,例如金属,包括钢、铝及其合金、橡胶、尼龙、硅树脂、聚脂、玻璃、陶瓷、纸、布和其它塑料和橡胶。如果用作体内医疗器械,则必须用不与生物反应的材料。此器械可按用途做成各种形状,从平板到圆盘、圆棒和空心管。器械也可根据其用途做成刚性或韧性的。

抗菌镀膜本发明的抗菌镀膜是用气相淀积技术沉积在医疗器械一个或多个表面的金属薄膜。现有技术已知的物理气相技术是将金属从气相逐个原子地沉积在一种底基的表面。这种技术包括真空和电弧蒸镀,溅射镀膜磁控溅射镀膜和电离镀膜。沉积过程以上述的产生原子无序的方式进行。产生原子无序的不同的条件是有用的。一般地这些条件主要防止形成无瑕疵光滑,致密的薄膜(例见J.A.Thornton,Supra)。在研制此种工艺的这些条件之前,还没有将增加此法产生的镀膜溶解度与它们联系起来。

沉积过程产生原子无序的适宜条件包括:-低的底基温度;即保持被镀表面的温度使底基温度与这种金属的熔点之比(绝对温度)低于约0.5,优选低于约0.35,最好低于约0.3,和以下二个条件或其中之一:-高于正常(或环境)气压,即对于真空蒸镀电子束蒸镀或电弧蒸镀,大于0.01mT;气体散射蒸镀(压力镀膜)或活化电弧蒸镀,大于20mT;溅射镀膜,大于75mT;磁控溅射镀膜,大于约10mT;电离镀膜,大于约200mT;

-保持镀膜表面上镀膜流的入射角低于约75°,以低于约30°为宜。

镀膜所用金属是那些已知具有抗菌作用的。对大多数医疗器械而言,所述金属还必须是生物适用的。较宜的金属包括贵金属银、金、铂、钯、铱和锡、铜、锑、铋、锌或这些或其它金属的合金和化合物。最适且的是银和金、或含有一种或多种这些金属的合金和化合物。

镀膜至少在医疗器械的一部分表面形成薄膜。薄膜的厚度根据在一段适当时间内在持续的基础上释放离子的需要决定,不会更厚。在这方面,厚度将随镀膜所用金属不同(引起溶解度和抗磨性变化)而变化,还随镀膜原子无序程度(及由此引起的溶解度)变化而变化。厚度必须足够薄使镀膜不会影响器械的尺寸范围和韧性及最终用途。典型地,发现低于1微米的厚度已能提供足够持续的抗菌活性。可按持续一段时间释放金属离子的程度增加厚度。产生大于10微米的厚度通常是较昂贵,通常情况下应不需要。

当器械与诸如体液、组织等醇和水基电解液接触时镀膜就产生抗菌作用,释放金属离子、原子、分子或原子束。能产生抗菌作用的金属浓度随金属不同而不同。一般地在体液如血浆、血清、尿液中能起抗菌作用的浓度低于约0.5-1.5μg/ml。

在持续的基础上从镀膜中释放金属原子、离子、分子或原子团能力由一素列因素决定,包括镀膜的特性如组成、结构、溶解度和厚度,以及使用器械的环境的特性。当原子无序水平增加时,每个单位时间释放的金属离子数量也增加。例如,在T/Tm<0.5和工作气压约为7mT条件下用磁控溅射镀膜法沉积的金属银薄膜,释放1/3的银离子,而同样条件,但在30mT气压下沉积的薄膜释放超过10天。中间结构(例低压、低入射角等)产生的薄膜,其Ag释放值居于生物测定决定值之间。这提供了本发明的生成可控制释放的金属镀膜的方法,制备慢速释放的镀膜使无序程度低,制备快速释放的薄膜使无序程度高。持续的、均一的镀膜全部溶解所需的时间是膜厚度和其所暴露环境特性的函数,与厚度的关系接近线性,即膜厚度增厚两倍将使寿命增长两倍。

