Electrostatic capacity sensor and its manufacturing method

申请号 JP2003127980 申请日 2003-05-06 公开(公告)号 JP2004191348A 公开(公告)日 2004-07-08
申请人 Nitta Ind Corp; ニッタ株式会社; 发明人 MORIMOTO HIDEO;
摘要 PROBLEM TO BE SOLVED: To provide an electrostatic capacity sensor with which consumption power can be reduced by switching of a sleep mode properly. SOLUTION: A capacitive element is constituted between a displacement electrode 12 and the capacitive element electrodes E1 and E2. Above the displacement electrode 12, a movable electrode 15 for a return switch which can come into contact with the displacement electrode 12 due to the displacement of a direction button 32 is set separately. When the direction button 32 is operated, the movable electrode 15 for the return switch moves, then, contacts with the displacement electrode 12. Both the movable electrode and the displacement electrode move with a contact state. Due to the displacement of the displacement electrode 12, a distance between the capacitive element electrodes E1 and E2 changes, so an electrostatic capacitive value of the capacitive element changes, a force is recognized based on the change. At a transition process from a non-contact state between the displacement electrode 12 and the movable electrode 15 for the return switch to the contact state, an output signal surely changes across a threshold voltage. COPYRIGHT: (C)2004,JPO&NCIPI
权利要求
  • 導電性部材と、
    前記導電性部材との間で容量素子を構成する容量素子用電極と、
    前記導電性部材に対して前記容量素子用電極の反対側に離隔配置されており、力が加えられることにより変位して前記導電性部材と接触してから前記導電性部材を変位させることが可能な1または複数の可動電極とを備えており、
    前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記可動電極に加えられた力を認識可能であることを特徴とする静電容量式センサ。
  • 基板と、
    前記基板と対向している検知部材と、
    前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能な導電性部材と、
    前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、
    前記基板上に形成された1または複数の固定電極と、
    前記検知部材と前記導電性部材との間に位置し、前記固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能な1または複数の可動電極とを備えており、
    前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とする静電容量式センサ。
  • 基板と、
    前記基板と対向している検知部材と、
    前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能な導電性部材と、
    前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、
    前記基板上に形成され、前記導電性部材と電気的に接続されるとともに、接地された基準電極と、
    前記基板上に形成され、接地電位とは異なる電位に保持された固定電極と、
    前記検知部材と前記導電性部材との間に位置し、前記固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能な可動電極とを備えており、
    前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とする静電容量式センサ。
  • 基板と、
    前記基板と対向している検知部材と、
    前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能な導電性部材と、
    前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、
    前記基板上に形成され、前記導電性部材と電気的に接続されるとともに、接地電位とは異なる電位に保持された基準電極と、
    前記基板上に形成され、接地された固定電極と、
    前記検知部材と前記導電性部材との間に位置し、前記固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能な可動電極とを備えており、
    前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とする静電容量式センサ。
  • 基板と、
    前記基板と対向している検知部材と、
    前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能であって、絶縁状態に維持された導電性部材と、
    前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、
    前記基板上に形成され、接地された固定電極と、
    前記検知部材と前記導電性部材との間に位置し、前記固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能な可動電極とを備えており、
    前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とする静電容量式センサ。
  • 基板と、
    前記基板と対向している検知部材と、
    前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能であって、絶縁状態に維持された導電性部材と、
    前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、
    前記基板上に形成された第1の固定電極と、
    前記基板上に形成された第2の固定電極と、
    前記検知部材と前記導電性部材との間に位置し、前記第1の固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されている第1の可動電極と、
    前記検知部材と前記導電性部材との間に位置し、前記第2の固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されている第2の可動電極とを備えており、
    前記第1の固定電極は接地されており、前記第2の固定電極は接地電位とは異なる電位に保持されていると共に、前記第1の可動電極および前記第2の可動電極は、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能であって、
    前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とする静電容量式センサ。
  • 前記可動電極および前記導電性部材が導電性フィルムからなり、前記導電性部材に孔が設けられていることを特徴とする請求項1に記載の静電容量式センサ。
  • 前記可動電極および前記導電性部材を前記容量素子用電極と対向しない領域において凹凸に変形させることによってこれらに張力を付与する機構が設けられていることを特徴とする請求項7に記載の静電容量式センサ。
  • 検知部材と、
    前記検知部材と対向している基板と、
    前記検知部材と前記基板との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能な導電性部材と、
    前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、
    前記検知部材と前記導電性部材との間に位置し、前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って前記導電性部材と接触しその後前記導電性部材を変位させることが可能な1または複数の可動電極と、
    スイッチ基板と、
    前記スイッチ基板上に形成された第1のスイッチ電極と、
    接地または一定の電位に保持され且つ前記第1のスイッチ電極から離隔するように配置されていると共に、前記検知部材が変位するのに伴って前記第1のスイッチ電極と接触可能な第2のスイッチ電極とを備えており、
    前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であると共に、前記第1のスイッチ電極に対して入力される信号を利用して前記第1のスイッチ電極と前記第2のスイッチ電極との接触の有無を認識可能であることを特徴とする静電容量式センサ。
  • 導電性部材と、前記導電性部材との間で容量素子を構成する容量素子用電極とを備えており、前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記導電性部材に加えられた力を認識可能である静電容量式センサの製造方法において、
    前記容量素子用電極とそのリード線とがフレームと一体に所定パターンで形成されたリードフレームのリード線の一部および前記容量素子用電極が含まれる範囲を絶縁部材でインサートモールドするインサートモールド工程と、
    前記容量素子用電極のリード線を前記フレームから切り離す切断工程と、
    前記インサートモールド工程によって得られた成型品に対して、前記容量素子用電極と離隔するように前記導電性部材を配置する導電性部材配置工程とを備えていることを特徴とする静電容量式センサの製造方法。
  • 前記インサートモールド工程において、
    前記導電性部材を支持するための段部が前記成型品に形成されるようにインサートモールドすることを特徴とする請求項10に記載の静電容量式センサの製造方法。
  • 請求項1に記載の静電容量式センサの製造方法において、前記容量素子用電極およびそのリード線並びに前記可動電極のリード線がフレームと一体に所定パターンで形成されたリードフレームの各リード線の一部および前記容量素子用電極が含まれる範囲を絶縁部材でインサートモールドするインサートモールド工程と、
    前記容量素子用電極のリード線および前記可動電極のリード線を前記フレームから切り離す切断工程と、
    前記インサートモールド工程によって得られた成型品に対して、前記容量素子用電極と離隔するように前記導電性部材を配置する導電性部材配置工程と、
    前記成型品に対して、前記可動電極のリード線と接触し且つ前記導電性部材と離隔するように前記可動電極を配置する可動電極配置工程とを備えていることを特徴とする静電容量式センサの製造方法。
  • 前記インサートモールド工程において、前記導電性部材を支持するための段部と、前記可動電極を支持するための段部とが前記成型品に形成されるようにインサートモールドすることを特徴とする請求項12に記載の静電容量式センサの製造方法。
  • 说明书全文

    【0001】
    【発明の属する技術分野】
    本発明は、の検出を行うために用いて好適な静電容量式センサおよびその製造方法に関する。
    【0002】
    【従来の技術】
    静電容量式センサは、操作者によって加えられた力の大きさおよび方向を電気信号に変換することにより、力の検出を行う装置として一般に用いられ、特に近年、加えられた力を方向成分毎に検出することが可能な二次元または三次元のセンサとして利用されている。 例えば、携帯電話の入力装置として、多次元方向の操作入力を行うための静電容量式センサをいわゆるジョイスティックとして組み込んだものがある。
    【0003】
    また、静電容量式センサには、操作者から加えられた力の大きさとして、所定のダイナミックレンジをもった操作量を入力することができる。 特に、2枚の対向配置された電極によって静電容量素子を形成し、電極間隔の変化に起因する静電容量値の変化に基づいて力の検出を行う静電容量式力覚センサ(特許文献1参照)は、構造が単純でコストダウンを図ることができるという利点から、様々な分野で実用化されている。
    【0004】
    【特許文献1】
    特開平6−201491号明細書(第2頁、図2)
    【0005】
    【発明が解決しようとする課題】
    特に携帯電話におけるジョイスティックとして用いられる静電容量式センサは、例えば図39および図40に示すような構成が考えられる。 この静電容量式センサ701では、固定された容量素子用電極E701〜E705と変位可能な変位電極712との2種類の対向した電極それぞれの間で容量素子が構成され、変位電極712と容量素子用電極E701〜E705との間に絶縁膜713が形成されている。 また、図39に示すように、静電容量式センサ701はさらに、基板720と、変位電極の上面において人などによって操作されることによって外部から力が加えられる検知ボタン730と、基板720上に形成された基準電極(共通電極)E700と、検知ボタン730および変位電極712を基板720に対して支持固定する支持部材760とを有している。
    【0006】
    基板720上には、図40に示すように、原点Oを中心とする円形の容量素子用電極E705と、その外側に扇形の容量素子用電極E701〜E704と、さらにその外側に原点Oを中心とする環状の基準電極E700とが形成されている。 なお、容量素子用電極E701〜E705にはクロック信号などの信号が常に入力されている。
    【0007】
    ここで、静電容量式センサ701による力の検出方法について説明する。 先ず、検知ボタン730が外部からZ軸負方向の力を受けると、検知ボタン730と変位電極712とが共にZ軸負方向に変位し、変位電極712と容量素子用電極E701〜E705との間隔が変化する。 そして、この電極間隔の変化に伴って、容量素子の静電容量値が変化する。 容量素子用電極E701〜E705には上述したように常に信号が入力されているが、この静電容量値の変化に応じて信号の位相にずれが生じる。 そこで、この信号の位相のずれを利用することにより、検知ボタン730が外部から受けた力を、X軸方向、Y軸方向およびZ軸方向の成分毎に得るようになっている。
    【0008】
    なお、この静電容量式センサ701によると、容量素子用電極E701〜E705に対する信号は検出ボタン730に対する操作が行われている間だけでなく行われていない間も常に入力され、電力が無駄に消費されることになる。 消費電力を低減する方法として、検知ボタン730に対する操作が所定時間行われない場合は、容量素子用電極E701〜E705に対する信号の入力を停止して消費電力を極力小さく押さえるスリープモードとし、再び操作が行われた時点で自動的にスリープモードを解除して通常モードとする方法がある。
    【0009】
    通常モードとスリープモードへとの切り換えを自動的に行うには、オンとオフとを切り換え可能なスイッチ機能を有する入力装置を、マイコン制御システムと共に用いるのが一般である。 かかる入力装置からの出力信号は、電源電圧付近のHiレベル又は接地電位付近のLoレベルの信号であって、スイッチの切り換えが行われたときにその出力信号はLoレベルからHiレベルに或いはHiレベルからLoレベルに切り換わる。 したがって、かかる入力装置では、操作されていない状態から操作されている状態へと移る過程において、出力信号は必ず電源電圧の約半分であるスレッシホールド電圧(しきい値電圧)を跨いで変化する。 この出力信号を監視することによって、操作が行われたことを確実に検出すると共に、スリープモードを適正に解除することができるようになっている。 しかしながら、上述の静電容量式センサ701では、検知ボタン730に加えられる力の大きさによっては出力信号がスレッシホールド電圧を跨いで変化しない場合がある。 出力信号がスレッシホールド電圧を跨いで変化しないと、静電容量式センサ701における出力信号を監視していても操作ボタン730に対する操作が行われたことを確実に検知することができず、スリープモードが適正に解除されないという問題が生じる。 つまり、静電容量式センサ701ではスリープモードと通常モードとの切り換えが適正に行われない恐れがあり、消費電力の低減を実現するのが困難である。
    【0010】
    また、変位電極712の機械的性質や変位電極712を支持する機構の影響により、変位電極712は一旦変形するとその後力が解除されても完全に元の位置には復帰しにくく、操作前後において変位電極712の位置が若干ずれることがあり、このずれがセンサからの出力信号のヒステリシスとして現れるという問題がある。 静電容量式センサ701では、検知ボタン730に対する操作の有無に関わらず、容量素子用電極E701〜E705と変位電極712との間に構成される容量素子に常に電圧がかかる。 このため、容量素子に蓄えられる電荷量は、検知ボタン730に対する操作が行われていないときでも無視できない程度の大きさになる。 容量素子に蓄えられる電荷量は、検知ボタン730に対して操作が行われることによって変化するが、操作前でも無視できない程大きいので、操作されていない状態から操作されている状態へと移る過程において急激には変化しない。 このように、操作前後における電荷量の変化が僅かな場合、変位電極712の位置ずれによる電極間隔の変化を無視することができず、出力信号のヒステリシスが大きくなる。
    【0011】
    また、静電容量式センサ701は、操作者が検知ボタン730を押下したときの力の大きさを認識することができる装置(力覚センサ)として利用するためには適しているが、異なる2つの状態(例えば、ON状態またはOFF状態)を切り替えるスイッチ機能を有する装置として利用するためには適していない。 したがって、静電容量式センサ701を各方向へのスイッチ機能を有する装置として機器に組み込む場合には、静電容量式センサ701をそのまま利用することは難しく、各方向に対応するスイッチ機能を別に設ける必要がある。
    【0012】
    一方、静電容量式センサ701を製造するには、例えば印刷やエッチングなどにより基板720上に容量素子用電極E701〜E705や基準電極E700を配置した後、これら電極E701〜E705、E700を絶縁膜713で覆い、この上に導電性ゴムなどからなる変位電極712を設置し、検知ボタン730を配置して、さらに支持部材760で全体を固定する、という比較的煩雑な工程が必要である。 このような煩雑な工程は、上記静電容量式センサ701のみではなく、従来の他の静電容量式センサについても同様に必要である。
    【0013】
    そこで、本発明の目的は、マイコン制御システムと共に用いられた場合に、スリープモードに切り換えることによって消費電力を低減することができる静電容量式センサを提供することである。
    【0014】
    また、本発明の別の目的は、出力信号のヒステリシスを低減することができる静電容量式センサを提供することである。
    【0015】
    また、本発明の別の目的は、各方向の力の大きさを認識する装置およびスイッチ機能を有する装置のいずれにも利用することができる静電容量式センサを提供することである。
    【0016】
    また、本発明の別の目的は、煩雑な工程を省略して静電容量式センサを効率よく製造する方法を提供することである。
    【0017】
    【課題を解決するための手段】
    上記目的を達成するために、請求項1の静電容量式センサは、導電性部材と、前記導電性部材との間で容量素子を構成する容量素子用電極と、前記導電性部材に対して前記容量素子用電極の反対側に離隔配置されており、力が加えられることにより変位して前記導電性部材と接触してから前記導電性部材を変位させることが可能な1または複数の可動電極とを備えており、前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記可動電極に加えられた力を認識可能であることを特徴とする。
    【0018】
    上記構成によると、外部からの力により、先ず可動電極が変位して導電性部材に接触し、続いてこれらが接触状態を維持したまま変位する。 導電性部材の変位によって導電性部材と容量素子用電極との間隔が変化すると、これらの間で構成される容量素子の静電容量値が変化し、この静電容量値の変化に基づいて、加えられた力が認識される。 ここで、可動電極および導電性部材のそれぞれが保持される電位の差を所定のスレッシホールド電圧の絶対値より大きくすると、両者の接触していない状態から接触する状態へと移る過程において、出力信号が必ずスレッシホールド電圧を跨いで変化することになる。 この出力信号を監視することにより、静電容量式センサに対する操作が行われたことを確実に検出できる。 これにより、検知部材に対する操作が所定時間行われない場合はスリープモードに切り換え、再び操作が行われた時点でスリープモードを確実に解除することができる。 したがって、スリープモードと通常モードとの切り換えを適正に行うことで、消費電力の低減を実現することができる。
    【0019】
    また、可動電極を接地電位に維持すると共に、導電性部材と可動電極とが接触していないとき、導電性部材が電気的にどこにも接続されずに絶縁状態に維持される構成をとることにより、導電性部材と容量素子用電極との間に構成される容量素子には電圧がかからなくなる。 このとき容量素子に蓄えられる電荷量は無視できる程度に小さく、出力信号は一定の大きさで安定する。 一方、検知部材に対する操作が行われて導電性部材と可動電極とが接触すると、導電性部材が接地電位になり、容量素子に電圧がかかるようになる。 したがって、可動電極と導電性部材とが接触していない状態から接触している状態へと移る過程において、容量素子に蓄えられる電荷量は急激に変化することになり、これに伴って出力信号も大きく変化する。 ここで、操作前後において導電性部材および/または可動電極の位置が多少ずれた場合でも、導電性部材と可動電極とが接触しない限り、静電容量式センサの容量素子に対応する(容量素子用電極からの)出力信号はほとんど同じになる。 これにより、静電容量式センサの容量素子に対応する出力信号のヒステリシスを低減することができる。
    【0020】