还可通过形成具有调制结构的薄膜的方法来控制金属释放。例如,用磁控溅射镀膜法在50%的沉积时间内为低工作气压(例15mT)其余时间为高气压(例30mT)的条件下所沉积的镀膜有一个快速释放金属离子的开始,随后有一个较长时间的慢速释放。这类镀膜在输尿管这样的器械中非常有用,因为它们要求有一个快速起始释放以立即达到抗菌浓度,随后要求较慢速地释放以保持金属离子的浓度离子的浓度几星期。

气相沉积过程中底基的温度应不低至当膜温度上升至环境温度或其使用温度(如体温)时发生退火或重结晶的程度。允许的△T,即沉积过程底基温度与最终使用温度之差,将随不同金属而不同,最适宜的金属银和金,底基温度以-20℃至200℃为较好,最好为-10℃至100℃。

按照本发明,还可以用制备金属材料的方法得到原子的有序。金属材料是指在包括与抗菌金属不同的原子和分子的金属基质中含有一种或多种抗菌金属的材料。

本发明人制备复合金属材料的技术为同时或相继沉积抗菌金属和一种或多种其它惰性的、生物相容的金属。此类金属选自钽、钛、铌、锌、钒、铪、钼、硅、铝及其合金或其它的金属元素,典型地为其它过渡金属。这样的惰性金属含有与抗菌金属不同的原子半径,在沉积过程产生原子的元序。此类合金也可用于减少原子扩散和稳定无序结构。最好利用多个靶的沉积装置以放置每一种抗菌和惰性金属。当逐层镀膜时惰性金属层应该是不连续的,例如好象抗菌金属基质中的岛一样。抗菌金属与惰性金属的最终比率大于约0.2,最宜用的惰性金属是钛、钽、锌和铌。还可以成由一种或多种抗菌金属的氧化物、碳化物、氮化物、硫化物、硼化物、卤化物或氢化物以及一种或多种惰性金属组成的抗菌镀膜,得到所需的原子无序状态。

本发明范围内的另一复合材料是由物理气相淀积技术反应性,同时或相继地将一种反应材料沉积到抗菌金属膜中。这种反应材料为抗菌金属和/或惰性金属的一种氧化物、氮化物、碳化物、硼化物、硫化物、氢化物或卤化物,就地将合适的反应物或同种的气体(例如空气、氧气、水、氮气、氢气、硼硫、卤素)喷入沉积槽。这些气体的原子或分子也可被金属膜吸收和捕获产生原子无序。沉积过程中反应物应持续地施加以保证同时沉积或脉冲式加入以实现相继沉积。抗菌金属与反应产物的最终比例应大于约0.2。空气、氧气、氮气和氢气是特别适宜的反应物。

以上制备复合镀膜的镀膜技术可用也可不用前面讲座过的条件:低的底基温度,高工作气压和小的入射角。这些条件中的一个或几个可以较好地保持和增加镀膜产生的原子无序。本技术领域专业人员知道,在淀积本发明的抗菌膜之前,被镀器械包裹一层粉附层可能是有利的。例如对于橡胶器械,先镀上一层钛、钽或铌以增加随后镀上的抗菌膜的粘附性。

抗菌粉末所有抗菌粉末,包括毫微米的粉末和由快速凝固的薄片形成的粉末,均能形成具有原子无序状态以增加溶解性。不论是纯金属、金属合金还是如氧化物或金属盐之类的化合物粉末,均可被机械加工或挤压成为部分的原子无序状态。机械地部分无序是在低温(即低于该材料的重结晶温度)条件下产生以保证不会发生退火和重结晶。温度随不同金属而不同,如为合金或具有不纯成分时温度增加。

本发明制造的抗菌粉末可用不同形式运用例如用于局部的乳剂,涂料或粘附膜。另一方面,此种粉末还可掺入高聚物,陶瓷和金属基质,用作医疗器械或其保护膜的材料。

本发明进一步用以下非限制性实施例说明。

实施例  1一种尺寸为2/0的缝合材料聚酯带表面用磁控管溅射镀膜镀上一层银一铜合金薄膜,厚度为0.45微米,氩气工作气压为7毫乇或30毫乇,0.5千瓦能量,T/Tm比率小于0.5。

用抑菌圈试验法测试其抗菌效力。加入10%/血清和1.5%琼脂培养基的含有Eorle′s盐和左旋的谷胺酸的基础培养基(15ml)到入培养皿中。在接种一种Staphy  lococcus  aureus  ATCC#25933号菌苔之前使用有培养平面的表面干燥。菌种的制备按造Bactrol  Discs(Difco,M.)操作指示的第一步进行复制。接种之后立即将欲测试的材料或镀膜置于琼脂的表面。将培养皿保温在37℃二十四小时,之后测量和计算修正的抑菌区或修正的抑菌区域抑菌圈直径一测试材料与琼脂的接触直径。

结果显示,没有镀膜的缝合线没有抑菌圈7毫乇下镀膜缝合成的抑菌区域小于0.5mm,30毫乇下镀膜的缝合线抑菌区域为13mm。显然,按照本发明镀膜的缝合线显示较明显和有效的抗菌作用。

实施例  2本实施例说明用磁控油射镀膜设施在不同的工作气压和入射角(即原子溅射途经与底金属之间的角)条件下将金属银镀膜于硅晶片上的表面结构。其他条件如下:镀膜速率为200A/分,底基温度与银的熔点(1234°K)之比T/Tm小于0.3,氩气压为7毫乇(正常金属镀膜的工作气压)和30毫乇。每种气压下的入射角分别为90°(正常入射角),50°和10°,镀膜厚度为0.5微米。

所得表面用扫描电子显微镜观察,当氩气压从7毫乇增至30毫乇时,晶粒尺寸减小而空隙体积明显增大。当入射角减小时,晶粒尺寸减小,晶粒的边界更加明显。在7毫乇氩气压和10°的入射角之下,晶粒之间有明显的空隙。当气压增至30毫乇时,入射角度对表面分布情况有效大的影响。在90°时,晶粒尺寸的变化为60-150nm,许多晶粒被15-30nm宽的空隙体积显著增加。在10°时晶粒直径减至10-60nm空隙体积再进一步增大。

表面形态和分布状况在纳米水平上的变化显示了金属银原子的无序状态。在没有这样联系之前,认为这样的原子无序引起的化学活性的增加原因是内部张力的增加和由不同尺寸的原子引起的表面粗糙。还认为化学活性的增加引起了当与电解液如体液接触时镀膜溶解度的增加。

镀膜的抗菌效力用实施例1的抑菌圈测试法测定。每个镀膜的硅晶片置于一个单独的盘上,当固态银(即纯度大于99%的银)薄片,丝和膜均被测试时,比较所得的抑菌圈。结果总结如表1。很明显纯银器械和7毫乇下的溅射度膜没有任何生物学效果。但是在高于正常的工作气压,30毫乇下的镀膜显示出抗菌效果,可由盘上明显的抑菌圈显示。当用较高的气压时,入射角的减小对抗菌活性有最大的影响。

表  1不同银和银镀膜样品的抗菌效果(用Staphy  lococcus  anreus测定)样品  银百分率  沉积角度  工作气压(毫乇)  修正的抑菌区域(mm)银箔  99+  -  -  <0.5银丝  99+  -  -  <0.51.0045"银铸膜  99+  -  -  <0.5溅射镀  99+  常规(90°)  7  <0.5膜薄膜溅射镀  99+  50°  7  <0.5膜薄膜溅射镀  99+  10°  7  <0.5膜薄膜溅射镀  99+  常规(90°)  30  6.3膜薄膜溅射镀  99+  50°  30  10膜薄膜溅射镀  99+  10  30  10膜薄膜实施例  3用磁控管溅射镀膜的方法在常规入射角和7毫乇和30毫乇工作气压下将银和铜(80∶20)的合金镀膜于硅晶片上,其它条件与实施例2相同。与实施例2一样,用扫描电子显微镜(SEM)观察,在高的工作气压下形成的镀膜晶粒尺寸比低的工作气压下形成的小,而空隙体积则较大。

用实施例1的抑菌圈测试法测试在同样条件下用50∶50的银/铜合金形成的镀膜。结果如表2。在低的工作气压(7毫乇)下沉积的镀膜显示最小的抑菌圈,高工作气压(30毫乇)下沉积的镀膜产生较大的抑菌圈,表示其抗菌活性。