    さらに、導電性部材が絶縁状態に保持されているともに、接地電位に保持された可動電極と接地電位とは異なる電位に保持された可動電極が適正に配置されている構成をとることにより、後で詳述するように、上述の2つの効果を同時に得ることができる。
    【0021】
    請求項2の静電容量式センサは、基板と、前記基板と対向している検知部材と、前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能な導電性部材と、前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、前記基板上に形成された1または複数の固定電極と、前記検知部材と前記導電性部材との間に位置し、前記固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能な1または複数の可動電極とを備えており、前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とするものである。
    【0022】
    なお、「検知部材の変位を認識可能である」とは、「検知部材に外部から加えられる力を認識可能である」ということとほぼ同じ意味であり、請求項3〜6においても同様である。
    【0023】
    上記構成によると、検知部材に外部から力が作用すると、請求項1の場合と同様に、先ず可動電極が変位して導電性部材と接触し、続いてこれらがその接触状態を維持したまま変位する。 導電性部材の変位によって導電性部材と容量素子用電極との間隔が変化すると、これらの間で構成される容量素子の静電容量値が変化し、この静電容量値の変化に基づいて、加えられた力が認識される。 ここで、可動電極を固定電極と電気的に接続し、例えば請求項3のように導電性部材を接地し且つ固定電極を接地電位とは異なる電位に保持する構成や、請求項4のように導電性部材を接地電位とは異なる電位に保持し且つ固定電極を接地する構成をとることにより、可動電極および導電性部材のそれぞれが保持される電位の差を所定のスレッシホールド電圧の絶対値より大きくする。 これにより、可動電極と導電性部材とが接触していない状態から接触する状態へと移る過程において、出力信号は、固定電極又は導電性部材が保持されている電位付近のHiレベルから接地電位付近のLoレベルに或いはLoレベルからHiレベルに切り換わり、必ずスレッシホールド電圧を跨いで変化することになる。 この出力信号を監視することにより、静電容量式センサに対する操作が行われたことを確実に検出できる。 これにより、検知部材に対する操作が所定時間行われない場合はスリープモードに切り換え、再び操作が行われた時点でスリープモードを確実に解除することができる。 したがって、スリープモードと通常モードとの切り換えを適正に行うことで、上記請求項1と同様の、消費電力の低減を実現するという効果を得ることができる。
    【0024】
    請求項3の静電容量式センサは、基板と、前記基板と対向している検知部材と、前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能な導電性部材と、前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、前記基板上に形成され、前記導電性部材と電気的に接続されるとともに、接地された基準電極と、前記基板上に形成され、接地電位とは異なる電位に保持された固定電極と、前記検知部材と前記導電性部材との間に位置し、前記固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能な可動電極とを備えており、前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とする。
    【0025】
    なお、「接地電位とは異なる電位」とは、「所定のスレッシホールド電圧と同じ符号(正または負)で且つその絶対値よりも大きい絶対値を有する電位」を意味しており、請求項4および請求項6においても同様である。
    【0026】
    上記構成によると、検知部材に外部から力が作用すると、請求項1の場合と同様に、先ず可動電極が変位して導電性部材と接触し、続いてこれらがその接触状態を維持したまま変位する。 導電性部材の変位によって導電性部材と容量素子用電極との間隔が変化すると、これらの間で構成される容量素子の静電容量値が変化し、この静電容量値の変化に基づいて、加えられた力が認識される。 ここで、基準電極を介して導電性部材を接地電位に保持し且つ固定電極を介して可動電極を接地電位とは異なる電位に保持することで、可動電極と導電性部材とが接触していない状態から接触する状態へと移る過程において、出力信号は、固定電極が保持されている電位付近のHiレベルから接地電位付近のLoレベルに或いはLoレベルからHiレベルに切り換わり、必ずスレッシホールド電圧を跨いで変化することになる。 この出力信号を監視することによってスリープモードと通常モードとの切り換えを適正に行うことが可能となり、上記請求項1および請求項2と同様の、消費電力の低減を実現するという効果を得ることができる。
    【0027】
    請求項4の静電容量式センサは、基板と、前記基板と対向している検知部材と、前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能な導電性部材と、前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、前記基板上に形成され、前記導電性部材と電気的に接続されるとともに、接地電位とは異なる電位に保持された基準電極と、前記基板上に形成され、接地された固定電極と、前記検知部材と前記導電性部材との間に位置し、前記固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能な可動電極とを備えており、前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とする。
    【0028】
    上記構成によると、検知部材に外部から力が作用すると、請求項1の場合と同様に、先ず可動電極が変位して導電性部材と接触し、続いてこれらがその接触状態を維持したまま変位する。 導電性部材の変位によって導電性部材と容量素子用電極との間隔が変化すると、これらの間で構成される容量素子の静電容量値が変化し、この静電容量値の変化に基づいて、加えられた力が認識される。 ここで、基準電極を介して導電性部材を接地電位とは異なる電位に保持し且つ固定電極を介して可動電極を接地電位に保持することで、可動電極と導電性部材とが接触していない状態から接触する状態へと移る過程において、出力信号は、導電性部材が保持されている電位付近のHiレベルから接地電位付近のLoレベルに或いはLoレベルからHiレベルに切り換わり、必ずスレッシホールド電圧を跨いで変化することになる。 この出力信号を監視することによってスリープモードと通常モードとの切り換えを適正に行うことが可能となり、上記請求項1〜3と同様の、消費電力の低減を実現するという効果を得ることができる。
    【0029】
    請求項5の静電容量式センサは、基板と、前記基板と対向している検知部材と、前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能であって、絶縁状態に維持された導電性部材と、前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、前記基板上に形成され、接地された固定電極と、前記検知部材と前記導電性部材との間に位置し、前記固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能な可動電極とを備えており、前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とする。
    【0030】
    上記構成によると、導電性部材と可動電極とが接触していないとき、導電性部材は電気的にどこにも接続されずに絶縁状態に維持され、導電性部材と容量素子用電極との間に構成される容量素子には電圧がかからない。 このとき容量素子に蓄えられる電荷量は無視できる程度に小さく、出力信号は一定の大きさで安定する。 一方、検知部材に対する操作が行われて導電性部材と可動電極とが接触すると、導電性部材が接地電位になり、容量素子に電圧がかかるようになる。 したがって、可動電極と導電性部材とが接触していない状態から接触している状態へと移る過程において、容量素子に蓄えられる電荷量は急激に変化することになり、これに伴って出力信号も大きく変化する。 ここで、操作前後において導電性部材および/または可動電極の位置が多少ずれた場合でも、導電性部材と可動電極とが接触しない限り、静電容量式センサの容量素子に対応する(容量素子用電極からの)出力信号はほとんど同じになる。 これにより、静電容量式センサの容量素子に対応する出力信号のヒステリシスを低減することができる。
    【0031】
    請求項6の静電容量式センサは、基板と、前記基板と対向している検知部材と、前記基板と前記検知部材との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能であって、絶縁状態に維持された導電性部材と、前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、前記基板上に形成された第1の固定電極と、前記基板上に形成された第2の固定電極と、前記検知部材と前記導電性部材との間に位置し、前記第1の固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されている第1の可動電極と、前記検知部材と前記導電性部材との間に位置し、前記第2の固定電極と電気的に接続され且つ前記導電性部材から離隔するように配置されている第2の可動電極とを備えており、前記第1の固定電極は接地されており、前記第2の固定電極は接地電位とは異なる電位に保持されていると共に、前記第1の可動電極および前記第2の可動電極は、前記検知部材が変位するのに伴って、前記導電性部材と接触し、その後前記導電性部材を変位させることが可能であって、前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であることを特徴とする。
    【0032】
    上記構成によると、検知部材に外部から力が作用すると、先ず第1および第2の可動電極が変位して導電性部材と接触し、続いてこれら可動電極および導電性部材がその接触状態を維持したまま変位する。 導電性部材の変位によって導電性部材と容量素子用電極との間隔が変化すると、これらの間で構成される容量素子の静電容量値が変化し、この静電容量値の変化に基づいて、加えられた力が認識される。 ここで、第1の固定電極を介して第1の可動電極を接地電位に保持し且つ第2の固定電極を介して第2の可動電極を接地電位とは異なる電位に保持することで、第1および第2の可動電極と導電性部材とが接触していない状態から接触する状態へと移る過程において、出力信号は、第2の固定電極が保持されている電位付近のHiレベルから接地電位付近のLoレベルに、或いはLoレベルからHiレベルに切り換わり、必ずスレッシホールド電圧を跨いで変化することになる。 この出力信号を監視することによってスリープモードと通常モードとの切り換えを適正に行うことが可能となり、上記請求項1〜4と同様の、消費電力の低減を実現するという効果を得ることができる。
    【0033】
    また、さらに、上記構成によると、第1および第2の可動電極と導電性部材とが接触していないとき、導電性部材は電気的にどこにも接続されずに絶縁状態に維持され、導電性部材と容量素子用電極との間に構成される容量素子には電圧がかからない。 このとき当該容量素子に蓄えられる電荷量は無視できる程度に小さく、出力信号は一定の大きさで安定する。 一方、検知部材に対する操作が行われて導電性部材と第1の可動電極とが接触すると、導電性部材が接地電位になり、容量素子に電圧がかかるようになる。 したがって、第1および第2の可動電極と導電性部材とが接触していない状態から接触している状態へと移る過程において、容量素子に蓄えられる電荷量は急激に変化することになり、これに伴って出力信号も大きく変化する。 これにより、請求項5と同様の、静電容量式センサの容量素子に対応する出力信号のヒステリシスを低減することができるという効果を得ることができる。
    【0034】
    つまり、請求項6の静電容量式センサによると、消費電力の低減と、出力信号のヒステリシスの低減との両方を実現することが可能である。
    【0035】
    請求項7の静電容量式センサは、請求項1において、前記可動電極および前記導電性部材が導電性フィルムからなり、前記導電性部材に孔が設けられていることを特徴とする。
    【0036】
    上記構成によると、可動電極および導電性部材が導電性フィルムからなるので、比較的小さな力が加えられた場合でも変位しやすく、例えば圧力などを測定する場合に利用することができる。 また、導電性部材に孔が設けられていることから、導電性部材を介した2つの空間、即ち、導電性部材と可動電極との間の空間と導電性部材と容量素子用電極との間の空間とにおいて、圧力差がほとんど生じない。 したがって、測定対象となる圧力以外の圧力の影響で導電性部材が変位し、静電容量値が変化してしまうのを防止することができる。
    【0037】
    請求項8の静電容量式センサは、請求項7において、前記可動電極および前記導電性部材を前記容量素子用電極と対向しない領域において凹凸に変形させることによってこれらに張力を付与する機構が設けられていることを特徴とする。
    【0038】
    上記構成によると、導電性フィルムからなる可動電極および導電性部材を、静電容量値の検出に影響しない領域において凹凸に変形させて適度な張力を付与することで、フィルムが撓んで測定精度が低下するということがなく、良好な測定精度が発揮される。
    【0039】
    請求項9の静電容量式センサは、検知部材と、前記検知部材と対向している基板と、前記検知部材と前記基板との間に位置し、前記検知部材が前記基板と垂直な方向に変位するのに伴ってそれと同じ方向に変位可能な導電性部材と、前記基板上に形成され、前記導電性部材との間で容量素子を構成する容量素子用電極と、前記検知部材と前記導電性部材との間に位置し、前記導電性部材から離隔するように配置されていると共に、前記検知部材が変位するのに伴って前記導電性部材と接触しその後前記導電性部材を変位させることが可能な1または複数の可動電極と、スイッチ基板と、前記スイッチ基板上に形成された第1のスイッチ電極と、接地または一定の電位に保持され且つ前記第1のスイッチ電極から離隔するように配置されていると共に、前記検知部材が変位するのに伴って前記第1のスイッチ電極と接触可能な第2のスイッチ電極とを備えており、前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記検知部材の変位を認識可能であると共に、前記第1のスイッチ電極に対して入力される信号を利用して前記第1のスイッチ電極と前記第2のスイッチ電極との接触の有無を認識可能であることを特徴とするものである。
    【0040】
    上記構成によると、検知部材に外部から力が作用すると、請求項1の場合と同様に、先ず可動電極が変位して導電性部材と接触し、続いてこれらがその接触状態を維持したまま変位する。 導電性部材の変位によって導電性部材と容量素子用電極との間隔が変化すると、これらの間で構成される容量素子の静電容量値が変化し、この静電容量値の変化に基づいて、加えられた力が認識される。 ここで、例えば導電性部材を接地し且つ可動電極を接地電位とは異なる電位に保持する構成や、導電性部材を接地電位とは異なる電位に保持し且つ可動電極を接地する構成をとることにより、上述と同様に、消費電力の低減を実現するという効果を得ることができる。
    【0041】
    また、可動電極を接地電位に維持すると共に、導電性部材と可動電極とが接触していないとき、導電性部材が電気的にどこにも接続されずに絶縁状態に維持される構成をとることにより、上述と同様に、静電容量式センサの容量素子に対応する出力信号のヒステリシスを低減することができる。 さらに、導電性部材が絶縁状態に保持されているともに、接地電位に保持された可動電極と接地電位とは異なる電位に保持された可動電極が適正に配置されている構成をとることにより、上述の2つの効果を同時に得ることができる。
    【0042】
    また、上述のとおり、導電性部材と容量素子用電極との間隔の変化に起因する容量素子の静電容量値の変化を検出することによって、検知部材に外部から加えられた力の大きさを認識可能であると共に、第1のスイッチ電極と第2のスイッチ電極との接触の有無を認識することができるため、これをスイッチ機能として利用することができる。 したがって、本発明の静電容量式センサは、検知部材の変位(検知部材に外部から加えられた力の大きさ)を信号(アナログ信号)として出力する機能を有する装置および/またはスイッチ機能を有する装置として利用することが可能である。 これにより、この静電容量式センサは上記のいずれの装置としても利用できる複合デバイスとしての機能を有し、上記両用途に合わせて製造し直す必要がなくなる。
    【0043】
    請求項10の静電容量式センサの製造方法は、導電性部材と、前記導電性部材との間で容量素子を構成する容量素子用電極とを備えており、前記容量素子用電極に対して入力される信号を利用して前記導電性部材と前記容量素子用電極との間隔の変化に起因する前記容量素子の静電容量値の変化が検出されることに基づいて前記導電性部材に加えられた力を認識可能である静電容量式センサの製造方法において、前記容量素子用電極とそのリード線とがフレームと一体に所定パターンで形成されたリードフレームのリード線の一部および前記容量素子用電極が含まれる範囲を絶縁部材でインサートモールドするインサートモールド工程と、前記容量素子用電極のリード線を前記フレームから切り離す切断工程と、前記インサートモールド工程によって得られた成型品に対して、前記容量素子用電極と離隔するように前記導電性部材を配置する導電性部材配置工程とを備えていることを特徴とする。
    【0044】
    上記構成によると、静電容量式センサの製造において、IC(集積回路)などの組立で一般に用いられるリードフレームやインサートモールド工程を適用することで、煩雑な工程を省略して、静電容量式センサを効率よく製造することができる。
    【0045】
    請求項11の静電容量式センサの製造方法は、請求項10における、前記インサートモールド工程において、前記導電性部材を支持するための段部が前記成型品に形成されるようにインサートモールドすることを特徴とする。
    【0046】
    上記構成によると、インサートモールド工程を行う過程において、導電性部材を支持するための段部が形成されるため、導電性部材配置工程の際に、導電性部材を支持するための部材をわざわざ設置するなどの手間や時間を省くことができる。 したがって、より効率のよい製造方法による量産が実現される。
    【0047】
    請求項12の静電容量式センサの製造方法は、請求項1に記載の静電容量式センサの製造方法において、前記容量素子用電極およびそのリード線並びに前記可動電極のリード線がフレームと一体に所定パターンで形成されたリードフレームの各リード線の一部および前記容量素子用電極が含まれる範囲を絶縁部材でインサートモールドするインサートモールド工程と、前記容量素子用電極のリード線および前記可動電極のリード線を前記フレームから切り離す切断工程と、前記インサートモールド工程によって得られた成型品に対して、前記容量素子用電極と離隔するように前記導電性部材を配置する導電性部材配置工程と、前記成型品に対して、前記可動電極のリード線と接触し且つ前記導電性部材と離隔するように前記可動電極を配置する可動電極配置工程とを備えていることを特徴とする。
    【0048】
    上記構成によると、ICなどの組立で一般に用いられるリードフレームやインサートモールド工程を適用すると共に、導電性部材と離隔するように可動電極を配置することで、出力信号のヒステリシスが比較的小さく且つ消費電力を低減するという効果が得られる静電容量式センサを、効率よく製造することができる。
    【0049】
    請求項13の静電容量式センサの製造方法は、請求項12において、前記インサートモールド工程において、前記導電性部材を支持するための段部と、前記可動電極を支持するための段部とが前記成型品に形成されるようにインサートモールドすることを特徴とする。
    【0050】
    上記構成によると、インサートモールド工程を行う過程において、導電性部材および可動電極をそれぞれ支持するための段部が形成されるため、導電性部材配置工程や可動電極配置工程の際に、これらを支持するための部材をわざわざ設置するなどの手間や時間を省くことができる。 したがって、より効率のよい製造方法による量産が実現される。
    【0051】
    【発明の実施の形態】
    以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。
    【0052】
    先ず、図1〜図3を参照しつつ、本発明における第1の実施の形態に係る静電容量式センサ1の構成について説明する。
    【0053】
    図1は、本実施の形態に係る静電容量式センサ1の横断面図である。 静電容量式センサ1は、基板20と、外部からの力を検出するための検知ボタン30と、検知ボタン30を基板20に支持固定する支持部材60と、検知ボタン30と支持部材60との間に配置された樹脂シート70と、支持部材60の下面に形成された略矩形の凹部60aと基板20との間に配置されたセンサユニット10と、樹脂シート70の上面において検知ボタン30の周囲を覆うように配置された例えば樹脂からなるカバーケース80とを有する。
    【0054】
    基板20は一般的な電子回路用のプリント回路基板であり、本実施の形態では、ガラスエポキシ基板が用いられる。 また、基板20としてポリイミドフィルムなどのフィルム状の基板を用いてもよいが、フィルム状の基板の場合は可撓性を有しているため、十分な剛性をもった支持基板上に配置して用いるのが好ましい。 なお、本実施の形態では、基板20上に、後述するマイコン5(図12参照)および電子回路(センサ回路)が設けられている。
    【0055】
    センサユニット10は、フレキシブル・プリント・サーキット基板(以下、「FPC」と称する)11と、FPC11上に形成された容量素子用電極E1〜E4(図1ではE1およびE2のみを示す)と、同じくFPC11上に形成された基準電極E11〜E13と、FPC11上においてほぼ中心に形成された決定スイッチ用固定電極E21と、FPC11上において外側に形成された復帰スイッチ(ウェイクアップスイッチ)用固定電極E31と、基準電極E11および基準電極E12の上側に跨って配置された変位電極12と、決定スイッチ用固定電極E21と離隔しつつ基準電極E13に接触するよう配置されたドーム状の決定スイッチ用可動電極E22と、復帰スイッチ用固定電極E31上に設置され且つ変位電極12より上方に配置された復帰スイッチ用可動電極15とを有している。
    【0056】
    ここでは、説明の便宜上、XYZ三次元座標系を定義し、この座標系を参照しながら各部品に配置説明を行うことにする。 図1においてはセンサユニット10の決定ボタン用固定電極E21の中心位置が原点O、右平方向がX軸、上垂直方向がZ軸、紙面に垂直奥行方向がY軸、とそれぞれ定義される。 つまり、FPC11の表面はXY平面を規定し、FPC11上の決定ボタン用固定電極E21および検知ボタン30それぞれの中心位置にZ軸が通ることになる。
    【0057】