表  2不同溅射镀膜沉积银、铜合金的抗菌效果(用Staphylocococcus  aureus测定)样品 银百分率 沉积角度(°) 工作气压(毫乇) 修正的抑菌区域(mm)1  50  常规(90°)  7.5  <0.52  50  常规(90°)  30  163  50  10  30  19实施例  4测定本发明的镀膜以确定释放入溶液的银离子浓度随时间的变化情况。如实施例2在7毫乇和30毫乇和常规入射角条件下将1cm的硅晶片镀5000

厚的银膜用文献(Nickel el al.,Eur.J.Clin.Micrbiol.,4(2),213-218,1985)的方法,配制一种无菌合成尿液分放到试管中(3.5ml),将镀膜的圆片置入每个试管在37℃下保温不同的时间,不同时间之后拿走圆片,用中子活化分析测定过滤的合成尿病中银的含量。

结果如表3,此表显示了在7毫乇和30毫乇下镀膜的圆片一段时间后释放的银的量。高压下镀的膜溶解度高于低压镀膜。应注意到这个测试是静态测试,一段时间后银的水平与一直变化的体液中的情况有所不同。

表  3合成尿液中银浓度作为暴露时间的函数  银浓度μg/ml暴露时间(天)  氩气工作气压7毫乇  氩气工作气压30毫乇0  ND1  ND1  0.89  1.943  1.89  2.3610  8.14  23.06注:镀膜入射角为常规90°1-ND(not  detectable)不可测出<0.46μg/ml实施例  5本实施例说明本发明的由另一种贵金属钯形成的镀膜。正如实施例2那样,在7毫乇或30毫乇工作气压,入射角为90°和10°的条件下在硅晶片上形成厚度为5000A的镀膜。用实施例1的抑菌圈测试法测定镀膜圆片的抗菌能力。镀膜圆片膜向上使琼脂在其表面上形成1mm的薄膜。使介质凝固。表面干燥,之后将菌苔播于其上。培养皿在37℃下保温24小时,目视法分析其生长数量。

结果如表4。高操作气压下镀成的膜其生物活性大于低压操作镀成的膜。改变入射角度(减小)在低压时可以比高压时较大程度地提高镀膜的抗菌效力。

表  4用溅射镀膜金属钯对taphylocococcus  aureus的表面控制样品  溅射镀膜压强  沉积角度  抗菌的调控1  7mT  90°(常规入射)  多于90%表面生长细菌2  7mT  10°(切线角度)  20-40%表面生长细菌3  30mT  90°(常规入射)  少于10%表面生长细菌实施例  6本实施例说明银镀膜温度对膜抗菌活性的影响。用磁控溅射镀膜设施钭橡胶Foley导管2.5cm的部分镀上金属银。操作条件如下:镀膜速度为每分钟200A,氩气工作气压为30毫乇,底板温度与金属银熔点之比T/Tm为0.30或0.38,在此实施例中,由于底板是柱状、粗糙的,所以入射角是变化的,即入射角围绕圆周变化,在更精确的水平上,还随边和顶部的表面特性而变化,用抑菌圆测试法测定其抗菌效力。

结果显示当T/Tm值为0.30和0.38时,其修正的抗菌区域分别为0.5和16mm,较低T/Tm值Foley导管镀膜的抗菌效力较高。

实施例  7本实施例展示一个市售导管用直流磁控溅射镀膜法形成的抗菌镀膜。一种聚四氟乙烯(特氟隆Teflon)包膜的橡胶Foley导管表面用直流溅射镀膜法度上99.99%的纯银,条件如表5所示。所用的操作气体为市售氩气和重量百分比99/1的Ar/O2。

镀膜的抗菌效力用抑菌圈试验测定。将Muellev  Hinton琼脂倒入培养皿。接种Staphylococcus  aureus  ATCC#25923菌苔之前琼脂平面平面干燥。菌种按每步操作指示复制的Bactrol  Dixs(Difco.,M)制备。接种之后立即将要测试的镀膜材料置于琼脂的表面,培养器在37℃下保温24小时,保温之后测量抑菌圈并计算校正的抑菌区域(校正的抑菌区域=折菌区域-测试材料与琼脂的接触直径)。