    また、支持部材60は、例えばシリコンゴムなどの弾性を有する材料からなり、下面に形成された凹部60a以外の部分が基板20に接触するように配置されている。 支持部材60の凹部60aの底面には、それぞれセンサユニット10の決定スイッチ用固定電極E21および容量素子用電極E1〜E4に対応するように、突起体61、62が形成されている。
    【0058】
    また、図2には図1の静電容量式センサ1における検知ボタン30の上面図、図3には図1の静電容量式センサ1のFPC11上に形成された複数の電極の配置が示されている。 図2に示す検知ボタン30は、図3に示す基準電極E13の外径よりも若干大きい径を持つ円形に形成された中央ボタン31と、中央ボタン31の外側に配置された環状の方向ボタン32とから構成されている。
    【0059】
    方向ボタン32は、受力部となる小径の上段部32aと、上段部32aの下端部から外側に突出する大径の下段部32bとから構成されている。 上段部32aの外径は図3に示す基準電極E12の外径とほぼ同じで、下段部32bの外径は図3に示す復帰スイッチ用固定電極E31の内径とほぼ同じである。 方向ボタン32の上段部32aの上面には、図3における容量素子用電極E1〜E4に対応するように、即ち、X軸およびY軸のそれぞれの正方向および負方向に対応するように、操作方向(カーソルの移動方向)に対応した矢印が形成されているのがわかる。 また、上段部32および下段部32bの高さについては、図1に示すように、上段部32は中央ボタン31と同程度の高さであるが、下段部32bはカバーケース80に設けられた止め部80aの下側に遊嵌可能な高さに形成されている。
    【0060】
    また、図1で示したように、中央ボタン31は、決定ボタン用固定電極E21、決定ボタン用可動電極E22および基準電極E13に対応するように、支持部材60上の樹脂シート70の上面に接着固定されている。 一方、方向ボタン32は、その下段部32bがカバーケース80の一部である止め部80aにより押止された抜け止め構造により、容量素子用電極E1〜E4に対応するよう配置されている。 つまり、方向ボタン32は、その下段部32bが止め部80aの下側空間に遊嵌することにより、カバーケース80からの飛び出しが防止されている。
    【0061】
    なお、上述した基板20、支持部材60、樹脂シート70およびカバーケース80は、それぞれに形成された貫通孔(図示せず)に嵌挿された固定ネジ(図示せず)がそれに対応するナット(図示せず)に螺締されることによって、各部品が互いに離れないように固定されている。
    【0062】
    次に、図3〜図6を参照しつつ、本実施の形態に係るセンサユニット10の構成について説明する。
    【0063】
    センサユニット10は、図3に示すように、略矩形のFPC11の上面に対して、容量素子用電極E1〜E4、基準電極E11〜E13、復帰スイッチ用固定電極E31、図1に示したように基準電極E11、12上方に配置された変位電極12などの多数の電極が一体に設けられたものであり、FPC11における電極が設けられていない下面が基板20上に接触するとともに、支持部材60の凹部60a内に配置されるよう接着剤で固定されている。
    【0064】
    また、FPC11上には、原点Oを中心とする円形の決定ボタン用固定電極E21と、決定ボタン用固定電極E21の外側に配置された環状の基準電極E13と、基準電極E13の外側に配置された環状の基準電極E11と、基準電極E11の外側に配置された略扇形の容量素子用電極E1〜E4と、容量素子用電極E1〜E4の外側に配置された環状の基準電極E12と、基準電極E12の外側に配置された環状の復帰スイッチ用固定電極E31とが設けられている。
    【0065】
    容量素子用電極E1および容量素子用電極E2は、X軸の正方向および負方向にそれぞれ対応するように、X軸方向に離隔しながらY軸に対して線対称に配置されており、外部からの力のX軸方向成分の検出に利用される。 また、容量素子用電極E3および容量素子用電極E4は、Y軸の正方向およびY軸の負方向にそれぞれ対応するように、Y軸方向に離隔しながらX軸に対して線対称に配置されており、外部からの力のY軸方向成分の検出に利用される。 また、決定スイッチ用固定電極E21は、決定スイッチ用可動電極E22と共に、入力などの決定操作に利用される。
    【0066】
    また、図5には、センサユニット10における変位電極12について、その裏面の構成が分かり易いよう、図1の配置から上下反転させた状態が示されている。 変位電極12は、金属製の円盤形部材からなり、図1に示したように、その外径は基準電極E12の外径とほぼ同じである。 また、変位電極12の中心に形成された貫通孔12aの外径は、基準電極E11の内径とほぼ同じである。 さらに変位電極12の裏面(図5では上面)には、基準電極E11の外径とほぼ同じ内径を有し且つ基準電極E12の内径とほぼ同じ外径を有する環状の溝部12bが形成されている。 変位電極12の貫通孔12aおよび溝部12bは、1枚の金属板にエッチング加工が施されることにより形成されている。 また、このような加工が施されることにより、変位電極12の裏面には、貫通孔12a側に凸部12c、外周側に凸部12dが形成されている。
    【0067】
    変位電極12は、図1に示すように、その貫通孔12aの中心がZ軸に対応し且つその裏面がFPC11側になるように配置される。 このとき、変位電極12の貫通孔12a側に形成された凸部12c表面はFPC11上の基準電極E11の表面に、変位電極12の外周側に形成された凸部12dはFPC11上の基準電極E12の表面に、それぞれ密着している。 また、このとき、FPC11上の容量素子用電極E1〜E4と変位電極12の溝部12b底面との間には、溝部12bの深さとほぼ同じ間隔の空隙が形成されるが、本実施の形態では、図1に示すように容量素子用電極E1〜E4の表面が絶縁膜(レジスト膜)13で被覆されているため、容量素子用電極E1〜E4と変位電極12の溝部12b底面との間の空隙は溝部12bの深さよりも若干狭くなっている。
    【0068】
    なお、本実施の形態では、容量素子用電極E1〜E4の表面に絶縁膜13を被覆させたことで、銅などで形成された容量素子用電極E1〜E4が空気にさらされることがなく、それらの酸化が防止されるようになっている。
    【0069】
    図6には、センサユニット10における復帰スイッチ用可動電極15について、その裏面の構成が分かり易いよう、図1の配置から上下反転させた状態が示されている。 復帰スイッチ用可動電極15は、金属製の円盤形部材からなり、図1に示したように、その外径は復帰スイッチ用固定電極E31の外径とほぼ同じである。 また、復帰スイッチ用可動電極15の裏面(図6では上面)には、復帰スイッチ用固定電極E31の内径とほぼ同じ外径を有する凹部15bが形成されている。 また、さらに、復帰スイッチ用可動電極15の中心位置、即ち、凹部15bの中心位置には、基準電極E11の内径とほぼ同じ外径を有する貫通孔15aが形成されている。
    【0070】
    このような構成の復帰スイッチ用可動電極15は、図1で示したように、その貫通孔15aの中心がZ軸に対応し且つその裏面がFPC11側になるように配置される。 このとき、復帰スイッチ用可動電極15の裏面の凹部15bよりも外側の凸部が復帰スイッチ用固定電極E31の表面に密着する。
    【0071】
    また、図1からわかるように、復帰スイッチ用可動電極15の凹部15bの深さは変位電極12の厚さよりも大きく形成されている。 したがって、変位電極12の上面と復帰スイッチ用可動電極15の凹部15bの底面との間には、所定の間隔(復帰スイッチ用可動電極15の凹部15bの深さと変位電極12の厚さとの差とほぼ同じ間隔)の空隙が形成される。
    【0072】
    さらに、図1を参照しつつ、中央ボタン31に対する操作が行われた場合における決定スイッチ用可動電極E22の動作について説明する。 中央ボタン31が押下されると、突起体61が決定スイッチ用可動電極E22と接触し、続いて決定スイッチ用可動電極E22がクリック感を付随しつつ弾性変形して決定スイッチ用固定電極E21に接触する。 このように決定スイッチ用可動電極E22と決定スイッチ用固定電極E21とが接触すると、決定スイッチ用可動電極E22を介して、決定スイッチ用固定電極E21と基準電極E13とが電気的に接続されることになる。 そして、これら両者の間の電気的な接続の有無が検出されることによって、スイッチとして利用することが可能となる。
    【0073】
    また、変位電極12および決定スイッチ用可動電極E22は、図1のように配置された後、樹脂シート90、91によりFPC上に固定される。 樹脂シート90は変位電極12の上面の貫通孔12a近傍から決定スイッチ用可動電極E22の上面全体に亘って密着するように配置された略円形の薄膜部材であり、樹脂シート91は変位電極12の上面の外周部近傍に密着するように配置された環状部材である。 これら樹脂シート90、91には予め接着剤が塗布され、変位電極12および決定スイッチ用可動電極E22をFPC11に対して押圧しつつ固定することができるようになっている。
    【0074】
    そして、復帰スイッチ用可動電極15を変位電極12の上方に配置すると、変位電極12の上面と復帰スイッチ用可動電極15の凹部15bの底面との間に、上記の樹脂シート90、91が配置されることになる。 より詳細には、樹脂シート90は変位電極12の上面における貫通孔12aに隣接する端部近傍に、樹脂シート91は変位電極12の上面における外周部近傍にそれぞれ配置され、それ以外の部分には空隙が形成される。 本実施の形態において、変位電極12の上面と復帰スイッチ用可動電極15の凹部15bの底面との間隔は樹脂シート90、91の厚さとほぼ同じになっている。
    【0075】
    さらに、復帰スイッチ用可動電極15は、上記のように配置された後、その上面の外周部近傍に密着された環状の樹脂シート92により、FPC11上に固定される。
    【0076】
    また、図3に示したFPC11において、X軸正方向の端部近傍には5つの切り欠き、X軸負方向の端部近傍には2つの切り欠きが形成されている。 各切り欠き近傍には、電極から構成され、接続用ランドとして用いられる7つの端子T1、T2、T11〜T13、T21、T31がそれぞれ設けられている。 そして、容量素子用電極E1〜E4、基準電極E11〜E13、決定スイッチ用固定電極E21および復帰スイッチ用固定電極E31のそれぞれは、リード線(図示せず)を介して、端子T1、T2、T11〜T13、T21、T31のいずれかに接続されている(図7参照)。 さらに、これら端子T1、T2、T11〜T13、T21、T31が、後述するように、基板20上に設けられたマイコン5(図12参照)などに接続されていることから、容量素子用電極E1〜E4、基準電極E11〜E13、決定スイッチ用固定電極E21および復帰スイッチ用固定電極E31のそれぞれをマイコン5により制御できるようになっている。
    【0077】
    また、図4には、基板20上にFPC11が配置された状態が示されている。 ここでは、基板20上におけるFPC11が配置された領域の外縁近傍において、端子T1、T11に対応するよう配置された、極接続用ランドとして用いられる接続用電極L1、L11が描かれている。 FPC11上における他の端子T2、T12、T13、T21、T31についても同様に、それぞれに対応するように接続用電極L1、L11と同様の接続用電極(図示せず)が配置されている。
    【0078】
    センサユニット10が配置されたFPC11を基板20上に設置した後、端子T1、T11とそれに対応する接続用電極L1、L11との間にそれぞれ導電性を有するハンダ18を介在させると、両者を電気的に且つ機械的に接続することができる。 FPC11上のその他の端子T2、T12、T13、T21、T31も、図4に示した端子T1、T11と同様に、それぞれに対応するように設けられた接続用電極(図示せず)との間にハンダを介在することで、両者を電気的に且つ機械的に接続することができる。
    【0079】
    次に、図7を参照しつつ、本実施形態における静電容量式センサ1の回路構成について説明する。
    【0080】
    本実施の形態に係る静電容量式センサ1において、図1に示した共通の電極である変位可能な変位電極12と固定された個別の容量素子用電極E1〜E4との間には、変位電極12の変位に起因して静電容量値が変化する可変な容量素子C1〜C4が構成されている。 変位電極12と容量素子用電極E1〜E4との間隔は、方向ボタン32が押下された場合には狭くなり、加えられた力が解除されると元に戻るため、容量素子C1〜C4はいずれも、変位電極12の変位に起因して静電容量値が変化するように構成された可変容量素子であるといえる。 また、容量素子用電極E1、E3は端子T1、容量素子用電極E2、E4は端子T2とそれぞれ接続されており、容量素子C1〜C4を含んだ遅延回路が形成されている。
    【0081】
    一方、基準電極E11、E12は、変位電極12と接触すると共に、端子T11、T12を介してそれぞれ接地されている。 したがって、変位電極12は、基準電極E11、E12および端子T11、T12を介して接地電位に保持されていることになる。
    【0082】
    また、復帰スイッチ用固定電極E31と接触している復帰スイッチ用可動電極15が、変位電極12と接触する状態(オン)および接触しない状態(オフ)のいずれかの状態を取り得ることから、変位電極12と復帰スイッチ用固定電極E31との間には復帰スイッチS1が形成されている。 復帰スイッチ用固定電極E31の他端には端子T31が設けられており、さらにプルアップ抵抗素子R5を介して、一定の電圧値を有する電源電圧Vccに保持されている。
    【0083】
    また、基準電極E13は、端子T13を介して接地されていると共に、基準電極E13に接触している決定スイッチ用可動電極E22が、決定スイッチ用固定電極E21と接触する状態(オン)および決定スイッチ用固定電極E21と接触しない状態(オフ)のいずれかの状態を取り得ることから、決定スイッチ用固定電極E21との間には決定スイッチS2が形成されている。
    【0084】
    本実施の形態に係る静電容量式センサ1は、検知ボタン30に対して加えられる力を検出可能なモード(以下、「通常モード」と称する)および消費電力が極力小さく押さえられたモード(以下、「スリープモード」と称する)のいずれかを選択的に取ることができる。 通常モードにおいて所定時間が経過しても検知ボタン30に対する操作が行われない場合、通常モードからスリープモードに自動的に切り換わる。 一方、スリープモードにおいて検知ボタン30に対する操作が行われた場合、スリープモードが解除されて、スリープモードから通常モードに自動的に復帰する。
    【0085】
    続いて、図8を参照しつつ、静電容量式センサ1におけるモード切り換えの一例について説明する。 なお、図8では時間経過に対する通常モード、スリープモードおよび復帰スイッチのそれぞれの状態(オンまたはオフ)が互いに対応するように描かれており、時刻t1では検知ボタン30に対する操作が行われているものとする。
    【0086】
    先ず、検知ボタン30の方向ボタン32に対する操作が行われている場合について説明する。 このとき、方向ボタン32に対する操作が行われているため復帰スイッチ用可動電極15が変位電極12と接触して復帰スイッチS1がオンであると共に、静電式容量式センサ1のモードは通常モードになっている(通常モードがオンであると共にスリープモードがオフである)。 時刻t2に達するまでは、方向ボタン32に対する操作が継続して行われるものとする。 そして時刻t2で方向ボタン32に対する操作が行われなくなると、復帰スイッチ用可動電極15と変位電極12とが離隔し、復帰スイッチS1がオンからオフに切り換わる。 時刻t2から所定時間t0だけ経過した時刻t3までの間は、通常モードにおいて検知ボタン30に対する操作が行われない状態が維持されるものとする。 本実施の形態では、通常モードにおいて検知ボタン30に対する操作が行われない状態が所定時間t0継続された場合に通常モードからスリープモードに自動的に切り換わるよう設定されている。
    【0087】
    時刻t3に達すると、通常モードからスリープモードに切り換わる。 つまり、通常モードがオンからオフに切り換わるとともに、スリープモードがオフからオンに切り換わる。 そして、再度検知ボタン30に対する操作が行われるまでの間、スリープモードがオンで維持される。 その後、時刻t4において、再度方向ボタン30に対する操作が行われると、復帰スイッチ用可動電極15が変位電極12と接触して復帰スイッチS1がオフからオンに切り換わるのとほぼ同時に、スリープモードから通常モードに切り換わる。 つまり、スリープモードがオンからオフに切り換わると共に、通常モードがオフからオンに切り換わる。
    【0088】
    このように、復帰スイッチS1がオフからオンに切り換わるとき、復帰スイッチ用固定電極E31の電圧は必ず電源電圧の約半分であるスレッシホールド電圧を跨いで変化するようになっている。 したがって、後述のマイコン5において復帰スイッチ用固定電極E31に接続された端子T31における出力信号から得られる電圧変化を監視しておけば、方向ボタン32に対する操作が行われたことを確実に検出することができる。
    【0089】
    以上は検知ボタン30の方向ボタン32に対する操作が行われる場合について説明であるが、中央ボタン31に対する操作が行われる場合にも、同様のモード切り換えが行われる。
    【0090】
    次に、図9および図10を参照しつつ、静電容量式センサ1の動作について説明する。 図9は、図1に示した静電容量式センサ1の方向ボタン32のうちX軸正方向部分32Xに対する操作が行われた状態を示す横断面図である。 図10は、図1に示す静電容量式センサ1の中央ボタン31に対する操作が行われた状態を示す横断面図である。
    【0091】
    先ず、図9に示すように、方向ボタン32のうちX軸正方向部分32Xに対してZ軸負方向に押下する力が加えられることにより操作が行われた場合について考える。 このときこのX軸正方向部分32Xが押し下げられることにより、その下側に配置された樹脂シート70および支持部材60は弾性変形を生じてたわみ、支持部材60の突起体62のうちX軸正方向に対応する部分が下方へ変位する。 そしてこの突起体62の先端部が復帰スイッチ用可動電極15に当接すると共に、復帰スイッチ用可動電極15のうち突起体62が当接する部分近傍にZ軸負方向への力が作用する。
    【0092】
    この力に伴って、復帰スイッチ用可動電極15の当該部分近傍は弾性変形を生じてたわみ、所定高さだけ押し下げられると変位電極12と接触する。 これにより、復帰スイッチS1がオフからオンに切り換わる。
    【0093】
    その後、方向ボタン32のうちX軸正方向部分32Xがさらに押し下げられると、復帰スイッチS1がオンを保持しつつ、当該部分近傍における復帰スイッチ用可動電極15および変位電極12がさらに下方に変位する。 この変位に伴って、当該部分近傍における変位電極12と容量素子用電極E1との間隔は小さくなる。
    【0094】
    なお、容量素子の静電容量値は容量素子を構成する電極の間隔に反比例するのが一般的に知られている。 したがって、以上のような操作により変位電極12と容量素子用電極E1との間隔が小さくなると、変位電極12と容量素子用電極E1と間に構成される容量素子C1の静電容量値は大きくなる。 方向ボタン32のうちX軸正方向部分32Xに対する操作が行われた場合には、容量素子C1〜C4のうち容量素子C1の静電容量値のみが変化する。
    【0095】
    一方、このとき変位電極12と容量素子用電極E2〜E4それぞれとの間隔はほとんど変化しないため、容量素子C2〜C4の静電容量値は変化しない。 なお、方向ボタン32のうちX軸正方向部分32Xに対する操作が行われた場合、その部分32Xと支持部材60の突起体62との位置関係によっては容量素子C2〜C4の静電容量値が変化することもあるが、それらの変化量は容量素子C1の静電容量値の変化量と比較して小さい。
    【0096】
    次に、図10のように、中央ボタン31に対する操作が行われた場合、即ち、中央ボタン31を基板20側に押下する力(Z軸負方向への力)が加えられた場合について考える。
    【0097】
    中央ボタン31が押下されると、その下側に配置された樹脂シート70および支持部材60は弾性変形を生じてたわみ、支持部材60の決定スイッチ用固定電極E21に対応する突起体61が下方へ変位する。 そして、この突起体61の先端部が決定スイッチ用可動電極E22表面の樹脂シート90に当接すると、決定スイッチ用可動電極E22の頂部近傍にZ軸負方向への力が作用する。
    【0098】
    このZ軸負方向への力が所定値に満たないときには決定スイッチ用可動電極E22はほとんど変位しないが、力が所定値に達すると、決定スイッチ用可動電極E22の頂部近傍部分は座屈を伴って急激に弾性変形する。 そして決定スイッチ用可動電極E22は凹んだ状態となって決定スイッチ用固定電極E21と接触し、決定スイッチS2がオフからオンに切り換えられる。 このとき操作者には、明瞭なクリック感が与えられることになる。
    【0099】
    次に、図11〜図14を参照しつつ、検知ボタン30の方向ボタン32への外部からの力の大きさおよび方向を示す出力信号の導出方法の一例について説明する。
    【0100】
    図11は、静電容量式センサ1からの出力信号Vx、Vyの導出方法の一例を示す説明図である。 出力信号Vx、Vyは、それぞれX軸方向およびY軸方向に対応するものである。 つまり、出力信号Vxは、X軸正方向の容量素子用電極E1と変位電極12との間に構成された容量素子C1の静電容量値およびX軸負方向の容量素子用電極E2と変位電極12との間に構成された容量素子C2の静電容量値に基づいて導出される。 また、出力信号Vyは、Y軸正方向の容量素子用電極E3と変位電極12との間に構成された容量素子C3の静電容量値およびY軸負方向の容量素子用電極E4と変位電極12との間に構成された容量素子C4の静電容量値に基づいて導出される。
    【0101】
    また、各容量素子C1〜C4の一端は、図7に示したように、変位電極12を介して接地されており、他端の出力側にはそれぞれ端子T1、T2のいずれかに接続されたC/V変換回路が形成されている。 このC/V変換回路は例えば排他和回路などからなる排他的論理演算を行うことができるものであり、ここで、信号の位相のずれが読み取られる。 そして、C/V変換回路で導出された結果は、出力信号Vx、Vyとしてそれぞれ出力される。
    【0102】
    さらに、図12を参照しつつ、出力信号Vx、Vyを導出するための信号処理回路についてより詳細に説明する。 ここで、マイコン5は、図1の基板20上に設けられており、入力ポート5a、出力ポート5b、5cおよびタイマ6を有する。
    【0103】
    入力ポート5aは、復帰スイッチ用固定電極E31に接続されて復帰スイッチS1を形成すると共に、プルアップ抵抗素子R5を介して電源電圧Vccに接続されている。 また、入力ポート5aは、ディジタル入力ポートであって、入力ポート5aでは、電源電圧付近のHiレベルおよび接地電位付近のLoレベルのいずれかの判別しか行うことができない。 出力ポート5b、5cは、容量素子用電極E1〜E4に連結された端子T1、T2にそれぞれ接続されている。
    【0104】