结果显示没有镀膜的样品没有抑菌区域。在5mT操作气压下,在市售氩气中溅射镀膜的导管其校正的折菌区域小于1mm,在40mT操作气压下重量百分比99/1的Ar/O中溅射镀膜的导管校正的抑菌区域为11mm,XRD分析显示1%氧气中溅射镀膜的膜是结晶的银薄膜。此结构明显提高导管的抗菌效能。

表  5抗菌镀膜所用直流磁控溅射镀膜条件市售氩气中溅射镀膜的样品 99/1(重量百分比)Ar/O2中溅射镀膜样品能量0.1千瓦  能量0.5千瓦氩气压强5毫乇 Ar/O2压强40毫乇起始底板温度20℃  起始底板温度20℃阳-阴极距离40mm  阴-阳极距离100mm镀膜厚度2500A  镀膜厚度3000A实施例  8此实施例展示了由电弧蒸镀、气体散射蒸镀(压力镀膜)和活化电弧蒸镀形成的银镀膜。99.99%的银气化后镀于硅或铝的晶片上,底板的起始温度为21℃,其它参数如下:偏压(Bias):  -100V电流:  20安培一小时(Amp-hrs)入射角:  90°

工作气压: 0.01mT(电弧),26mT Ar/H 96∶4(气体散射蒸镀),26mT O2(反应性电弧蒸镀)真空电弧蒸镀镀膜的晶片没有修正的抑菌区域,工作气体包括氩气和4%氢气的压力镀膜产生6mm的抑菌区域,操作气体为纯氧气(反性性电弧蒸镀)产生8mm抑菌区域,产生厚度4000埃的薄膜。结果显示在气化空气中有氢气或/和氧气这类气体能提高镀膜的抗菌效力。

实施例  9本实施例说明用复合材料产生抗菌效能。用高频磁控溅射镀膜法在下面的条件下镀上一组氧代锌膜。氧化锌镀膜没有折菌圈。

按照下列的条件,以75/25重量百分比的比率依次溅镀银层和氧化锌层,厚度为3300埃。当氧化锌层为约100埃厚时,此镀膜没有抑菌区域。但是,在银的基质中有非常薄的(小于50埃)的不连续的氧化锌层的小岛时(即为一种复合薄膜),具有8mm的修正的抑菌区域。

沉积氧化锌的条件为:工作气体=氩气,工作气压=毫乇,阴-阳极距离:40mm,起始底板温度:21℃,能量:高频磁控管0.5千瓦。

沉积银的条件为:工作气体=氩气,工作气压=30毫乇,阴-阳极距离:40mm,起始底板温度:21℃,能量:直流磁控,0.1千瓦。

实施例  10本实施例展示用抑菌区域测试法显示的冷处理和锻烧银和金粉末对其抗菌效力的影响。冷处理这种粉末产生一种含有原子无序的表面结构,而原子无序有利于离子的释放产生抗菌效能。这种缺陷结构的抗菌效能则可以被退火消除。

毫微米结晶的银粉末(晶体大小约30nm)被喷洒于粘着带上然后测试。用实施例7的方法得到5mm的抑菌圈。用40.000磅/英寸压出一个0.3克的毫微米时产生9mm的抑菌区域。用球磨机机械处理毫微米结晶的银粉末30分钟,测定所得粉末的抗菌活性,用洒于贴附带和施于盘中的方法按上面的条件将粉末压成一个粒状再放在右盘上。观察到的抑菌区域分别为7和11毫米。在真空条件500℃下将加工后的粉末压成的颗粒锻烧。可测到退火后的颗粒产生3mm的抑菌圈。

此结果显示本身具有小的抗菌效力的毫微米结晶的银粉末,在用球磨机机械加工或挤压成为颗粒状产生原子无序后,抗菌效力提高。在500℃下锻烧后抗菌效力明显减小。因此,机械加工的条件应不包括高温这种引起扩散的条件,冷处理对限制扩散是有益的,例如在室温下加工或在液氮中研磨。