    タイマ6は、通常モードにおいて直前の検知ボタン30に対する操作終了時からの経過時間を測定するためのものである。 つまり、タイマ6は、復帰スイッチS1がオンからオフに切り換わるのとほぼ同時にその作動が開始され、再度方向ボタン30に対する操作が行われた時点で停止すると共にリセットされる。 そして、図8に示した時刻t4において開始された方向ボタン32に対する操作が行われなくなると、再びタイマ6の作動が開始される。 ここで、通常モードにおいて検知ボタン30に対する操作が行われない場合にスリープモードに自動的に切り換えるまでの時間(所定時間)は予め設定されているものとする。
    【0105】
    なお、通常モードにおいて、端子T1、T2には周期信号発振器(図示せず)から所定周波数のクロック信号などの周期信号が常に入力されている。
    【0106】
    図12に示すような復帰スイッチS1のオフでは、入力ポート5aは電源電圧Vccの一定の電圧値に維持されている。 この状態(スリープモード)においては、出力ポート5b、5cから端子T1、T2に対して周期信号が供給されず、端子T1、T2における電圧が変動しなくなるため、電力が無駄に消費されるのが抑制される。
    【0107】
    そして、復帰スイッチS1がオンになると、プルアップ抵抗素子R5および入力ポート5aが接地され、出力ポート5b、5cから端子T1、T2に対して周期信号が供給されるようになる。 なお、端子T1、T2に対して周期信号を供給するか否か(周期信号を供給するタイミング)はマイコン5によって判定されるが、復帰スイッチS1がオフからオンに切り換わるとほぼ同時に端子T1、T2に対して周期信号を供給するのが一般的である。
    【0108】
    また、端子T1には抵抗素子R1、R3、端子T2には抵抗素子R2、R4がそれぞれ接続されている。 抵抗素子R1、R2の出力端および抵抗素子R3、R4の出力端には、それぞれ排他和回路の論理素子であるEX−OR素子100、101(図11におけるC/V変換回路に相当)が接続されており、その出力端は端子T120、T121に接続されている。 さらに端子T120、T121にはそれぞれローパスフィルター(平滑回路)110、111が接続されており、その出力端は端子T130、T131にそれぞれ接続されている。
    【0109】
    また、抵抗素子R1〜R4のもう一方の出力端は、図7にも示したように容量素子用電極E1〜E4と変位電極12との間に形成された容量素子C1〜C4にそれぞれ接続されている。 なお、容量素子C1〜C4を構成する2つの電極のうち抵抗素子R1〜R4に接続されていない方の電極、即ち、変位電極12は、図7に示したように基準電極E11、E12を介することにより、接地されている。
    【0110】
    図12に示すように、ローパスフィルター110、111は、抵抗素子R110、R111および容量素子C110、C111からそれぞれ構成されており、これら容量素子C110、C111を構成する2つの電極のうち抵抗素子R110、R111に接続されていない方の電極はそれぞれ接地されている。
    【0111】
    EX−OR素子100、101から出力された出力信号Vx、Vyは、ローパスフィルター110、111を通過することにより平滑され、その後端子T130、T131に対してアナログ電圧Vx'、Vy'として出力される。 つまり、ローパスフィルター110、111は、EX−OR素子100、101からの出力信号Vx、Vyをアナログ電圧Vx'、Vy'に変換するためのものである。
    【0112】
    より詳細には、ローパスフィルター110、111において、容量素子C1〜C4それぞれの静電容量値の変化は出力信号Vx、Vyの波形におけるデューティ比の変化として検出され、このデューティ比が電圧値に変換される。 したがって、ローパスフィルター110、111から得られるアナログ電圧Vx'、Vy'の値は出力信号Vx、Vyのデューティ比に比例して変化するものである。
    【0113】
    次に、図13および図14を参照しつつ、X軸方向成分の出力信号Vxの導出方法の一例について説明する。 図13は、図12に示すX軸方向成分の信号処理回路についての部分図である。 図14は、図13に示す信号処理回路の各端子および各節点における周期信号の波形を示す図である。 図13の信号処理回路において、容量素子C1および抵抗素子R1、容量素子C2および抵抗素子R2のそれぞれがCR遅延回路を形成している。
    【0114】
    ここでは、例えば通常モードにおいて、端子T1に対して周期信号A(f(φ))、端子T2に対しては周期信号Aと周期が同一で且つ位相がθだけずれた周期信号B(f(φ+θ))が、それぞれ入力されるとする(図14参照)。 異なる位相の周期信号A(f(φ))、B(f(φ+θ))は、1つの周期信号発振器から出力された周期信号を2つの経路に分け、その一方の経路に図示しないCR遅延回路を設け、CR遅延回路を通過する周期信号の位相を遅延させることによって発生させられる。
    【0115】
    端子T1に入力された周期信号A(f(φ))は、図13に示すように、容量素子C1と抵抗素子R1により構成されるCR遅延回路を通過し、節点X1に到達する。 このとき節点X1における周期信号には、図14に示すように、時間aの遅延が生じている。 一方、端子T2に入力される周期信号B(f(φ+θ))についても同様に、容量素子C2と抵抗素子R2により構成されるCR遅延回路を通過して節点X2に到達したとき、周期信号には時間bの遅延が生じている。 ここで、CR遅延回路における遅延時間a、bは、それぞれのCRの時定数により決定されるものである。 抵抗素子R1、R2の抵抗値が同一である場合、a、bの値は容量素子C1、C2の静電容量値に比例する。
    【0116】
    また、EX−OR素子100には節点X1、X2における周期信号と同一の波形の信号が入力される。 そして、EX−OR素子100に入力された2つの信号における位相のずれが排他的論理演算により読み取られ、その結果得られた信号は出力信号Vxとして端子T120に出力される。 ここで端子T120に出力される信号は、図14に示すような所定のデューティ比をもった矩形波信号である。
    【0117】
    ここで、図9に示したように、方向ボタン32のX軸正方向部分32Xに対する操作が行われた場合の各端子および各節点における周期信号の波形を考える。 この場合の信号処理回路における容量素子用電極E1、E2と変位電極12との間で構成される容量素子をC1'、C2'とし、方向ボタン32に対する操作が行われていない場合の信号処理回路の節点X1、X2および端子T120と同位置における各節点および端子を節点X1'、X2'および端子T120'とする(図13参照)。 このとき、図13の信号処理回路において、端子T1、T2には上述と同様の周期信号A(f(φ))、周期信号B(f(φ+θ))がそれぞれ入力されている。
    【0118】
    端子T1に入力される周期信号A(f(φ))は、容量素子C1'と抵抗素子R1により構成されるCR遅延回路を通過し、節点X1'に到達する。 このとき節点X1'における周期信号には、図14に示すように、時間a+Δaの遅延が生じている。 このように操作が行われていない場合と行われた場合とで信号の位相にずれ(時間Δa)が生じるのは、容量素子C1'の静電容量値が容量素子C1よりも大きくなったことにより、CR遅延回路の時定数が大きくなったためである。
    【0119】
    一方、端子T2に入力される周期信号B(f(φ+θ))は、容量素子C2'と抵抗素子R2により構成されるCR遅延回路を通過し、節点X2'に到達する。 このとき、方向ボタン32のX軸負方向部分には力が加えられていないため、節点X2'における周期信号は、上述した方向ボタン32に対する操作が行われていないときの節点X2における周期信号と同じ波形を有している。
    【0120】
    また、EX−OR素子100には節点X1'、X2'における周期信号と同一の波形の信号が入力されることになる。 そして、EX−OR素子100に入力された2つの信号における位相ずれが排他的論理演算により読み取られ、その結果得られた信号が端子T120'に出力される。 ここで端子T120'に対して出力される信号は、図14に示すような所定のデューティ比をもった矩形波信号となる。
    【0121】
    図14における端子T120と端子T120'に出力された2つの信号を比較すると、方向ボタン32に対する操作が行われていない場合において端子T120に出力された信号よりも、方向ボタン32に対する操作が行われた場合において端子T120'に出力された信号の方が、デューティ比が小さいのがわかる。 これは、上述したように、節点X1'における周期信号の位相が節点X1における周期信号の位相と時間Δaだけずれているからである。
    【0122】
    このように、方向ボタン32の操作が行われたときと行われていないときとでは得られる出力信号Vxが変化する。 この変化量において、符号は方向ボタン32に対する外部からのX軸方向成分の力の向き(正方向又は負方向)、絶対値はX軸方向成分の力の大きさをそれぞれ示す。
    【0123】
    以上は、X軸方向成分の出力信号Vxを導出する場合であるが、Y軸方向成分の出力信号Vyを導出する場合についても同様である。 なお、図9に示した状態では、変位電極12と容量素子用電極E2〜E4それぞれとの間隔はほとんど変化しないため容量素子C2〜C4の静電容量値は変化せず、容量素子C2〜C4をそれぞれ含む遅延回路の通過による位相にずれは生じない。
    【0124】
    以上のように、本実施の形態に係る静電容量式センサ1によると、方向ボタン32に対する操作が行われた場合、方向ボタン32が変位するのに伴って、先ず復帰スイッチ用可動電極15が変位して変位電極12と接触し、続いてこれら復帰スイッチ用可動電極15および変位電極12がその接触状態を維持したまま変位する。 ここで、変位電極12は基準電極E11、E12を介して接地電位に保持され且つ復帰スイッチ用可動電極15は復帰スイッチ用固定電極E31を介して接地電位とは異なる電位に保持されているので、復帰スイッチ用可動電極15と変位電極12とが接触していない状態から接触する状態へと移る過程において、出力信号は、復帰スイッチ用可動電極15が保持されている電位付近のHiレベルから接地電位付近のLoレベルに或いはLoレベルからHiレベルに切り換わる。 したがって、操作が行われたとき、出力信号は必ずスレッシホールド電圧を跨いで変化することになる。 この出力信号を監視することにより、静電容量式センサ1の方向ボタン32に対する操作が行われたことを確実に検出できる。 これにより、方向ボタン32に対する操作が所定時間行われない場合はスリープモードに切り換え、再び操作が行われた時点でスリープモードを確実に解除することができる。 したがって、スリープモードと通常モードとの切り換えを適正に行うことで、消費電力の低減を実現することができる。
    【0125】
    次いで、図15には、上述した第1の実施の形態の等価回路における、第1の変形例が示されている。 図15の等価回路図と上述した図7の等価回路図との異なる点は、図7では、基準電極E11、E12が接地され且つ復帰スイッチ用固定電極E31がプルアップ抵抗素子R5を介して電源電圧Vccに保持されているのに対して、図15では、基準電極E11がプルアップ抵抗素子R5'を介して電源電圧Vccに保持され、基準電極E12が絶縁状態に保持され、そして復帰スイッチ用固定電極E31が接地されている点である。 なお、その他の構成については図7に示したものと同様であるので、詳細な説明は省略する。
    【0126】
    また、基準電極E11に接続された端子T11は、図12のマイコン5の入力ポート5aに接続されており、方向ボタン32に対する操作が行われていない場合、変位電極12は電源電圧Vccに保持されるものとする。
    【0127】
    なお、本変形例では、基準電極E11が電源電圧Vccに保持されているが、基準電極E11、E12の少なくとも一方が電源電圧Vccに保持されていればよい。
    【0128】
    静電容量式センサ1が本変形例に係る等価回路を有する場合、上述した図7の等価回路を有する場合と同様に、方向ボタン32に対する操作が行われて復帰スイッチ用可動電極15と変位電極12とが接触していない状態から接触する状態へと移る過程において、出力信号は、必ずスレッシホールド電圧を跨いで変化することになる。 具体的には、本変形例において、出力信号は変位電極12が保持されている電位付近のHiレベルから接地電位付近のLoレベルに或いはLoレベルからHiレベルに切り換わる。 そこで出力信号を監視することによってスリープモードと通常モードとの切り換えを適正に行うことが可能となり、本変形例においても、図7の等価回路を有する上述の実施形態と同様の、消費電力の低減を実現するという効果を得ることができる。
    【0129】
    さらに、図16には、上述した第1の実施の形態の等価回路における、第2の変形例が示されている。 図16の等価回路図と上述した図7の等価回路図との異なる点は、図7では、基準電極E11、E12が接地され且つ復帰スイッチ用固定電極E31がプルアップ抵抗素子R5を介して電源電圧Vccに保持されているのに対して、図16では、基準電極E11、E12が絶縁状態に保持され且つ復帰スイッチ用固定電極E31が接地されている点である。 また、上述の第1の変形例では基準電極E11が電源電圧Vccに保持されているのに対し、本変形例では、2つの基準電極E11、E12が共に絶縁状態とされている。 なお、その他の構成については図7および図15に示したものと同様であるので、詳細な説明は省略する。
    【0130】
    なお、本変形例に係る等価回路において、基準電極E11、E12を接地すると共に、これら基準電極E11、E12と変位電極12との間に非導電性部材(例えば絶縁膜など)を配置してもよい。 この場合でも、変位電極12は絶縁状態に保持される。
    【0131】
    本変形例において、復帰スイッチS1がオフのとき、即ち、復帰スイッチ用可動電極15と変位電極12とが接触していないとき、変位電極12は電気的にどこにも接続されずに絶縁状態(浮いた状態)に維持され、変位電極12と容量素子用電極E1〜E4との間に構成される容量素子C1〜C4には電圧がかからない。 したがって、このとき容量素子C1〜C4に蓄えられる電荷量は無視できる程度に小さく、出力信号は一定の大きさで安定する。
    【0132】
    一方、方向ボタン32に対する操作が行われ、復帰スイッチS1がオン、即ち、変位電極12と復帰スイッチ用可動電極15とが接触すると、変位電極12が接地電位になり、容量素子C1〜C4に電圧がかかるようになる。 このとき、容量素子C1〜C4における電荷の蓄積が可能になる。 したがって、復帰スイッチ用可動電極15と変位電極12とが接触していない状態から接触している状態へと移る過程において、容量素子C1〜C4に蓄えられる電荷量は急激に変化することになり、これに伴って出力信号も大きく変化する。
    【0133】
    ここで、操作前後において復帰スイッチ用可動電極15および/または変位電極12の位置が多少ずれた場合でも、復帰スイッチ用可動電極15と変位電極12とが接触しない限り、静電容量式センサ1の容量素子C1〜C4に対応する出力信号は、ほとんど同じになると考えられる。 これにより、静電容量式センサ1が本変形例の等価回路を有する場合、容量素子C1〜C4に対応する出力信号のヒステリシスを低減するという効果を得ることができる。
    【0134】
    次いで、図17〜図19を参照しつつ、本発明の第2の実施の形態に係る静電容量式センサ201の構成について説明する。
    【0135】
    図17は、本実施の形態に係る静電容量式センサの横断面図であり、図1に示した第1の実施の形態と対応したものである。 本実施の形態に係る静電容量式センサ201の構成が図1に示した第1の実施の形態に係る静電容量式センサ1の構成と主に異なる点は、第1の実施の形態におけるセンサユニット10が1つの復帰スイッチ用可動電極15を備えているのに対して、本実施の形態におけるセンサユニット210は2つの復帰スイッチ用可動電極E215、E216を備えている点、および、第1の実施の形態における復帰スイッチ用可動電極15には復帰スイッチ用固定電極E31が接続されているのに対して、本実施の形態における2つの復帰スイッチ用可動電極E215、E216にはそれぞれ別個の復帰スイッチ用固定電極E231、232が接続されている点である。 なお、その他の構成については、図1に示した第1の実施の形態に係る静電容量式センサ1とほぼ同様であるので、詳細な説明は省略する。
    【0136】
    先ず、本実施の形態に係る静電容量式センサ201に含まれるセンサユニット210の構成について説明する。 センサユニット210は、第1フレキシブル・プリント・サーキット基板(第1FPC)211と、変位電極12と、第1FPC211上に形成された容量素子用電極E1〜E4(図17ではE1およびE2のみを示す)と、基準電極E13と、決定スイッチ用固定電極E21と、決定スイッチ用可動電極E22と、復帰スイッチ(ウェイクアップスイッチ)用固定電極E231、E232と、第2フレキシブル・プリント・サーキット基板(第2FPC)251と、第2FPC251下面に形成された復帰スイッチ用可動電極E215、E216と、容量素子用電極E1〜E4に密着して覆うように配置された絶縁膜(レジスト膜)13とを有している。
    【0137】
    図18には第1FPC211上に形成されている複数の電極の配置図、図19には図17に示された第2FPC251を上下に反転して(裏返して)第2FPC251下面に形成されている複数の電極を示す配置図が、それぞれ示されている。
    【0138】
    図18に示す略矩形の第1FPC211上には、原点Oを中心とする円形の決定ボタン用固定電極E21と、決定ボタン用固定電極E21の外側に配置された環状の基準電極E13と、基準電極E13の外側に配置された略扇形である容量素子用電極E1〜E4と、容量素子用電極E1〜E4の外側に配置された環状の復帰スイッチ用固定電極E231と、復帰スイッチ用固定電極E231の外側に配置された環状の復帰スイッチ用固定電極E232とが設けられている。
    【0139】
    第1FPC211において、X軸正方向の端部近傍には4つの切り欠き、X軸負方向の端部近傍には2つの切り欠きが形成されている。 切り欠き近傍には、電極から構成され、接続用ランドとして用いられる6つの端子T1、T2、T13、T21、T231、T232がそれぞれ設けられている。 そして、容量素子用電極E1〜E4、基準電極E13、決定スイッチ用固定電極E21および復帰スイッチ用固定電極E231、E232のそれぞれは、リード線(図示せず)を介して、端子T1、T2、T13、T21、T231、T232のいずれかに接続されている(図20参照)。
    【0140】
    一方、図19に示す略矩形の第2FPC251は、その中心位置近傍に開口251aを有している。 また、第2FPC251の下面には、その中心位置を中心とする環状の円周部215aおよび円周部215aから外側に向かって突出する複数の突出部215bから構成される復帰スイッチ用可動電極E215と、復帰スイッチ用可動電極E215の外側に配置された環状の円周部216aおよび円周部216aから内側に向かって突出する複数の突出部216bから構成される復帰スイッチ用可動電極E216とが設けられている。
    【0141】
    復帰スイッチ用可動電極E215、E216それぞれにおける円周部215a、216aは、全周にわたって同じ幅を有している。 また、復帰スイッチ用可動電極E215、E216それぞれにおける突出部215b、216bは、いずれも円周部215a、216aとほぼ同じ幅を有すると共に円周部215aと円周部216aとが離隔する間隔よりも短い長さの略矩形状を有し、円周方向に沿って交互に配置されている。 このように、復帰スイッチ用可動電極E215の外周部および復帰スイッチ用可動電極E216の内周部は、いずれも櫛歯状となっている。 なお、突出部215b、216bの数および形状は任意に変更可能であり、両者は接触しない範囲で出来る限り隙間無く配置されていることが好ましい。
    【0142】
    また、略矩形の第2FPC251の一端近傍には2つの切り欠きが形成されている。 各切り欠き近傍には、電極から構成され、接続用ランドとして用いられる2つの端子T215、T216がそれぞれ設けられている。 そして復帰スイッチ用可動電極E215、E216は、リード線(図示せず)によって、端子T215、T216にそれぞれ接続されている。
    【0143】
    以上のような構成の第1FPC211および第2FPC251を、図17に示すように一体に(ユニットとして)設けることにより、本実施の形態に係るセンサユニット210が構成される。 より詳細には、第1FPC211の下面は、支持部材60の凹部60a内に配置されるよう、基板20上に接着剤によって接着される。 また、第1FPC211の上方には、図5に示した第1の実施の形態に係る変位電極12と同様の変位電極12が配置される。
    【0144】
    なお、本実施の形態において、変位電極12の貫通孔12a側に形成された凸部12cおよび外周側に形成された凸部12dのそれぞれと、第1FPC211との間には、第1の実施形態において図1に示した基準電極E11、E12ではなく、粘着材290、291が配置されている。 これら粘着材290、291は、変位電極12を第1FPC211に対して固定するとともに、容量素子用電極E1〜E4と変位電極12の溝部12bの底面との間隔を調整する機能を有している。
    【0145】
    さらに、変位電極12の上面には図1に示した第1の実施の形態と同様の樹脂シート90、91が配置されると共に、それらの上面側にはカバー層295、296が配置される。 カバー層295は変位電極12の貫通孔12a側に形成された凸部12cと同じ幅および径を有する環状の部材であり、カバー層296は変位電極12の外周側に形成された凸部12dと同じ幅および径を有する環状の部材である。 このようなカバー層295、296がそれぞれ変位電極12の凸部12c、12dに対応するように配置されることによって、第2FPC251の下面に設けられた復帰スイッチ用可動電極E215、E216と、変位電極12の上面との間には、所定の間隔の空隙が形成されるようになっている。
    【0146】
    ここで、第2FPC251は、その開口251aが第1FPC211の上方において変位電極12の貫通孔12aと対応するように且つ変位電極12の上面の全体およびその外側の領域を覆うように配置される。 なお、第2FPC251は、図19に示した復帰スイッチ用可動電極E215、E216が設けられている下面が第1FPC211側となるように配置される。
    【0147】
    このように配置された第2FPC251における、図19に示した第2FPC251の端部近傍の端子T215、T216は、第1FPC211上の復帰スイッチ用固定電極E231、E232のそれぞれに、ハンダまたは導電性接着剤によって接続される。 これにより、復帰スイッチ用可動電極E215および復帰スイッチ用固定電極E231、復帰スイッチ用可動電極E216および復帰スイッチ用固定電極E232がそれぞれ電気的に接続されることになる。
    【0148】
    なお、基板20上のセンサユニット210が配置される領域の外縁近傍には、第1の実施の形態と同様に、第1FPC211上の各端子T1、T2、T13、T21、T231、T232に対応するように、接続用ランドとして用いられる複数の接続用電極が設けられている。 したがって、第1FPC211上の各端子T1、T2、T13、T21、T231、T232は、基板20上にセンサユニット210が配置された後、それぞれに対応するように設けられた接続用電極との間にハンダまたは導電性接着剤が配置されることによって、それぞれ電気的に且つ機械的に接続される。 このようにして、第1FPC211上の容量素子用電極E1〜E4、基準電極E13、決定スイッチ用固定電極E21および復帰スイッチ用固定電極E231、E232は、それぞれ端子T1、T2、T13、T21、T231、T232を介して、基板20上に設けられたマイコン5などに接続される。