1微米粒径的银粉末在与上面相同的条件下测试。将银粉末洒在粘附带上测试其抑菌区域,发现没有抑菌圈,用球磨机处理粉末30秒然后洒在粘附膜上,测试发现有6mm的抑菌区域。当银粉末(在用球磨机机械加工时或之后)用40,000磅/英寸2的压强压成0.3克的颗粒。从球磨机加工后的粉末经500℃锻烧1小时后形成的颗粒抗菌活性明显下降。开始时颗粒具有一些活性(4.5mm抑菌圈),但再次测试时,却没有观察到抑菌圈。而控制未经锻烧的颗粒甚至在14次反复测试之后仍然有大于4mm的抑菌区域。这表明机器加工后的锻烧限制粉末中抗菌银的持续释放。

毫微米结晶的金粉末(20nm结晶体),用洒在粘附带然后测试抑菌区域的方法测试其抗菌效力,没有发现抑菌圈。用40,000英磅/英寸2的压力将之压成0.2克的颗粒状,测到10mm的抑菌区域。当挤压后的颗粒在500℃下真空退火1小时,发现抑菌区域为0mm。

此结果表明能用压成颗粒这样的机械加工方法提高金粉末的溶解度从而提高抗菌功效。抗菌活性可被退火消除,最好用冷处理。

在上面的机械加工条件下,其它的金粉末(包括2-5微米和250微米大小的金粉末)没有显示抗菌效力。因此,认为毫微米结晶的金粉末其晶粒尺寸小和机械处理是产生所需抗菌效力的辅助因素。

实施例  11

本实施例展示由活性反应溅射镀膜形成的一种复合抗菌膜(组合膜的另一例子)。实施例7显示银的一种抗菌镀膜可由在氩气和1%的氧气(0.5KW,40毫乇,100mm阴阳极距离,20℃)下溅射镀膜得到,产生11mm的抑菌区域。

当在以下的条件,工作气体为氩气和20%氧气(重量比)时溅射镀膜抗菌涂层,抑菌区域为6至12毫米。这表明气相沉积中活性反应气体的组成在广泛的沉积参数范围内对产生抗菌膜具有效应。

溅射镀膜条件靶  99.99%银工作气体  80/20(重量百分比)氩气/氧气工作气压  2.5-5毫乇能量  0.1-2.5千瓦底板温度  -5-20℃阳极-阴极距离  40-100毫米底压小于4×10-6乇实施例12本实施例表明本发明的镀膜对广泛的菌谱具有抗菌作用。

由Prooincial  Laboratory  of  Public  Health  for  Northern  Alberta提供了包括18属55种的共171个不同的细菌样品。这些样品被快速冷冻于20%的脱脂乳中然后贮藏在-70℃几个月至几年。在标准Kirby-Bauev易感性测试条件下不能生长在合成培养基上的不易生长的生物将不被使用。用无菌的拭子将每一种冷冻的样品接种到血清琼脂平面(BAP)次日早晨将独立的菌落移到新鲜的BAP上继代培养,35℃保温过夜。第二天用下述的Kirby-Bauer易感性试验测试。从每个BAP再次培养物中选择四到五个形态相同的菌落(如菌落小可更多)接种到含有约5毫升胰蛋白豆肉汤LTSB的独立试管中。在35℃下保温2到3小时,此时多数肉汤的浊度等于或超过0.5McFarLand标准。更混浊的样品用无菌生理盐水稀释至可用视觉与标准比较的浊度。试管在有黑色对比线的白色背景前观察以辅助目测浊度。

少数的微生物(链球菌和棒状杆菌)在TSB中生长不好。培养后这些肉汤的浊度低于0.5McFarland标准。从BAP再次培养物中接种更多菌落进这些试管以使浊度增加至接近此标准。

在15分钟内将一无菌棉拭浸入每个肉汤内调节细菌悬浮液的浊度。沿着试管边缘转动棉拭除去多余的液体,菌种用棉拭均匀地沿三个方向划线到Mueller  Hinton(MH)琼脂平板的整个表面,将三个1cm×1cm的镀银膜硅晶片放在平板上翻转在35℃下保温过夜。镀膜是在下列条件下用溅射镀膜法得到,通过XFD分析为银/氧化银组合膜。