    【0149】
    次に、図20を参照しつつ、本実施の形態における静電容量式センサ201の回路構成について説明する。
    【0150】
    本実施の形態に係る静電容量式センサ201においても、図7に示した第1の実施の形態と同様に、変位電極12と容量素子用電極E1〜E4との間には、共通の電極である変位可能な変位電極12と、固定された個別の容量素子用電極E1〜E4とでそれぞれ形成された容量素子C1〜C4が構成されている。
    【0151】
    また、復帰スイッチ用固定電極E231と接触している復帰スイッチ用可動電極E215が、変位電極12と接触する状態(オン)およびと接触しない状態(オフ)のいずれかの状態を取り得ることから、変位電極12と復帰スイッチ用固定電極E231との間には復帰スイッチS201が形成されている。 復帰スイッチ用固定電極E231の他端は、端子T231を介して接地されている。
    【0152】
    一方、復帰スイッチ用固定電極E232に接触している復帰スイッチ用可動電極E216が、変位電極12と接触する状態(オン)および変位電極12と接触しない状態(オフ)のいずれかの状態を取り得ることから、変位電極12と復帰スイッチ用固定電極E232との間には復帰スイッチS202が形成されている。 また、復帰スイッチS202を構成する復帰スイッチ用固定電極E232の他端には、図12に示したのと同様の、プルアップ抵抗素子R5”を介して電源電圧Vccに保持されたマイコン5の入力ポート5aが接続されている。したがって、復帰スイッチS202のオフ状態において、マイコン5の入力ポート5aおよび復帰スイッチ用固定電極E232は電源電圧Vccに維持されている。
    【0153】
    本実施の形態では、方向ボタン32に対する操作が行われると、上述したように、復帰スイッチ用可動電極E215、E216が櫛歯状に設けられているため、変位電極12と復帰スイッチ用可動電極E215、E216とがほぼ同時に接触する。 したがって、復帰スイッチS201、S202のそれぞれの状態は常に一致しており、いずれもオンであるか或いはいずれもオフであるかのいずれかを取るようになっている。
    【0154】
    また、容量素子C1〜C4それぞれの静電容量値は、復帰スイッチ用可動電極E215、E216が変位電極12に接触する状態(復帰スイッチS201およびS202のいずれもがオン)において、容量素子用電極E1〜E4のそれぞれに接続された端子T1又は端子T2と、復帰スイッチ用固定電極E231に接続された端子T231および復帰スイッチ用固定電極E232に接続された端子T232のいずれかとの間の静電容量値として、それぞれ独立して測定することができる。
    【0155】
    なお、基準電極E13は、第1の実施の形態と同様に、端子T13を介して接地されると共に、決定スイッチ用固定電極E21との間に決定スイッチS2を形成している。
    【0156】
    次に、図21を参照しつつ、本実施の形態に係る静電容量式センサ201の動作について説明する。 図21は、図17の静電容量式センサの方向ボタンのうちX軸正方向部分32Xに対する操作が行われた状態を示す横断面図であり、第1の実施の形態における図9と対応させたものである。
    【0157】
    方向ボタン32のうちX軸正方向部分32Xに対してZ軸負方向に押下する力が加えられた場合、このX軸正方向部分32Xが押し下げられ、下側に配置された樹脂シート70および支持部材60は弾性変形を生じてたわみ、支持部材60の突起体62のうちX軸正方向に対応する部分が下方へと変位する。 そして、この突起体62の先端部が第2FPC251の上面に当接すると共に、第2FPC251の突起体62が当接する部分近傍にZ軸負方向への力が作用する。
    【0158】
    これに伴って、第2FPC251の当該部分近傍は弾性変形を生じてたわみ、第2FPC251下面に形成された復帰スイッチ用可動電極E215、E216が押し下げられる。 そして、復帰スイッチ用可動電極E215、E216が所定高さだけ押し下げられると、2つの復帰スイッチ用可動電極E15、E216が変位電極12とほぼ同時に接触する。 これにより、復帰スイッチS201、S202がほぼ同時にオフからオンに切り換わる。
    【0159】
    その後、方向ボタン32のうちX軸正方向部分32Xがさらに押し下げられると、復帰スイッチ用可動電極E215、E216および変位電極12は、その接触状態を維持したまま、即ち、復帰スイッチS201、S202がオンで保持されたまま、さらに弾性変形を生じてたわみ、下方に変位する。 この変位に伴って、当該部分近傍における変位電極12と容量素子用電極E1との間隔は小さくなる。 このように方向ボタン32のうちX軸正方向部分32Xのみに操作が行われた場合、容量素子C1〜C4のうち変位電極12と容量素子用電極E1〜E4との間隔に変化があった容量素子C1の静電容量値のみが変化する。
    【0160】
    また、このとき容量素子C1を構成する容量素子用電極E1に接続する端子T1に入力される周期信号A(f(φ))は、容量素子C1を含む遅延回路を通過することによって位相にずれが生じる。 そして、この位相のずれが上述した第1の実施の形態と同様にして読み取られることによって、出力信号Vxが導出される。
    【0161】
    以上のように、本実施の形態に係る静電容量式センサ201によると、方向ボタン32に対する操作が行われた場合、方向ボタン32が変位するのに伴って、先ず2つの復帰スイッチ用可動電極E215、E216が変位してほぼ同時に変位電極12と接触する。 続いて、これら復帰スイッチ用可動電極E215、E216および変位電極12がその接触状態を維持したまま変位し、変位電極12と容量素子用電極E1〜E4との間隔が変化することにより、容量素子C1〜C4の静電容量値が変化する。
    【0162】
    ここで、静電容量式センサ201が操作されていない状態において、復帰スイッチ用可動電極E215は復帰スイッチ用固定電極E231を介して接地電位に保持され且つ復帰スイッチ用可動電極E216は復帰スイッチ用固定電極E232を介して接地電位とは異なる電源電圧Vccに保持されている。 これにより、復帰スイッチ用可動電極E215、E216と変位電極12とが接触していない状態から接触する状態へと移る過程において、出力信号Vx、Vyは、復帰スイッチ用可動電極E216が保持されている電源電圧Vcc付近のHiレベルから接地電位付近のLoレベルに、或いはLoレベルからHiレベルに切り換わる。 このようにして、出力信号Vx、Vyは必ずスレッシホールド電圧を跨いで変化することになる。
    【0163】
    つまり、本実施の形態に係る静電容量式センサ201によると、上述した第1の実施の形態と同様に、出力信号Vx、Vyを監視することによって、静電容量式センサ201の方向ボタン32に対する操作が行われたことを確実に検出できる。 したがって、スリープモードと通常モードとの切り換えを適正に行うことが可能となり、検知ボタン30に対する操作が所定時間行われない場合にはスリープモードに切り換えることによって、消費電力を低減することができる。
    【0164】
    また、さらに、本実施の形態に係る静電容量式センサ201によると、復帰スイッチS201、S202がオフのとき、即ち、復帰スイッチ用可動電極E215、E216と変位電極12とが接触していないとき、変位電極12は電気的にどこにも接続されずに絶縁状態(浮いた状態)に維持され、変位電極12と容量素子用電極E1〜E4との間に構成される容量素子C1〜C4には電圧がかからない。 したがって、このとき容量素子C1〜C4に蓄えられる電荷量は無視できる程度に小さく、出力信号は一定の大きさで安定する。
    【0165】
    一方、方向ボタン32に対する操作が行われ、復帰スイッチS201、S202がオン、即ち、復帰スイッチ用可動電極E215、E216と変位電極12とが接触すると、図20に示した端子T231を介して変位電極12が接地電位とされ、容量素子C1〜C4に電圧がかかるようになる。 したがって、復帰スイッチ用可動電極E215、E216が変位電極12と接触していない状態から接触する状態へと移る過程において、容量素子C1〜C4に蓄えられる電荷量は急激に変化することになり、これに伴って出力信号も大きく変化する。
    【0166】
    操作前後において復帰スイッチ用可動電極E215、E216および/または変位電極12の位置が多少ずれた場合でも、復帰スイッチ用可動電極E215、E216と変位電極12とが接触しない限り、静電容量式センサ201の容量素子C1〜C4に対応する出力信号はほとんど同じになると考えられる。 これにより、静電容量式センサ201の容量素子C1〜C4に対応する出力信号のヒステリシスを低減することができる。
    【0167】
    次いで、図22、図23(a)、(b)および図24を参照しつつ、本発明の第3の実施の形態に係る静電容量式センサについて説明する。 図22は本実施の形態に係る静電容量式センサ301の外観斜視図、図23(a)は図22の静電容量式センサ301のV−V線に関する横断面図、図23(b)は図22の静電容量式センサ301における基板上の電極を示す配置図である。 図24は図22の静電容量式センサ301に関する等価回路を示す回路図である。
    【0168】
    先ず、上述した第1および第2の実施の形態に係る検知ボタン30は中央ボタン31および方向ボタン32という複数の部材から構成されているが、本実施の形態の検知ボタン330は、図22および図23(a)によく示されているように、単一部材から構成されている。 本実施の形態に係る検知ボタン330は、例えば樹脂からなる中空筐体のカバーケース380内に遊嵌可能に収められており、後に詳述する突出部330Xの頂部近傍のみが、カバーケース380に形成された中央穴380aから突出している。
    【0169】
    図22に示すように、カバーケース380の底部におけるY軸方向の両端それぞれからは、取り付け穴381aを有する取り付け部381が延出し、他の部材に取り付け可能な構成となっている。 また、カバーケース380における取り付け部381が延出していない一側面下端にはケーブル用穴380bが形成されており、ケース内の部材に接続されたケーブル370がこのケーブル用穴380bを通って外部へと導出されている。
    【0170】
    次に、図23(a)、(b)および図24を参照し、カバーケース380内に収容されている各部材の構成、および、本実施の形態の静電容量式センサ301に関する等価回路について説明する。
    【0171】
    図23(a)に示すように、カバーケース380の最も底面側には、基板320が、カバーケース380のツメ部380cにより、底面側へと抜け出ないよう支持されている。 基板320上には、図23(b)に示すように、原点Oを中心とする円形の容量素子用電極E300と、この容量素子用電極E300の外側に配置された環状の固定電極E331とが配置されている。 これら電極の他、基板320上には、図23(a)に示すように、共に環状の絶縁スペーサ310bおよび例えば樹脂からなる絶縁リング311が、それぞれ容量素子用電極E300と固定電極E331との間に配置されている。
    【0172】
    絶縁スペーサ310bは、絶縁膜(レジスト膜)313で被覆された容量素子用電極E300よりも高く形成されており、その上には絶縁スペーサ310bの外徑と略同一の外径を有する円形の変位電極312が、容量素子用電極E300と離隔するよう設置されている。
    【0173】
    これら変位電極312と容量素子用電極E300との間には、図24に示すように、変位電極312の変位に起因して静電容量値が変化する可変な容量素子C300が構成されている。 変位電極312と容量素子用電極E300との間隔は、検知ボタン330が押下された場合には狭くなり、加えられた力が解除されると元に戻るため、容量素子C300は変位電極312の変位に起因して静電容量値が変化するように構成された可変容量素子であるといえる。 また、容量素子用電極E300は端子T300と接続されており、容量素子C300を含んだ遅延回路が形成されている。
    【0174】
    なお、容量素子用電極E300の表面は絶縁膜(レジスト膜)313で被覆されているため、当該容量素子用電極E300と変位電極312とが接触しても電気的に短絡することが防止される。 これにより、静電容量式センサ301において異常な出力が発生するという不都合が回避される。
    【0175】
    変位電極312の上側には、図23(a)に示すように、下側の絶縁スペーサ310bと対向するよう、絶縁スペーサ310aが設置されている。 絶縁スペーサ310aの上側には絶縁スペーサ310bの外径と略同一の外径を有する円形の可動電極315が、変位電極312と離隔するように設置されている。 可動電極315の表面中央には、検知ボタン330における球面状の底面330aが接触している。
    【0176】
    検知ボタン330は、上述のように頂部近傍がカバーケース380の中央穴380aから突出した、力が作用する円柱形の突出部330Xと、突出部330Xより径が大きく上記可動電極315の上面中央に接触する球面状の底面330aを含む球座部330Yとから構成されている。 そして球座部330Yの上面と突出部330X下側外周面とは、例えば導電性を有するシリコンゴムなどからなる支持部材360によって支持されている。
    【0177】
    支持部材360には、検知ボタン330の突出部33と略同一の径を有する検知ボタン用孔360aと、この検知ボタン用孔360aと連通し、検知ボタン330の球座部330Yの高さと略同一の深さおよび絶縁スペーサ310a、310bの内径と略同一の径を有する凹部360bと、この凹部360bと連通し、可動電極315、絶縁スペーサ310a、変位電極312および絶縁スペーサ310bのそれぞれの高さの合計から固定電極E331の高さを差し引いた深さおよび固定電極E331の内径と略同一の径を有する凹部360cとが形成されている。 そして、支持部材360の下面は固定電極E331と接触し、その外面はカバーケース380の内面と接触するように形成されている。 また、支持部材360の凹部360cにおいては、凹部360c底面と絶縁リング311の上面および可動電極315の上面周縁部のそれぞれとが接触するようになっている。
    【0178】
    このように、シリコンゴムなどの弾性材料から構成されている支持部材360によって、各電極E300、E331、312、315、各絶縁スペーサ310a、310bおよび絶縁リング311は圧接保持されると共に、検知ボタン330はカバーケース80からの飛び出しが防止されつつ所定位置に支持されている。 支持部材360は弾性材料から構成されているため、各部材の寸法誤差がある程度補完されるようになっている。
    【0179】
    なお、検知ボタン330の底面が球状に形成されているのは、検知ボタン330に作用する力を可動電極315の中央に集中することにより、出力を安定させると共に再現性を良くするためである。
    【0180】
    また、支持部材360は導電性を有するため、可動電極315がこの支持部材360を介して固定電極E331と導通可能になっている。 一方、図23(a)に示すX軸方向に関して、支持部材360と電極312、315との間には、絶縁リング311が、上面および下面を基板320と支持部材360とに接するように配置されており、変位電極312と支持部材360とが電気的に導通しないようになっている。
    【0181】
    本実施の形態では、図24に示すように、固定電極E331が接地され、上述のように支持部材360を介して、可動電極315が接地電位に保持されている。 可動電極315と変位電極312との間にはスイッチS300が形成されており、検知ボタン330に対する操作が行われていない状態では、可動電極315と変位電極312とは接触せず、スイッチS300はオフである。 このとき変位電極312は電気的にどこにも接続されずに絶縁された状態(浮いた状態)であり、変位電極312と容量素子用電極E300との間に構成される容量素子C300には、容量素子用電極E300に信号を与えても、電圧がかからない。 したがって容量素子C300に蓄えられる電荷量は無視できる程度に小さく、出力信号は一定の大きさで安定する。
    【0182】
    なお、通常モードにおいて、端子T300には周期信号発振器(図示せず)から所定周波数のクロック信号などの周期信号が常に入力されているものとする。
    【0183】
    次に、本実施の形態に係る静電容量式センサ301の動作について説明する。 先ず、図23(a)に示すZ軸負方向の力Fzが検知ボタン330に加わると、検知ボタン330はZ軸負方向に変位して、底面380aに接触している可動電極315を変位させる。 ここで力Fzが所定の大きさFo以上の場合、可動電極315は変位電極312と接触し、このとき上述したスイッチS300がオンになる。 スイッチS300がオンでは、浮いた状態であった変位電極312は可動電極315および固定電極E331と同様の接地電位となる。 ここでは容量素子用電極E300に信号が与えられると、容量素子C300に電荷が蓄積されるようになる。
    【0184】
    力Fzがさらに増加すると、変位電極312が可動電極315との接触状態を維持したままZ軸負方向に変位すると共に、容量素子用電極E300とで構成される容量素子C300の静電容量値が大きくなる。 この静電容量値の変化は検知ボタン330に作用する力Fzの大きさの変化に起因するものである。
    【0185】
    ここで、本実施の形態における容量素子C300を利用し、第1の実施の形態において図11〜図14を参照して説明したようなC/V変換回路を形成して、出力信号を導出する方法について考える。 本実施の形態では、容量素子C300の他に、ダミーの安定した固定容量素子を用いることにする。 そして各容量素子にC/V変換回路を接続し、各C/V変換回路に位相の異なる信号を入力する。
    【0186】
    力Fzが所定値Foよりも小さい値の場合、容量素子C300には電荷が蓄積されないため、各C/V変換回路に入力された信号には位相のずれが生じない。 このとき出力信号はダミーの固定容量素子や固定抵抗などの一定の値を有するものにより決定し、一定値Voに維持される。
    【0187】
    一方、力Fzが所定値Fo以上の値になると、容量素子C300に電荷を蓄積できるようになり、各C/V変換回路に入力された信号には位相のずれが生じることになる。 この信号の位相のずれを利用して、力Fzの大きさを得ることができる。
    【0188】
    以上のように、本実施の形態に係る静電容量式センサ301によると、検知ボタン330に対する操作が行われた場合、検知ボタン330が変位するのに伴って、先ず可動電極315が変位して変位電極312と接触し、続いてこれら可動電極315および変位電極312がその接触状態を維持したまま変位する。 ここで、スイッチS300がオフのとき、変位電極312は絶縁状態に保持され且つ可動電極315は接地電位に保持されている。 このとき変位電極312と容量素子用電極E300との間に構成される容量素子C300には電圧がかからないため、蓄えられる電荷量は無視できる程度に小さく、出力信号は一定の大きさで安定する。
    【0189】
    一方、検知ボタン330に対する操作が行われ、スイッチS300がオン、即ち、変位電極312は可動電極315とが接触すると、変位電極312が接地電位になり、当該容量素子C300に電圧がかかるようになる。 このとき、容量素子C300における電荷の蓄積が可能になる。 したがって、スイッチS300がオフからオンに移る過程、即ち、可動電極315と変位電極312とが接触していない状態から接触している状態へと移る過程において、容量素子C300に蓄えられる電荷量は急激に変化することになり、これに伴って出力信号も大きく変化する。
    【0190】
    ここで、操作前後において可動電極315および/または変位電極312の位置が多少ずれた場合でも、静電容量式センサ301の容量素子用電極E300に対応する出力信号は、ほとんど同じになると考えられる。 これにより、容量素子C300に対応する出力信号のヒステリシスを低減するという効果を得ることができる。
    【0191】
    次いで、図25を参照しつつ、本発明に係る静電容量式センサの第4の実施の形態について説明する。 本実施の形態における静電容量式センサ401は、特に圧力センサとして好適なものである。
    【0192】
    後に詳述する可動電極415、変位電極412、容量素子用電極E400などを収納する例えば樹脂からなるハウジング480は、下側ハウジング480aと上側ハウジング480bとから構成される。 下側ハウジング480aの底面中央には、基板420を所定位置に嵌め込むための段部483と、段部483のさらに下方において基板420下面に配置された電子部品やケーブル470などを収容するための凹部484と、凹部484中央において下側ハウジング480aの底面側に貫通したケーブル用穴482とが形成されており、ケーブル470がケーブル用穴482を通って外部へ導出されている。 また、下側ハウジング480aの段部483の外側には、2つの環状の山形溝Y1が形成されている。
    【0193】
    一方、上側ハウジング480bにおける下側ハウジング480aと接する側には、下側ハウジング480aの山形溝Y1に対応する山形突出部Y2を含んだ、各電極415、412などを配置するための空間である凹部487形成されている。 この凹部487から、上側ハウジング480bにおける下側ハウジング480aと接する側とは反対側にかけて、OリングORを収容するための段部486、および、外気と連通する円柱状空洞485が形成されている。 また、上側ハウジング480bは、下側ハウジング480aと接する側においては下側ハウジング480aと同様の外形を有すると共に、その反対側、即ち、円柱状空洞485が形成されている側では縮経されてチューブ481と嵌合されている。
    【0194】
    基板420や各電極412、415などは、上述のように下側ハウジング480aと上側ハウジング480bとの間に形成された空間に配置されている。 ここで、基板420や各電極412、415などの配置手順について以下に述べる。
    【0195】
    先ず、下側ハウジング480aの段部483に、表面に円形の容量素子用電極E400が形成された基板420を設置する。 次に基板420の上に、容量素子用電極E400よりも大きな外径且つ基板420よりも小さな外径の孔が中央に形成されたフィルム状の絶縁スペーサ410aを、容量素子用電極E400に接触しないように且つ基板420上に接触するように設置する。
    【0196】
    そして、絶縁スペーサ410aの上側に、例えばビニルやPETのフィルムからなり且つ図25に斜線で示す上面のみにアルミなどの金属が蒸着された、変位電極412を設置する。 このように、変位電極412が上面のみに導電性を有しているため、本実施の形態においては上述した第1〜第3の実施形態と異なり、容量素子用電極E400の表面が絶縁膜(レジスト膜)で被覆されない構成となっている。
    【0197】
    変位電極412の中央には容量素子用電極E400の外径に比べて極小さな通気孔H0が形成されており、変位電極412を介した上下空間における圧力が略同一となるよう構成されている。 本実施の形態においては通気孔H0を1つのみとしているが、複数であってもよい。
    【0198】
    変位電極412の上側には上述した絶縁スペーサ410aと同様の絶縁スペーサ410bを、変位電極412を介して対向するよう配置する。 そしてさらにこの絶縁スペーサ410bの上側に、変位電極412と同様の、例えばビニルやPETのフィルムなどからなり且つ図25に斜線で示す下面のみにアルミなどの金属が蒸着された、可動電極415を設置する。
    【0199】
    以上のようにして、下側ハウジング480aに基板420や各電極412、415などを設置した後、上側ハウジング480bの段部486にOリングORを嵌合して、上側ハウジング480bと下側ハウジング480aとをネジ450で締結する。 このように上側ハウジング480bと下側ハウジング480aとをネジ450で互いに締結すると、各ハウジング480a、480bに形成された山形溝Y1および山形突出部Y2が嵌合するように接近する。 このとき、これらの間に配置されているフィルム状の可動電極415、変位電極412および各絶縁スペーサ410a、410bは共に山形溝Y1および山形突出部Y2と同様の山形に変形しつつ、外側に向けて適度な張力が付与される。
    【0200】
    なお、これら上側および下側ハウジング480a、480bは、ネジ450による締結ではなく、いずれか一方に設けられたボスを他方に挿入して組み立てた後、熱溶着により締結してもよい。 また、他にも、上側および下側ハウジング480a、480bのいずれか一方にツメを形成し、そのツメを他方に噛合させて組み立てる等、様々な方法をとってよい。
    【0201】
    OリングORは、両ハウジング480a、480bの締結によって段部486と可動電極415との間で押し潰されてこれらと密着し、チューブ481との嵌合側に形成された圧力導入口Hから侵入した気体又は液体が上側ハウジング480bと可動電極415との隙間を通過するのを防止する機能を果たしている。
    【0202】
    本実施の形態では、可動電極415は接地され、変位電極412は電気的にどこにも接続されずに絶縁された状態(浮いた状態)である。 また、上述した第1〜第3の実施形態と同様に、通常モードにおいて、容量素子用電極E400には周期信号発振器(図示せず)から所定周波数のクロック信号などの周期信号が常に入力されているものとする。
    【0203】
    次に、本実施の形態に係る静電容量式センサ401の動作について説明する。 先ず、圧力導入口Hからの気体又は液体の侵入によって変動する、可動電極415の圧力導入口H側の圧力をP1とする。 可動電極415と変位電極412との間に形成される空間は、図示しない穴によって外気と連通しており、大気圧P0とほぼ等しい。 また、変位電極412には通気孔H0が形成されているため、変位電極412と基板420との間に形成される空間は、可動電極415と変位電極412との間に形成される空間と同様に、大気圧P0とほぼ等しい。
    【0204】
    ここで、可動電極415と変位電極412とが接触するときの圧力導入口H側圧力P1の値をPa(>P0)とすると、P1がPa未満の場合、可動電極415と変位電極412とは接触せず、容量素子用電極E400に信号が与えられても電圧がかからない。 このとき容量素子用電極E400と変位電極412との間に構成される容量素子に蓄えられる電荷量は無視できる程度に小さく、出力信号は一定の大きさで安定する。
    【0205】
    圧力導入口H側圧力P1が所定値Paに達すると、両電極415、412が接触して、両電極415、412の導電性を有する面同士が接触することになり、絶縁状態(浮いた状態)であった変位電極412が可動電極415と同様の接地電位となる。 この時点で、変位電極412と容量素子用電極E400との間に構成される容量素子に電圧がかかるようになり、電荷の蓄積が可能となる。
    【0206】
    そして、圧力導入口H側圧力P1がさらに増加すると、両電極415、412がその接触状態を維持したまま下方へ変位すると共に、変位電極412と容量素子用電極E400とで構成される容量素子の静電容量値が大きくなる。 この静電容量値の変化は圧力導入口H側圧力P1の変化に起因するものであり、この静電容量値の変化を、上述した第3の実施の形態と同様に、信号の位相ずれとして得ることで、圧力P1を測定できるようになっている。
    【0207】
    以上のように、本実施の形態に係る静電容量式センサ401によると、圧力によって可動電極415が変位し、変位電極412と接触した後、両電極415、412が接触状態を維持したまま共に変位する。 可動電極415及び変位電極412が接触していない状態から接触する状態に移る過程において、容量素子に電圧がかからずに電荷が蓄えられない状態から電圧がかかって電荷が蓄えられる状態へと変化するため、電荷量は急激に変化し、出力信号も大きく変化する。 したがって、たとえ操作前後において可動電極415および/または変位電極412の位置が多少ずれたとしても、可動電極415と変位電極412とが接触しない限り、変位電極412と容量素子用電極E400との間に構成される容量素子に対応する出力信号は、ほとんど同じになると考えられる。 つまり、本実施の形態に係る静電容量式センサ401によると、出力信号のヒステリシスを低減するという効果を得ることができる。
    【0208】
    また、可動電極415と変位電極412とが接触しない間に容量素子に蓄えられる電荷量は、両者が接触している間に蓄えられる電荷量と比較すると、無視できる程度に小さい。 したがって、本実施の形態に係る静電容量式センサ401は、圧力導入口H側の圧力P1がある値以上の場合のみに測定できる、ヒステリシスの非常に小さな圧力センサとして用いることができる。
    【0209】
    また、可動電極415および変位電極412を共に、比較的小さな力が加えられた場合でも変位しやすいフィルムから構成することで、本実施の形態のように圧力センサとして用いることが可能となっている。
    【0210】
    また、変位電極412には通気孔H0が形成されていることから、変位電極412を介した両空間において圧力差がほとんど生じない。 したがって、測定対象となる圧力以外の圧力の影響で変位電極412が変位し、静電容量値が変化してしまうことを防止することができる。
    【0211】
    また、さらに、可動電極415および変位電極412が容量素子用電極E400と対向しない領域において、ハウジング480に形成された山形溝Y1および山形突出部Y2により、凹凸に変形されることにより、これらに張力が付与されている。 これにより、フィルムからなる可動電極415および変位電極412が撓んで測定精度が低下するということがなく、良好な測定精度を発揮することができる。
    【0212】
    次いで、図26〜図34を参照しつつ、本発明の第5の実施の形態に係る静電容量式センサ501について説明する。
    【0213】
    図26は、本実施の形態に係る静電容量式センサの横断面図であり、図1に示した第1の実施の形態と対応したものである。 本実施の形態に係る静電容量式センサ501の構成が図1に示した第1の実施の形態に係る静電容量式センサ1の構成と主に異なる点は、第1の実施の形態における静電容量式センサ1では、センサユニット10が容量素子C1〜C4を構成するための容量素子用電極E1〜E4および決定スイッチS2を構成するための決定スイッチ用固定電極E21、基準電極E13の両方を含んでおり、それらが全て1つのFPC11上に設けられているのに対して、本実施の形態における静電容量式センサ501では、センサユニット510が容量素子C501〜C504を構成するための容量素子用電極E501〜E504を含んでいるがメンブレンスイッチS501〜S505を含んでないで、そのセンサユニット510がメンブレンスイッチS501〜S505を有するメンブレンスイッチシート570上に積層されている点である。
    【0214】
    先ず、本実施の形態に係る静電容量式センサ501の構成について、図26〜図33を参照して説明する。
    【0215】
    静電容量式センサ501は、マザーボード520と、マザーボード520上に配置されたメンブレンスイッチシート(以下、単に「スイッチシート」と称する)570と、スイッチシート570上に配置されたセンサユニット510と、外部からの力を検出するためのスイッチボタン530と、スイッチボタン530をマザーボード520に対して支持固定する支持部材540とを有する。
    【0216】
    マザーボード520は、第1の実施の形態の基板20と同様に、一般的な電子回路用のプリント回路基板であり、本実施の形態では、ガラスエポキシ基板が用いられる。 図27にはマザーボード520上に形成されている複数の電極を示す配置図、図28にはスイッチシート570を示す概略構成図が示されている。 マザーボード520上には、図27に示すように、メンブレンスイッチ(以下、単に「スイッチ」と称する)S501〜S505の導電性の接点ランドとなるパターンが、例えば銅箔などによって形成されている。
    【0217】
    具体的には、マザーボード520上には、X軸正方向、X軸負方向、Y軸正方向およびY軸負方向のそれぞれに対応するように配置された円形のスイッチ用固定電極E551〜E554と、スイッチ用固定電極E551〜E554のそれぞれの外側に配置された環状の基準電極E561〜E564と、原点Oを中心とする円形の決定スイッチ用固定電極E555と、決定スイッチ用固定電極E555の外側に配置された環状の基準電極E565とが形成されている。 ここで、スイッチ用固定電極E551〜E554は、それぞれX軸正方向、X軸負方向、Y軸正方向およびY軸負方向について原点から所定距離だけ離隔して配置されている。
    【0218】
    スイッチシート570は、図26および図28に示すように、薄い樹脂シート571と、スイッチ用可動電極E571〜E574と、決定スイッチ用可動電極E575とを有しており、全体として極薄いシート状部材である。 なお、図26および図28では、X軸正方向およびX軸負方向に配置されるスイッチ用可動電極E571、E572および原点上に配置される決定スイッチ用可動電極E571だけが図示されている。
    【0219】
    また、図26および図27には、マザーボード520上のスイッチシート570には、スイッチS501〜S505を構成するための各電極だけが含まれている様子が描かれているが、静電容量式センサ501を含む装置を構成する上で、マザーボード520上のスイッチシート570に、デバイスである静電容量式センサ501以外に必要なその他のスイッチを構成するための各電極を同様に含まれていれば、その装置の製造工程を簡略化することができると共に、製造コストを低減することができる。
    【0220】
    スイッチ用可動電極E571〜E574および決定スイッチ用可動電極E575は、スイッチS501〜S505のそれぞれの可動接点となるものであって、それぞれ基準電極E561〜E565よりも若干小さい外径を有するドーム状の部材である。 そして、スイッチ用可動電極E571〜E574および決定スイッチ用可動電極E575は、それぞれの外側表面の円弧状部分が樹脂シート571に当接するように、接着剤(のり)によって接着固定されている。 このとき、スイッチ用可動電極E571〜E574および決定スイッチ用可動電極E575は、マザーボード520上のスイッチ用固定電極E551〜E554および決定スイッチ用固定電極E555にそれぞれ対応するような間隔を隔てて(ピッチで)配置されている。
    【0221】
    そして、スイッチシート570がマザーボード520上に適正に位置合わせされつつ、樹脂シート571のスイッチ用可動電極E571〜E574および決定スイッチ用可動電極E575が配置された面がマザーボード520側になるように、接着剤等を利用して貼り合わされる。 すると、図26に示すように、スイッチ用可動電極E571〜E574が基準電極E561〜E564にそれぞれ接触するとともに、スイッチ用固定電極E551〜E554と離隔しつつこれを覆うように配置される。 また、決定スイッチ用可動電極E575が、基準電極E565に接触するとともに、決定スイッチ用固定電極E555と離隔しつつこれを覆うように配置される。 このようにして、スイッチS501〜S505を簡単に形成することができる。 なお、スイッチS501〜S505は互いに独立したスイッチとして機能する(図34参照)。
    【0222】
    また、図31にはセンサユニット510を示す概略構成図が示されている。 センサユニット510は、図26および図31に示すように、センサ基板511と、センサ基板511上に形成された容量素子用電極E501〜E504(図26および図31では、容量素子用電極E501、E502のみを示す)と、センサ基板511上に配置されたスペーサ591a、592a、593aと、容量素子用電極E501〜E504の上方において容量素子用電極E501〜E504と対向するように配置されたセンサ電極512と、センサ電極512上に配置されたスペーサ591b、592b、593bと、センサ電極512の上方においてセンサ電極512と対向するように配置された基準電極515とを有している。
    【0223】
    また、図29にはセンサ基板511上に形成されている複数の電極を示す配置図が示されている。 センサ基板511は、図29に示すように、略矩形状の板状部材であって、薄いプリント基板または柔軟性を有するポリミイド基板である。 センサ基板511には、X軸正方向、X軸負方向、Y軸正方向およびY軸負方向のそれぞれに対応するように切り欠き581〜584が形成されており、その中心位置近傍には開口585が形成されている。 これは、センサユニット501がマザーボード520上のスイッチシート570上に固定配置された場合に、センサ基板511がスイッチS501〜S505と重ならないようにするためのものである。
    【0224】
    切り欠き581〜584は、略楕円形状であって、その大きさはマザーボード520上の基準電極E561〜E564の外径よりも大きくなっている。 また、開口585は、略円形状であって、その外径はマザーボード520上の基準電極E565の外径よりも大きくなっている。 従って、センサユニット501がマザーボード520上のスイッチシート570上に固定配置された場合には、センサ基板511の切り欠き581〜584内にスイッチS501〜S504がそれぞれ配置され、開口585内にスイッチS505が配置される。 なお、図29では、スイッチS501〜S505の位置が破線で図示されている。
    【0225】
    容量素子用電極E501〜E504は、センサ基板511の開口585の外側に配置された略扇形の電極である。 ここで、容量素子用電極E501〜E504の内周部は、開口585の縁部から離隔して配置されている。 また、容量素子用電極E501〜E504の外周部には、センサ基板511の切り欠き581〜584にそれぞれ対応する凹部501a〜504aが形成されている。 そして、容量素子用電極E501〜E504は、センサ基板511の外周部(切り欠き581〜584に対応する部分を含む)からも離隔して配置されている。
    【0226】
    容量素子用電極E501および容量素子用電極E502は、X軸の正方向および負方向にそれぞれ対応するように、X軸方向に離隔しながらY軸に対して線対称に配置されており、外部からの力のX軸方向成分の検出に利用される。 また、容量素子用電極E503および容量素子用電極E504は、Y軸の正方向およびY軸の負方向にそれぞれ対応するように、Y軸方向に離隔しながらX軸に対して線対称に配置されており、外部からの力のY軸方向成分の検出に利用される。
    【0227】
    スペーサ591a〜593aは、センサ電極512を、センサ基板511上の容量素子用電極E501〜E504と僅かな距離を保って離隔させつつ保持するためのものである。 スペーサ591aは、図29に示すように、環状の部材であって、センサ基板511上の開口585の縁部と容量素子用電極E501〜E504との間に配置されている。 スペーサ592aは、センサ基板511上の容量素子用電極E501〜E504の周囲においてこれらを囲むように配置されている。 また、スペーサ591cは、図31に示すように、センサ基板511の端部近傍において、センサ基板511とセンサ電極512の段部512aとの間に配置されている。
    【0228】
    なお、本実施の形態では、スペーサ591a〜593aは、両面接着フィルムまたは接着剤で構成されている。 つまり、センサ基板511上にセンサ電極512を配置固定するための両面接着フィルムまたは接着剤が、センサ基板511上の容量素子用電極E501〜E504とセンサ電極512とを僅かな距離を保って離隔させるためのスペーサとして機能する。
    【0229】
    また、図30にはセンサ電極512を示す概略構成図が示されている。 センサ電極512は、図30に示すように、例えばリン青銅またはステンレス板の略円形状の板状部材である。 そして、センサ電極512の一端部近傍には、外側に向かって延在する略矩形状のリード部513が設けられている。 そして、リード部513の根本側には段部512aが設けられている。 従って、センサ電極512のリード部513と、段部512aに対してリード部513と反対側の部分である上段部514は、図26および図31に示すように、同一面上にはなく互いに平行な面上にある。
    【0230】
    センサ電極512の上段部514には、4つの切り欠き514aと、開口514bが形成されている。 4つの切り欠き514aは、X軸正方向、X軸負方向、Y軸正方向およびY軸負方向に対応しており、1つの開口514bはZ軸に対応している。 従って、マザーボード520上に設けられるスイッチS501〜S504は、センサ電極512の切り欠き514a内に配置されると共に、スイッチS505はセンサ電極512の開口514b内に配置される。 なお、図30では、スイッチS501〜S505の位置が破線で図示されている。
    【0231】
    ここで、切り欠き514aはそれぞれ略半円形状であって、開口514bは略円形である。 そして、切り欠き514aおよび開口514bは、後述する支持部材540の突起体541の外径よりも大きく、突起体541は切り欠き514aおよび開口514b内を嵌挿することができる。
    【0232】
    また、センサ電極512は、図26および図31に示すように、そのリード部513の下面が、センサ基板511上の容量素子用電極E501とそれに近接するセンサ基板511の端部との間に当接するように配置される。 このように、センサ電極512のリード部513の下面が、センサ基板511上に当接するように配置された場合には、その上段部514はセンサ基板511と所定間隔だけ離隔し且つほぼ平行に配置される。 従って、センサ電極512は、センサ基板511上の容量素子用電極E501〜E504と離隔しつつこれらを覆うように固定配置される。
    【0233】
    ここで、上述したように、センサ基板511とセンサ電極512との間には、スペーサ591a〜593aが配置されている。 従って、センサ基板511上の容量素子用電極E501〜E504とセンサ電極512とは、所定距離(スペーサ291a、292aの高さに対応する距離)だけ離隔しており、両者の間には容量素子C501〜C504が構成される。 なお、静電容量式センサ501の誤操作を防止するためには、容量素子用電極E501〜E504およびセンサ電極512のそれぞれの対向する面の少なくとも一方に対して絶縁処理が施されるのが好ましい。
    【0234】
    また、センサ電極512の上面には、スペーサ591b〜593cが配置されている。 スペーサ591b、592bは、スペーサ591a、592aとそれぞれほぼ同じ形状の部材である。 そして、スペーサ591bは、センサ電極512を挟んでスペーサ591aと重なるように配置されており、スペーサ592bは、センサ電極512を挟んでスペーサ592aと重なるように配置されている。 また、スペーサ593bは、センサ電極512のリード部513近傍の上面に配置されている。
    【0235】
    なお、本実施の形態では、スペーサ591b〜593bは、スペーサ591a〜593aと同様に、両面接着フィルムまたは接着剤で構成されている。 つまり、センサ電極512上に基準電極515を配置固定するための両面接着フィルムまたは接着剤が、センサ電極512と基準電極515とを僅かな距離を保って離隔させるためのスペーサとして機能する。
    【0236】
    また、スペーサ591a〜593aおよびスペーサ591b〜593bは、必ずしも両面接着フィルムまたは接着剤である必要はなく、本実施の形態と同様の機能を有していれば、その他の部材で構成されていてもよい。
    【0237】
    基準電極515は、例えばリン青銅またはステンレス板の略円形状の板状部材である。 ここで、基準電極515の構成は、センサ電極512と同様の構成であるので詳細な説明は省略するが、その一端部近傍には、外側に向かって延在するリード部516が設られていると共に、段部515aに対してリード部516と反対側の部分である上段部517には4つの切り欠き517aおよび開口517bが形成されている。 そして、基準電極515は、センサ基板511上のセンサ電極512と離隔しつつこれを覆うように固定配置される。
    【0238】
    ここで、上述したように、センサ電極512と基準電極515との間には、スペーサ591b〜593bが配置されている。 従って、センサ電極512と基準電極515とは、所定距離(スペーサ291b、292bの高さに対応する距離)だけ離隔している。 なお、センサ電極512および基準電極515のそれぞれの対向する面は、いずれも絶縁処理は施されていない。
    【0239】
    このような構成のセンサユニット510が、そのセンサ基板511の裏面に接着剤等が塗布されて、マザーボード520上のスイッチシート570の上面に固定配置される。 このとき、上述したように、センサユニット510のセンサ基板511の切り欠き581〜584がスイッチS501〜S504に対応すると共に、その開口585がスイッチS505に対応するように配置される。
    【0240】
    また、センサユニット510に含まれる容量素子用電極E501〜E504に接続されたリード端子(図示しない)、センサ電極512のリード部513および基準電極515のリード部516が、例えばリード線(図示しない)等によってマザーボード520と電気的に接続される。
    【0241】
    また、図32にはスイッチボタン530の上面図が示されている。 スイッチボタン530は、スイッチS505を構成する基準電極E531の外径とほぼ同じ外径を有する円形のセンタースイッチボタン531と、センタースイッチボタン531の外側に配置された環状のサイドスイッチボタン532とから構成されている。
    【0242】
    サイドスイッチボタン532は、センサ基板511の開口585とほぼ同じ内径を有し、且つ、センサ基板511上の容量素子用電極E501〜E504のそれぞれの外側の曲線を結んでできる円の径より大きい外径を有している。 従って、サイドスイッチボタン532は、容量素子用電極E501〜E504とセンサ電極512との間で構成される容量素子C501〜C504、および、スイッチ用可動電極E571〜E574およびスイッチ用固定電極E551〜E554で構成されるスイッチS501〜S504のいずれにも対応している。
    【0243】
    また、図26に示すように、センタースイッチボタン531およびサイドスイッチボタン532は、支持部材540によってマザーボード520に対して支持されている。 なお、図26では、支持部材540がマザーボード520と当接する部分の図示が省略されている。