靶:99.99%银工作气体:氩气/氧气80/20工作气压:40毫乇能量:0.1千瓦沉积温度:20℃底压:2×10-6乇阴极-阳极距离:40mmBAP培养的对照由Provincial  Laboratory提供,包括Staphylococcus  aureus  ATCC  25923,Pseudomonas  aeruginosa  ATCC  27853;Escherichia  coli:ATCC  25922;和Enterococcus  faecalis  ATCC  29212以检查MH琼脂的质量。除了在MH琼脂的菌苔上是放置标准的抗菌园片而不是镀银硅晶片之外,培养的方式与测试细菌时一样。这些细菌显示MH琼脂适合标准的ZOI测试。

35℃保温16至18小时后,测量硅晶片或抗菌圆片的抑菌区域。用整个抑菌区域的大小减去晶片的大小(1cm),计算出修正的折菌区域。典型的结果如表7表示。

Table7:  广谱微生物对银镀膜硅晶片的感应性生物  来源  修正的抑菌区域Staphylococcus  epidermidis  RC-455  血  10Bacillus  licheniformis  R-2138  胫骨  6Corynebacterium  sp  R-594  腿骨  10Listeria  monocytogenes  R-590  血  5Enterococcus  faecalis  SR-113  骨  5Streptococcus  bovis  SR-62  血  10Escherichia  coli  R-1878  尿  11Klebsiella  ozonae  R-308/90  腹  10Enterobacter  cloacae  R-1682  未知  8Proteus  vulgaris  3781  尿  4Providencia  stuartii  U-3179  尿  8Citrobacter  freundii  U-3122/90  尿  7Salmonella  typhimirium  ER-1154  尿  6Serraria  marcescens  R-850  痰  6Pseudomonas  aeruginosa  U-3027  尿  10Xanthomonas  maltophila  90-10B  未知  9Aeromonas  caviae  R-1211  伤口  5Branhamella  catarrhalis  R-2681  未知  12银镀膜实施例  13本实施例说明钽作为本发明镀膜的粘附层的作用。已知钽作为一种材料,能够以一种中间层的形式提高薄膜与底板的粘附能力。本实施例测试用乙醇清洁的一组不锈钢(316)(1×1cm)和硅(1.7×0.9cm)试样用溅射镀膜法镀上一层薄的(约100埃)钽层再沉积抗菌银膜。第二组试样只镀抗菌银膜。镀膜条件如下。所有样品有相同的抗菌活性,但镀钽的部分比未经处理的试样具有更好的粘附特性。粘附特性的测定用一种标准的粘性测试方法-美国材料试验学会第D3359-87号方法(ASTM  method  D3359-87)溅射镀膜条件靶  99.99%钽工作气体  99/1(重量百分比)氩气/氧气工作气压  10毫乇能量  0.5千瓦底基温度  20℃阳极-阴极距离  10mm靶  99.99%银工作气体  99/1(重量百分比)氩气/氧气工作气压  40毫乇能量  0.5千瓦底基温度  20℃阳极-阴极距离  10mm实施例  14用直流磁控溅射镀膜将99.98%的银从阴极沉积到硅和铝的晶片上。工作气体用以水增加湿度的市售氩气。增加湿度的方法是将氩气通过两个装有3升室温的水的烧瓶和一个装有玻璃纤维的烧瓶。后者用来在气体进入溅镀装置前吸去游离的液体。

溅镀的条件和对银镀膜进行的标准抑菌区域测试结果如下表所示。用未经水处理的氩气镀出的银膜没有抑菌区而用氩/水混合物作为工作气体镀上银膜则有达8mm的修正的抑菌区域。

表  8抗菌镀膜所用直流磁控溅射镀膜条件工作气体  工作气体  能量  底基温度  阴/阳极距离  修正的ZOI市售氩气  10毫乇  0.5千瓦  -10℃  100mm  0mm通过H的  10毫乇  0.5千瓦  -10℃  100mm  8mm氩气本说明书提到的所有出版物都代表着本发明所属技术领域专业人员技术水平,这些出版物均供参考。

本说明书中的术语和表达均用于说明而非限制。并无意用这类术语。表达,实施例等认可和限制本发明的范围。本发明的范围将由随后的权利要求书限定。

QQ群二维码
意见反馈