    【0244】
    そして、センタースイッチボタン531は、スイッチS505に対応するように支持部材540の上面に接着固定されており、サイドスイッチボタン532は、スイッチS501〜S504および容量素子C501〜C504に対応するように接着固定されている。 なお、センタースイッチボタン531およびサイドスイッチボタン532は、必ずしも支持部材580の上面に接着固定される必要はなく、それらの位置が大きくずれないように構成されていればよい。
    【0245】
    支持部材540は、例えばシリコンゴムシートなどの弾性を有する材料により形成されている。 図33には支持部材540に形成されている突起体541、542を示す配置図が示されている。 支持部材540のセンタースイッチボタン531およびサイドスイッチボタン532が配置された面と反対側の面には、5つの突起体541および4つの突起体542が設けられている。 図33には図26の支持部材540に形成された突起体541、542の構成が示されている。 なお、図33は支持部材540を下方(Z軸負方向)から見たときの図である。 また、図33では、突起体541、542の位置関係が分かるように、スイッチS501〜S505の位置が破線で図示されており、センタースイッチボタン531およびサイドスイッチボタン532が一点鎖線で図示されており、センサ基板511上の容量素子用電極E501〜E504が二点鎖線で図示されている。
    【0246】
    5つの突起体541は、それぞれ略円柱形状を有しており、センタースイッチボタン531に対応する1つの突起体541と、サイドスイッチボタン532に対応する4つの突起体541とを含んでいる。 そして、サイドスイッチボタン532に対応する4つの突起体541は、スイッチS501〜S504に対応するようにそれぞれ配置されている。 ここで、突起体541は、基準電極515の開口515bおよびセンサ電極512の開口512bを上方から下方に向かって順に嵌挿している。 また、突起体541は所定長さを有しており、図26から分かるように、スイッチボタン530に対して外部から力が加えられていない状態において、その先端部がセンサ基板511に接触しないようになっている。
    【0247】
    4つの突起体542は、それぞれ略馬形状を有しており、センタースイッチボタン531に対応する1つの突起体541と、サイドスイッチボタン532に対応する4つの突起体541とのそれぞれの間において、センサ基板511上の容量素子用電極E501〜E504にそれぞれ対応するように配置されている。 従って、4つの突起体542は、容量素子用電極E501〜E504の凹部501a〜504aの円周部分に沿って配置されている。 また、突起体542は所定長さを有しており、図26から分かるように、スイッチボタン530に対して外部から力が加えられていない状態において、その先端部が基準電極515に接触しないようになっている。
    【0248】
    次に、図34を参照しつつ、本実施形態における静電容量式センサ501の回路構成について説明する。
    【0249】
    本実施の形態に係る静電容量式センサ501において、図26に示した共通の電極である変位可能なセンサ電極512と固定された個別の容量素子用電極E501〜E504との間には、センサ電極512の変位に起因して静電容量値が変化する可変な容量素子C501〜C504が構成されている。 ここで、センサ電極512は、スイッチボタン530に外部から力が加えられていない場合には、絶縁状態に保持されている。 また、容量素子用電極E501〜E504は、端子T501〜T504にそれぞれ接続されており、容量素子C501〜C504を含んだ遅延回路が形成されている。
    【0250】
    一方、基準電極515は端子T515を介して接地されている。 そして、基準電極515は、スイッチボタン530に外部から力が加えられていない場合には、センサ電極512と離隔しているが、スイッチボタン530に外部から所定の力が加えられた場合には、センサ電極512と接触する。 従って、基準電極515が、センサ電極512と接触する状態(オン)および接触しない状態(オフ)のいずれかの状態を取り得ることから、センサ電極512と基準電極515との間にはスイッチS515が形成されている。
    【0251】
    また、基準電極E561〜E565は、端子T561〜T565を介して接地されていると共に、基準電極E561〜E565に接触しているスイッチ用可動電極E571〜E574および決定スイッチ用可動電極E575が、スイッチ用固定電極E551〜E554および決定スイッチ用固定電極E555と接触する状態(オン)および接触しない状態(オフ)のいずれかの状態を取り得ることから、それぞれの間にはスイッチS501〜S505が形成されている。 なお、スイッチ用固定電極E551〜E554および決定スイッチ用固定電極E555は、端子T551〜T555に接続されている。
    【0252】
    次に、センタースイッチボタン531に対する操作が行われた場合の動作について説明する。 センタースイッチボタン531が押下されると、その下側に配置された支持部材540は弾性変形を生じてたわみ、支持部材540のZ軸上に対応する突起体541が、決定スイッチ用可動電極E575を下方に押圧する。 すると、決定スイッチ用可動電極E575がクリック感を付随しつつ弾性変形して決定スイッチ用固定電極E555に接触する。 このように決定スイッチ用可動電極E575と決定スイッチ用固定電極E555とが接触すると、決定スイッチ用可動電極E575を介して、決定スイッチ用固定電極E555と基準電極E565とが電気的に接続されることになる。 そして、これら両者の間の電気的な接続の有無が検出されることによって、スイッチとして利用することが可能となる。 このとき、上述のとおり、決定スイッチ用可動電極E575が弾性変形する際のクリック感によって、操作者は明瞭な操作感を得ることができる。
    【0253】
    引き続き、サイドスイッチボタン532のX軸正方向に対応する部分に対する操作が行われた場合の動作について説明する。 サイドスイッチボタン532のX軸正方向に対応する部分(特にその外周部近傍)が押下されると、その下側に配置された支持部材540は弾性変形を生じてたわみ、支持部材540のX軸正方向に対応する突起体541が、スイッチ用可動電極E571を下方に押圧する。 すると、スイッチ用可動電極E571がクリック感を付随しつつ弾性変形してスイッチ用固定電極E551に接触する。 このようにスイッチ用可動電極E571とスイッチ用固定電極E551とがそれぞれ接触すると、スイッチ用可動電極E571を介して、スイッチ用固定電極E551と基準電極E561とが電気的に接続されることになる。 そして、これら両者の間の電気的な接続の有無が検出されることによって、スイッチとして利用することが可能となる。 このとき、スイッチ用可動電極E571が弾性変形する際のクリック感によって、操作者は明瞭な操作感を得ることができる。
    【0254】
    また、サイドスイッチボタン532のX軸正方向に対応する部分(特にその内周部近傍)が押下されると、その下側に配置された支持部材540は弾性変形を生じてたわみ、支持部材540の突起体542が下方へ変位する。 そして、この突起体542の先端部が基準電極515に当接すると共に、基準電極515のうち突起体542が当接する部分近傍にZ軸負方向への力が作用する。 この力に伴って、基準電極515の当該部分近傍は弾性変形を生じてたわみ、所定高さだけ押し下げられるとセンサ電極512と接触する。 これにより、スイッチS515がオフからオンに切り換わる。 このとき、センサ電極512は接地された基準電極515と接触するので、絶縁状態にあったセンサ電極512は、両者が接触した瞬間に、基準電極515と同電位すなわちグランド電位になる。
    【0255】
    その後、サイドスイッチボタン532のX軸正方向に対応する部分がさらに押し下げられると、スイッチS515がオンを保持しつつ、センサ電極512の基準電極515との接触部分近傍が弾性変形を生じてたわみ下方に変位する。 この変位に伴って、当該部分近傍におけるセンサ電極512と容量素子用電極E501との間隔は小さくなる。 これによって、センサ電極512と容量素子用電極E501との間の容量素子C501の静電容量値は大きくなるように変化する。 この静電容量C501の変化は、サイドスイッチボタン532を押下する力の大きさ(強さ)に対応する。 なお、サイドスイッチボタン532のX軸正方向に対応する部分以外の部分が押下された場合にも、上述と同様の動作によって、容量素子C502〜C504の静電容量値が変化する。
    【0256】
    そして、容量素子C501〜C504の静電容量値の変化を検出することによって、第1の実施の形態と同様にして、サイドスイッチボタン532に加えられた力の方向(X軸方向およびY軸方向)とその大きさを検知することができる。 従って、サイドスイッチボタン532に対して加えられる360度全方向の力を、その大きさと共に検知することができるので、XY平面方向のカーソル位置などを制御するジョイステックに応用することができる。
    【0257】
    なお、サイドスイッチボタン532が押下された場合には、その押下される位置および押下される力の大きさ(強さ)に応じて、スイッチS501〜S504はオフ状態からオン状態に切り換わり、容量素子C501〜C504の静電容量値は変化する。 従って、スイッチS501〜S504の動作と、容量素子C501〜C504の静電容量値の変化とは、明確な関連性はなく、それぞれが独立して働くことになる。
    【0258】
    また、本実施の形態のセンサユニット511は、外部から加えられる力を検出するために必要な各電極がユニット化(一体化)されており、例えばスイッチ出力だけを得ることが可能な装置に対しても容易に組み込むことができる。
    【0259】
    以上のように、本実施の形態に係る静電容量式センサ501によると、スイッチS515がオフのとき、即ち、センサ電極512とセンサ電極515とが接触していないとき、センサ電極512は電気的にどこにも接続されずに絶縁状態(浮いた状態)に維持され、センサ電極512と容量素子用電極E501〜E504との間に構成される容量素子C501〜C504には電圧がかからない。 したがって、このとき容量素子C501〜C504に蓄えられる電荷量は無視できる程度に小さく、出力信号は一定の大きさで安定する。
    【0260】
    一方、サイドスイッチボタン532に対する操作が行われ、スイッチS515がオン、即ち、センサ電極512とセンサ電極515とが接触すると、センサ電極512が接地電位となり、容量素子C501〜C504に電圧がかかるようになる。 したがって、センサ電極512と基準電極515と接触していない状態から接触する状態へと移る過程において、容量素子C501〜C504に蓄えられる電荷量は急激に変化することになり、これに伴って出力信号も大きく変化する。
    【0261】
    従って、操作前後においてセンサ電極512および/または基準電極515の位置が多少ずれた場合でも、センサ電極512と基準電極515とが接触しない限り、静電容量式センサ501の容量素子C501〜C504に対応する出力信号はほとんど同じになると考えられる。 これにより、静電容量式センサ501の容量素子C501〜C504に対応する出力信号のヒステリシスを低減することができる。
    【0262】
    また、センサ電極512と容量素子用電極E501〜E504との間隔の変化に起因する容量素子C501〜C504の静電容量値の変化を検出することによって、サイドスイッチボタン532に外部から加えられた力の大きさを認識可能であると共に、スイッチ用可動電極E571〜E574とスイッチ用固定電極E551〜E554で構成されるスイッチS501〜S504との接触の有無をそれぞれ認識することができるため、これらをX軸正方向、X軸負方向、Y軸正方向およびY軸負方向に対応するスイッチ機能として利用することができる。 したがって、本発明の静電容量式センサは、サイドスイッチボタン532に外部から加えられた力の大きさを信号(アナログ信号)として出力する機能を有する装置および/または互いに異なる4方向に対応するスイッチ機能を有する装置として利用することが可能である。 これにより、この静電容量式センサ501は上記のいずれの装置としても利用できる複合デバイスとしての機能を有し、上記両用途に合わせて製造し直す必要がなくなる。
    【0263】
    また、容量素子C501〜C504を構成するための容量素子用電極E501〜E504がセンサユニット510のセンサ基板511に設けられおり、スイッチS501〜S505を構成する各電極が、センサ基板511上に設けられるのではなく、マザーボード520上のスイッチシート570内に設けられている。 このように、センサユニット510と、マザーボード520上のスイッチシート570とは、機構的に分離されているので、センサの組み立てが容易になる。 また、スイッチS501〜S505の回路と、容量素子C501〜C504(センサ部)の回路とが分離されているため、本実施の形態の静電容量式センサ501では、センサ基板上にスイッチの回路を組み込む場合と比較して、信号線の本数が少なくなる。 その結果、マザーボード520との接続点も少なくなるので、センサの信頼性が向上する。
    【0264】
    次いで、図35には、上述した第5の実施の形態の等価回路における、変形例が示されている。 図35の等価回路図と上述した図34の等価回路図との異なる点は、図34では、センサ電極512が絶縁状態に保持され且つ基準電極515が接地されているのに対して、図35では、センサ電極512が接地され且つ基準電極515がプルアップ抵抗素子R5'''を介して電源電圧Vccに保持されている点である。 なお、その他の構成については図34に示したものと同様であるので、詳細な説明は省略する。
    【0265】
    また、基準電極515に接続された端子T515は、マイコン505の入力ポートに接続されており、サイドスイッチボタン532に対する操作が行われていない場合、基準電極515は電源電圧Vccに保持されるものとする。
    【0266】
    従って、サイドスイッチボタン532に対する操作が行われた場合、サイドスイッチボタン532が変位するのに伴って、先ず基準電極515が変位してセンサ電極512と接触し、続いてこれら基準電極515およびセンサ電極512がその接触状態を維持したまま変位する。 ここで、センサ電極512は接地電位に保持され且つ基準電極515は接地電位とは異なる電位に保持されているので、センサ電極512と基準電極515とが接触していない状態から接触する状態へと移る過程において、出力信号は、基準電極515が保持されている電位付近のHiレベルから接地電位付近のLoレベルに或いはLoレベルからHiレベルに切り換わる。 したがって、操作が行われたとき、出力信号は必ずスレッシホールド電圧を跨いで変化することになる。 この出力信号を監視することにより、静電容量式センサのサイドスイッチボタン532に対する操作が行われたことを確実に検出できる。 これにより、サイドスイッチボタン532に対する操作が所定時間行われない場合はスリープモードに切り換え、再び操作が行われた時点でスリープモードを確実に解除することができる。 したがって、スリープモードと通常モードとの切り換えを適正に行うことで、消費電力の低減を実現することができる。
    【0267】
    次いで、図36〜図38を参照しつつ、本発明の一実施形態に係る静電容量式センサの製造方法について説明する。 図36は、本実施形態に係る製造方法により製造された静電容量式センサを示す横断面図である。 図37は、図36の静電容量式センサを製造するのに用いられるリードフレームの一部を示す平面図である。 図38(a)、(b)、(c)は、本実施形態に係る製造方法における工程を段階的に示す説明図である。
    【0268】
    先ず、図36に示す静電容量式センサ601は、図23(a)に示した第3の実施形態と同様の円柱形突出部630Xおよび球座部630Yから構成される検知ボタン630と、検知ボタン630の球座部630Y底面と接触するよう配置された可動電極615と、リング状の絶縁スペーサ610を介して可動電極615の下側に離隔配置された変位電極612と、変位電極612の下側に離隔配置されて変位電極612との間に容量素子を構成する容量素子用電極E600とを備えている。 これら電極615、612、E600はそれぞれ金属性の円形板であり、樹脂からなり略直方体形状の外形を有するハウジング680内に形成された段部に設置されている。
    【0269】
    ハウジング680の開放された上面は、正方形の金属板681で覆われている。 検知ボタン630は、その突出部630Xが金属板681の中央穴681aから突出すると共に球座部630Yが金属板681と可動電極615との間に配置され、外部への飛び出しが防止されつつ所定位置に支持されている。 金属板681の四隅それぞれにはボス用穴(図示せず)が形成されており、各穴にハウジング680の上面の四隅に設けられたボス682が挿入され熱で加締められることにより、金属板681とハウジング680とが一体に組み立てられている。
    【0270】
    以下に、この静電容量式センサ601の製造工程について説明する。
    【0271】
    先ず第1の工程として、例えばプレス加工により、図37に部分的に示されているリードフレームL601を作製する。 リードフレームL601は、長手方向に沿って多数のパイロット孔FH1、FH2が形成され且つ互いに平行に離隔配置された保持フレームF1、F2を有する。 保持フレームF1、F2の長手方向に沿って所定間隔毎に、これらを連結する線材(図37ではF5、F6の2つの線材)が、保持フレームF1、F2と直交するように配置されている。 そして、これら線材で区画された空間V1が、所定間隔毎に形成されている。
    【0272】
    図37には、リードフレームL601における空間V1を含んだ一部のみが示されている。 空間V1内には、図36に示した静電容量式センサ601の容量素子用電極E600およびそのリード線LE600、並びに可動電極用リード線L615が、リードフレームL601と一体に所定パターンで形成されている。
    【0273】
    より詳細には、空間V1の中心Oに容量素子用電極E600が配置され、この容量素子用電極E600と連続してそのリード線LE600が形成され、さらに、このリード線LE600の一端が線材F6に接続されている。 一方、容量素子用電極E600の図面上側には、この容量素子用電極E600とは連続していない、可動電極用リード線L615が形成されており、このリード線L615の一端が他方の線材F5に接続されている。
    【0274】
    なお、図37は、第1の工程により作製されたリードフレームL601を平面視した図であるが、各リード線LE600、L615は図中の一点鎖線B1、B2、B3、B4、B7、B8で山折り、ニ点鎖線B5、B6で谷折りに、それぞれ折り曲げられ、3次元的に加工されている。
    【0275】
    図36には、折り曲げ加工された可動電極用リード線L615が示されている。 図37に示す可動電極用リード線L615における一点鎖線B1、B2より保持フレームFH1、FH2側の部分は、図36に示すように、それぞれ容量素子用電極E600より下方へ直方向に延出され、脚部615bが形成される。 また、可動電極用リード線L615における図37中の鎖線B5、B7および鎖線B6、B8で挟まれた部分L615cは、容量素子用電極E600よりも上方へ直角方向に延出される。 さらに可動電極用リード線L615における各鎖線B7、B8から端部に至る部分L615dは、容量素子用電極E600の上方においてこれと平行に形成される。
    【0276】
    なお、図36には可動電極用リード線L615の折り曲げ加工のみ示されているが、容量素子用電極用リード線LE600は、折り曲げ加工によって、図37に示す一点鎖線B3、B4より保持フレームFH1、FH2側の部分LE600bが、図36の可動電極用リード線L615の脚部L615bと同様に、容量素子用電極E600より下方へ直角方向に延出される。 図37に示すように、これら2つのリード線LE600、L615の線材F5、F6方向の長さはほぼ等しく形成されているため、各脚部LE600b、L615bはほぼ等しい長さとなる。 以上のように折り曲げ加工された結果、容量素子用電極E600と同一平面に形成されるのは、可動電極用リード線L615のうち一点鎖線B1、B2より内側且つ2点鎖線B5、B6より外側の部分L615a、および、容量素子用電極用リード線LE600のうち一点鎖線B3、B4より電極側の部分LE600aである。
    【0277】
    次に、第2の工程として、第1の工程において作製されたリードフレームL601のうち、容量素子用電極用リード線LE600の一部および可動電極用リード線L615の一部、並びに容量素子用電極E600を含む範囲(図37中の点線で示す範囲M)を、樹脂でインサートモールドする。 この範囲Mの中心には容量素子用電極E600が配置されており、この工程によって得られた成型品としてのハウジング680が、図38(a)に示されている。
    【0278】
    図38(a)におけるハウジング680は、容量素子用電極E600の底面を支持すると共にその表面中央部を開放し且つその表面外周部を段部680aで覆っている。 段部680aは、後述のように、変位部材612を支持するためのものである。 図37に示した範囲M内における、可動電極用リード線L615および図38(a)に示されていない容量素子用電極用リード線LE600は、ハウジング680内に埋め込まれて一体となっている。 また、折り曲げ加工された可動電極用リード線L615のうち、容量素子用電極E600の上方において、これと平行に形成された部分L615dの上面は、ハウジング680に形成された、後述のように可動電極615を支持するための段部680bの上面とほぼ同じ高さである。
    【0279】
    次に、第3の工程として、図38(b)に示すように、ハウジング680内に形成された段部680a上に変位電極612を配置する。 このとき変位電極612は、段部680aを介することにより、容量素子用電極E600と離隔している。 なお、変位電極612は、図36にも示すように、その下面が絶縁膜(レジスト膜)613により被覆されており、容量素子用電極E600と近接しても電気的に絶縁されている。
    【0280】
    次に、第4の工程として、図38(c)に示すように、可動電極615を配置する。 ここでは、先ず変位電極612上に変位電極612の外径と略同一の外径を有する絶縁スペーサ610を配置した後、この絶縁スペーサ610上に且つ可動電極用リード線L615の接触部L615dと接触するように、可動電極615を配置する。 つまり、可動電極615は、絶縁スペーサ610を介することにより変位電極612と離隔する。 また、この絶縁スペーサ610の上面と可動電極用リード線L615の接触部L615dおよび段部680bの上面とをほぼ同じ高さにし且つ変位電極612や絶縁スペーサ610よりも大きな径とすることによって、可動電極用リード線L615の接触部L615dと接触するように配置される。
    【0281】
    次に、第5の工程として、検知ボタン630および金属板681を配置する。 この工程を終えたとき、図36に示した状態となる。 先ず、検知ボタン630における球座部630Yの底面を可動電極615の中央に接触させ且つ突出部630Xを金属板681の中央穴681aに貫通させると共に、ボス用穴(図示せず)にハウジング680上面に形成されたボス682を挿入しつつ、ハウジング680の上面に金属板681を配置する。 このように金属板681を配置した後、ボス682を熱で加締めることにより、金属板681とハウジング680とが外れないよう組み立てられる。
    【0282】
    次に、第6の工程として、ハウジング680外に突出している各リード線LE500、L615の脚部LE500b、L615bを、プリント基板などに実装しやすいように、任意に折り曲げる。
    【0283】
    そして、最終工程として、図37に示す波線部分CUT1、CUT2を切断する。 これにより、各リード線LE600、L615はリードフレームL601から切り離されて、第1〜第6の工程により形成された静電容量式センサ601が単体として得られることになる。
    【0284】
    以上のように、本実施の形態に係る静電容量式センサの製造によると、IC(集積回路)などの組立で一般に用いられるリードフレームL601やインサートモールド工程(上記第2の工程)を適用することで、出力信号のヒステリシスが比較的小さい静電容量式センサ601を、効率よく製造することができる。
    【0285】
    また、変位電極612と離隔するように可動電極615を配置する工程(上記第4の工程)を設けたことで、スリープモードおよび通常モードの切り換えが適正に行え、消費電力の低減を実現することができる静電容量式センサ601を製造することができる。
    【0286】
    また、インサートモールド工程(上記第2の工程)を行う過程において、ハウジング680内には、変位電極612および可動電極615をそれぞれ支持するための段部680a、680bが形成されるため、変位電極612配置工程(上記第3の工程)の際に、これらを支持するための部材をわざわざ設置するなどの手間や時間を省くことができる。 したがって、より効率のよい製造方法による量産が実現される。
    【0287】
    以上、本発明の好適な実施の形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて、様々な設計変更を行うことが可能なものである。
    【0288】
    例えば、第1の実施の形態では復帰スイッチ用可動電極15および復帰スイッチ用固定電極E31がそれぞれ1つずつ備えられており、第2の実施の形態では復帰スイッチ用可動電極E215、E216および復帰スイッチ用固定電極E231、E232がそれぞれ2つずつ備えられている場合について説明しているが、これに限らず、復帰スイッチ用可動電極および復帰スイッチ用固定電極は、それぞれ3以上備えられていてもよい。
    【0289】
    また、第1および第2の実施の形態では、決定スイッチS2が設けられている場合について説明しているが、決定スイッチS2は必ずしも設けられていなくてもよい。 この場合には、中央スイッチ31、決定スイッチ用固定電極E21、決定スイッチ用固定電極E22および基準電極E13を省略してよい。 また、第5の実施の形態では、X軸正方向、X軸負方向、Y軸正方向、Y軸負方向およびZ軸方向の5つのスイッチS501〜S505が設けられているが、これらの一部だけが設けられていてもよい。
    【0290】
    また、第1の実施の形態では、変位電極12を接地するためにFPC11上に2つの基準電極E11、E12が設けられている場合について説明しているが、基準電極E11、E12のいずれか一方だけが設けられていてもよい。
    【0291】
    また、第1および第2の実施の形態では、方向ボタン32に対して外部から加えられた力のX軸方向成分およびY軸方向成分の2つの成分を検出可能な静電容量式センサ1について説明しているが、これに限らず、上述の2つのうち必要な1成分だけを検出可能なものであってもよい。
    【0292】
    また、第1の実施の形態では、センサユニット10として、FPC11の上面に対して、容量素子用電極E1〜E4、変位電極12、復帰スイッチ用可動電極15など多数の電極が一体に設けられている場合について説明しているが、これに限らず、これらは必ずしも一体に設けられていなくてもよい。 第2の実施の形態についても同様である。
    【0293】
    また、第1の実施の形態では、復帰スイッチ用可動電極15がFPC11上の復帰スイッチ用固定電極E31に接触するように配置されているが、これに限らず、復帰スイッチ用可動電極15および復帰スイッチ用固定電極E31がいずれもFPC11上に設けられており、FPC11が折り曲げられることによって両者が対向するような構成でもよい。
    【0294】
    また、第1の実施の形態において、変位電極12、決定スイッチ用可動電極E22および復帰スイッチ用可動電極15は、接着剤の塗布された樹脂シート90〜92によって、FPC11に対して固定されているが、これに限らず、例えば導電性接着剤などによって固定されてもよい。 第2の実施の形態についても同様である。
    【0295】
    また、第1の実施の形態では、FPC11上の各端子と基板20上の各接続用電極とを接続するため、ハンダ18が用いられているが、他に、例えば導電性接着剤などを用いてよい。
    【0296】
    また、第1および第2の実施の形態におけるFPC11、211は、可撓性を持つためセンサユニット10、210の取り扱いが容易であるが、可撓性を持たない基板に置き換えられてもよい。
    【0297】
    また、第1および第2の実施の形態における方向ボタン32は、樹脂シート70の上面に固定されていないが、樹脂シート70の上面に接着固定されてもよいし、中央ボタン31と樹脂シート70とが一体成型されていてもよい。 また、中央ボタン31および方向ボタン32は別部材である方が好ましいが、同一部材であってもよい。
    【0298】
    また、第1の実施の形態では、突起体61、62によってその下側にある決定スイッチ用可動電極E22、復帰ボタン用可動電極15および変位電極12のそれぞれの所定部分を効率よく変位させることが可能になっているが、突起体61、62を省略してもよい。 第2の実施の形態についても同様である。
    【0299】
    また、第1および第2の実施の形態においては、容量素子用電極E1〜E4と変位電極12との直接接触による誤作動を防止するため、容量素子用電極E1〜E4の表面を絶縁膜(レジスト膜)13で被覆しているが、絶縁膜13の代わりとして金メッキなどを施してもよい。
    【0300】
    また、第2の実施の形態では、方向ボタン32に対する操作が行われたとき、復帰スイッチ用可動電極E215、E216が変位電極12とほぼ同時に接触する場合について説明しているが、これに限らず、復帰スイッチ用可動電極E215、E216は、必ずしも変位電極12とほぼ同時に接触しなくてもよい。 但し、変位電極12が両者E215、E216にほぼ同時に接触しない場合、変位電極12は、まず接地されている復帰スイッチ用固定電極E231に接続されている復帰スイッチ用可動電極E215に接触した後で、プルアップ抵抗素子R5”を介して電源電圧Vccに保持されている復帰スイッチ用固定電極E232に接続されている復帰スイッチ用可動電極E216に接触することが好ましい。
    【0301】
    また、第2の実施の形態では、復帰スイッチ用固定電極E231が接地されており、復帰スイッチ用固定電極E232がプルアップ抵抗素子R5”を介して電源電圧Vccに保持されている場合について説明しているが、これに限らず、復帰スイッチ用固定電極E231がプルアップ抵抗素子を介して電源電圧Vccに保持されており、復帰スイッチ用固定電極E232が接地されていてもよい。
    【0302】
    また、第2の実施の形態では、環状の復帰スイッチ用可動電極E215、E216が櫛歯状に設けられている場合について説明しているが、これに限らず、復帰スイッチ用可動電極E215、E216の形状は任意に変更することができる。 また、復帰スイッチ用固定電極E231、E232は、必ずしも環状である必要はなく、それぞれ復帰スイッチ用可動電極E215、E216に電気的に接続されていれば、それらの形状は任意に変更することができる。
    【0303】
    また、第1および第2の実施の形態に係る静電容量式センサ1、201は、携帯電話、携帯情報端末(PDA)、パソコン、ゲームなどの入力装置(ジョイスティック)として利用されて好適なものであるが、力覚センサとして用いられる場合に限らず、例えば加速度センサなど、その他のセンサとして用いられてよい。 この場合でも、上述と同様の効果を得ることができる。
    【0304】
    また、第1および第2の実施の形態では、基板20上にマイコン5および電子回路が設けられている場合について説明しているが、これに限らず、マイコン5および電子回路は、FPC11または第1FPC211或いは第2FPC251上に設けられていてもよい。
    【0305】
    また、第1および第2の実施の形態では、EX−OR素子が含まれる信号処理回路が用いられる場合について説明しているが、これに限らず、信号処理回路の構成は任意に変更することができる。 したがって、排他的論理和演算を行うEX−OR素子の代わりに、論理和演算を行うOR素子、論理積演算を行うAND素子、論理積演算および否定演算を行うNAND素子のいずれかが含まれる信号処理回路が用いられてもよい。 この場合には、静電容量式センサの各部材が感度が非常によくなる材料で製作された場合に、信号処理回路の構成によって、静電容量式センサの感度を調節する(ここでは、感度を低下させる)ことができる。
    【0306】
    また、異なる位相の周期信号を発生させる方法は、第1および第2の実施形態において説明したCR遅延回路を用いる方法に限らず、2つの周期信号発振器を用いるなど、その他のどのような方法であってもよい。
    【0307】
    また、第3の実施の形態において、変位電極312が導電性を有する支持部材360及び可動電極315のいずれとも確実に離隔し且つ電気的に絶縁されるのであれば、絶縁リング311を省略してよい。 さらに、静電容量式センサの製造方法の一実施形態により製造されたものとして上述した静電容量式センサ601において、変位電極612が安定して固定され且つ無負荷時に変位電極612が可動電極615及び各リード線LE600、L615のいずれとも電気的に絶縁できるのであれば、絶縁スペーサ610を省略してよい。
    【0308】
    また、第3の実施の形態において、支持部材360が例えばシリコンゴムなどからなるとしているが、可動電極315を接地電位に保持できるのであれば、これに限定されることなく、例えば支持部材360が導電性熱可塑性樹脂(PPT、エラストマー)、絶縁性ゴムなどから構成されてもよい。
    【0309】
    また、上述した第1〜第3の実施の形態における静電容量式センサ1、201、301、及び、製造方法の一実施形態により製造された静電容量式センサ601において、変位電極12、312、復帰スイッチ用可動電極15、可動電極315、615、復帰スイッチ用可動電極E215、E216の材料は、両面が導通して導電性を有していれば、金属製材料に限定されない。 例えば導電性プラスチック、シリコンゴムなどの導電性ゴム、導電性熱可塑性樹脂(PPT、エラストマー)などを用いてよい。 特に、第1および第2の実施の形態における変位電極12は、複数の環状金属板などの重ね合わせや薄い金属板などのドーム状プレス加工により形成されてよく、また、可撓性を有するFPCで形成されてもよい。 また、特に、第1の実施の形態における復帰スイッチ用可動電極15として、アルミなどの金属を蒸着した樹脂フィルム、導電性インクを塗布した樹脂フィルムなどを利用することもできるが、この場合には、復帰スイッチ用可動電極15の変位電極12に対向する領域と復帰スイッチ用固定電極E31とを電気的に接続するように、金属が蒸着されている或いは導電性インクが塗布されていることが必要である。 また、第3の実施の形態における可動電極315と支持部材360とを導電性材料からなる一体構造としてよい。
    【0310】
    また、第4の実施の形態における可動電極415及び変位電極412は、両面が導通しておらず、例えばビニルやPETのフィルムなどからなり且つ片面のみにアルミなどの金属が蒸着され、片面のみが導電性を有するとしているが、これに限定されない。 これらはフィルム状であれば、例えば金属箔、導電性プラスチック、シリコンゴムなどの導電性ゴム、導電性熱可塑性樹脂(PPT、エラストマー)などから構成されてよい。 なお、これらを両面が導通して導電性を有するものとする場合、容量素子用電極E400の表面を絶縁膜(レジスト膜)で被覆するのが好ましい。
    【0311】
    また、第4の実施の形態では、フィルム状の可動電極415及び変位電極412が共に容量素子用電極E400と対向しない領域において凹凸に変形させられることによってこれらに張力が付与される構成となっているが、これに限定されない。 圧力測定に際して必要な張力が付与されていれば、例えば凹凸に変形されずに平坦な形状のままであってもよい。
    【0312】
    なお、第3の実施形態を例に説明すると、力の測定範囲は、可動電極315及び変位電極312の材質や厚みを変更することによりを設定することができる。 また、力の測定範囲を広くするという観点からは、可動電極315の剛性が変位電極312の剛性よりも小さいのが好ましい。 これらについては、上述した全ての実施形態において同様のことがいえる。 また特に第4の実施の形態として述べた圧力センサの場合は、可動電極415をできるだけ柔軟性のある変位しやすい材質から構成することで、圧力の測定範囲を広くすることができる。
    【0313】
    また、第1〜第4の実施の形態における基板20、320、420、第1〜第3の実施の形態における検知ボタン30、330、第1の実施の形態における基準電極E11〜E13及び復帰スイッチ用固定電極E31、第2の実施の形態における復帰スイッチ用固定電極E231、E232は、本発明において必須要素ではない。 つまり、第1の実施の形態では変位電極12、復帰スイッチ用可動電極15および容量素子用電極E1〜E4、第2の実施の形態では変位電極12、復帰スイッチ用可動電極E215、E216および容量素子用電極E1〜E4、そして第3の実施の形態では変位電極312、412、可動電極315、415および容量素子用電極E300、E400が備えられていればよく、上述した必須ではない部材を省略してよい。 なお、上記は製造方法の一実施形態により製造された静電容量式センサ601においても同様である。
    【0314】
    また、第5の実施の形態の変形例では、センサ電極512が接地され且つ基準電極515がプルアップ抵抗素子R5'''を介して電源電圧Vccに保持されているが、センサ電極512がプルアップ抵抗素子R5'''を介して電源電圧Vccに保持され且つ基準電極515が接地されており、センサ電極512の電位をマイコンの入力ポートで監視しても、上述と同様の効果を得ることができる。
    【0315】
    また、本発明における静電容量式センサの製造方法について、上述した実施の形態では、インサートモールド工程(上記第2の工程)において、変位電極612および可動電極615のそれぞれを支持するための段部680a、680bが成型品に形成されるものとしているが、これらの一方又は両方が形成されなくてもよい。 この場合、変位電極612および/または可動電極615をハウジング680内に配置するときに絶縁スペーサなど他の部材をセットするなどの作業が必要となる。
    【0316】
    また、上述した製造方法では、可動電極615を配置する工程(上記第4の工程)を設けているが、この工程を省略してよい。 つまり、静電容量式センサ601は、変位電極612の上方に離隔配置された可動電極615を備えることにより、スリープモードと通常モードとの切り換えが適正に行えるものとなっているが、可動電極615のない従来のセンサが製造されてもよい。
    【0317】
    【発明の効果】
    以上説明したように、請求項1によると、スリープモードと通常モードとの切り換えを適正に行うことで、消費電力の低減を実現することができる。 また、静電容量式センサの容量素子に対応する出力信号のヒステリシスの低減を実現することができる。
    【0318】
    請求項2によると、スリープモードと通常モードとの切り換えを適正に行うことで、請求項1と同様に、消費電力の低減を実現することができる。
    【0319】
    請求項3によると、上記請求項1および請求項2と同様の、消費電力の低減を実現するという効果を得ることができる。
    【0320】
    請求項4によると、請求項1〜3と同様の、消費電力の低減を実現するという効果を得ることができる。
    【0321】
    請求項5によると、静電容量式センサの容量素子に対応する出力信号のヒステリシスを低減することができる。
    【0322】
    請求項6によると、消費電力の低減と、出力信号のヒステリシスの低減との両方を実現することが可能である。
    【0323】
    請求項7によると、測定対象となる圧力以外の圧力の影響で導電性部材が変位し、静電容量値が変化してしまうのを防止することができる。
    【0324】
    請求項8によると、良好な測定精度が発揮される。
    【0325】
    請求項9によると、検知部材に外部から加えられた力の大きさを信号(アナログ信号)として出力する機能を有する装置および/またはスイッチ機能を有する装置として利用することが可能である。
    【0326】
    請求項10によると、静電容量式センサを効率よく製造することができる。
    【0327】
    請求項11によると、より効率のよい製造方法による量産が実現される。
    【0328】
    請求項12によると、出力信号のヒステリシスが比較的小さく且つ消費電力を低減するという効果が得られる静電容量式センサを、効率よく製造することができる。
    【0329】
    請求項13によると、より効率のよい製造方法による量産が実現される。
    【図面の簡単な説明】
    【図1】本発明の第1の実施の形態に係る静電容量式センサを示す横断面図である。
    【図2】図1の静電容量式センサの検知ボタンを示す上面図である。
    【図3】図1の静電容量式センサのFPC上に形成されている電極を示す配置図である。
    【図4】基板上にFPCが配置された状態を示す図3のIV―IV線に関する横断面図である。
    【図5】図1の静電容量式センサの変位電極を示す概略構成図である。
    【図6】図1の静電容量式センサの復帰スイッチ用可動電極を示す概略構成図である。
    【図7】図1の静電容量式センサに関する等価回路を示す回路図である。
    【図8】図1の静電容量式センサのモード切り換えの一例を示す説明図である。
    【図9】図1の静電容量式センサの方向ボタンのうちX軸正方向部分に対する操作が行われた状態を示す横断面図である。
    【図10】図1の静電容量式センサの中央ボタンに対する操作が行われた状態を示す横断面図である。
    【図11】図1の静電容量式センサにおける出力信号の導出方法の一例を示す説明図である。
    【図12】図1の静電容量式センサにおける信号処理回路を示す回路図である。
    【図13】図12におけるX軸方向成分の信号処理回路を部分的に示す回路図である。
    【図14】図13の信号処理回路の各端子および各節点における周期信号の波形を示す説明図である。
    【図15】図1の静電容量式センサに関する等価回路における第1の変形例を示す回路図である。
    【図16】図1の静電容量式センサに関する等価回路における第2の変形例を示す回路図である。
    【図17】本発明の第2の実施の形態に係る静電容量式センサを示す横断面図である。
    【図18】図17の静電容量式センサの第1FPC上に形成されている複数の電極を示す配置図である。
    【図19】図17の静電容量式センサの第2FPC上に形成されている複数の電極を示す配置図である。
    【図20】図17の静電容量式センサに関する等価回路を示す回路図である。
    【図21】図17の静電容量式センサの方向ボタンのうちX軸正方向部分に対する操作が行われた状態を示す横断面図である。
    【図22】本発明の第3の実施の形態に係る静電容量式センサを示す外観斜視図である。
    【図23】図23(a)は、図22の静電容量式センサのV―V線に関する横断面図である。
    図23(b)は、図22の静電容量式センサにおける基板上の電極を示す配置図である。
    【図24】図22の静電容量式センサに関する等価回路を示す回路図である。
    【図25】本発明の第4の実施の形態に係る静電容量式センサを示す横断面図である。
    【図26】本発明の第5の実施の形態に係る静電容量式センサを示す横断面図である。
    【図27】図26の静電容量式センサのマザーボード上に形成されている複数の電極を示す配置図である。
    【図28】図26の静電容量式センサのメンブレンスイッチシートを示す概略構成図である。
    【図29】図26の静電容量式センサのセンサ基板上に形成されている複数の電極を示す配置図である。
    【図30】図26の静電容量式センサのセンサ電極を示す概略構成図である。
    【図31】図26の静電容量式センサのセンサユニットを示す概略構成図である。
    【図32】図26の静電容量式センサのスイッチボタンを示す上面図である。
    【図33】図26の静電容量式センサの支持部材に形成されている突起体を示す配置図である。
    【図34】図26の静電容量式センサに関する等価回路を示す回路図である。
    【図35】図26の静電容量式センサに関する等価回路における変形例を示す回路図である。
    【図36】本発明の一実施の形態に係る静電容量式センサの製造方法により製造された静電容量式センサを示す横断面図である。
    【図37】図36の静電容量式センサを製造するのに用いられるリードフレームの一部を示す平面図である。
    【図38】本発明の一実施の形態に係る製造方法を段階的に示す説明図である。
    【図39】従来の静電容量式センサを示す横断面図である。
    【図40】図39の静電容量式センサの基板上に形成されている複数の電極を示す配置図である。
    【符号の説明】
    1、201、301、401、501 静電容量式センサ11、211、251 FPC
    12、312、412、612 変位電極(導電性部材)
    15 復帰スイッチ用可動電極(可動電極)
    315、415、615 可動電極20、320、420 基板30、330、630 検知ボタン(検知部材)
    510 センサユニット511 センサ基板(基板)
    512 センサ電極(導電性部材)
    515 基準電極(可動電極)
    520 マザーボード(スイッチ基板)
    530 スイッチボタン(検知部材)
    570 メンブレンスイッチシートE1〜E4、E300、E400、E600 容量素子用電極E11〜E13 基準電極E31 復帰スイッチ用固定電極(固定電極)
    E215 復帰スイッチ用可動電極(可動電極;第1の可動電極)
    E216 復帰スイッチ用可動電極(可動電極;第2の可動電極)
    E231 復帰スイッチ用固定電極(固定電極;第1の固定電極)
    E232 復帰スイッチ用固定電極(固定電極;第2の固定電極)
    E501〜E504 容量素子用電極E551〜E554 スイッチ用固定電極(第1のスイッチ電極)
    E555 決定スイッチ用固定電極(第1のスイッチ電極)
    E571〜E574 スイッチ用可動電極(第2のスイッチ電極)
    E575 決定スイッチ用可動電極(第2のスイッチ電極)
    C1〜C4、C300、C501〜C504 容量素子L601 リードフレーム

    QQ群二维码
    意见反馈