Elektrisch leitendes, magnetisches Pulver

申请号 EP04001172.8 申请日 2004-01-21 公开(公告)号 EP1445778A2 公开(公告)日 2004-08-11
申请人 Metallux GmbH; 发明人 Dietrich, Frank;
摘要 Die vorliegende Erfindung betrifft ein Pulver (1) mit elektrisch leitenden und magnetischen Partikeln (2). Ein elektrisch leitendes, magnetisches Pulver (1) kann beispielsweise in einem elektrischen Bauteil, insbesondere in einem Potentiometer, zur Übertragung eines elektrischen Signals und/oder einer elektrischen Spannung und/oder eines elektrischen Stroms zwischen wenigstens zwei elektrischen Kontakten dienen.
权利要求 Elektrisch leitendes, magnetisches Pulver (1) mit oder aus elektrisch leitenden und magnetischen Partikeln (2).Pulver nach Anspruch 1,
dadurch gekennzeichnet,
dass die Partikel (2) vormagnetisiert sind, so dass sie sich gegenseitig anziehen.
Pulver nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Partikel (2) eine mittlere Korngröße aufweisen, die kleiner als 50 µm oder kleiner als 40 µm oder kleiner als 35 µm ist.
Pulver nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die Partikel (2) im wesentlichen kugelförmig ausgebildet sind.
Pulver nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
dass die elektrisch leitenden, magnetischen Partikel (2) einen elektrisch leitend beschichteten magnetischen Kern (4) aufweisen.
Pulver nach Anspruch 5,
dadurch gekennzeichnet,
dass die magnetischen Kerne (4) aus einem elektrisch nichtleitenden Material bestehen.
Pulver nach Anspruch 5 oder 6,
dadurch gekennzeichnet,
dass die magnetischen Kerne (4) aus Ferrit bestehen.
Pulver nach einem der Ansprüche 5 bis 7,
dadurch gekennzeichnet,
dass die magnetischen Kerne (4) mit Kohlenstoff oder mit einem Metall beschichtet sind.
Pulver nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass die Partikel (2) zur Ausbildung einer elektrisch leitenden, magnetischen Flüssigkeit (1') in eine Trägerflüssigkeit (3) eingebracht sind.
Pulver nach Anspruch 9,
dadurch gekennzeichnet,
dass die Trägerflüssigkeit (3) elektrisch nicht leitend und/oder nicht magnetisch ist.
Pulver nach Anspruch 9 oder 10,
dadurch gekennzeichnet,
dass die Trägerflüssigkeit (3) ein Öl ist.
Pulver nach einem der Ansprüche 9 bis 11,
dadurch gekennzeichnet,
dass die Trägerflüssigkeit (3) eine relativ große Oberflächenspannung aufweist.
Pulver nach einem der Ansprüche 9 bis 12,
dadurch gekennzeichnet,
dass die Trägerflüssigkeit (3) ein nicht migrierendes Öl ist.
Verwendung eines elektrisch leitenden, magnetischen Pulvers (1), insbesondere nach einem der Ansprüche 1 bis 13, in einem elektrischen Bauteil (6) zur Übertragung eines elektrischen Signals und/oder einer elektrischen Spannung und/oder eines elektrischen Stroms zwischen wenigstens zwei elektrischen Kontakten (12, 13).Elektrisches Bauteil, insbesondere Schalter oder Potentiometer (6),- wobei das Bauteil (6) wenigstens zwei elektrische Kontakte (12, 13) aufweist,- wobei das Bauteil (6) zur Übertragung eines elektrischen Signals und/oder einer elektrischen Spannung und/oder eines elektrischen Stroms zwischen zwei der Kontakte (12, 13) ein Übertragungsvolumen (11) aus einem elektrisch leitenden, magnetischen Pulver (1), insbesondere nach einem der Ansprüche 1 bis 13, oder aus einer elektrisch leitenden, magnetischen Flüssigkeit (1'), insbesondere nach einem der Ansprüche 9 bis 13, aufweist,- wobei das Bauteil (6) eine Betätigungseinrichtung (15) aufweist, die bei ihrer Betätigung das Übertragungsvolumen (11) mittels magnetischer Kräfte (14) relativ zu den Kontakten (12, 13) verstellt.Bauteil nach Anspruch 15,
dadurch gekennzeichnet,- dass die Kontakte (12, 13) und das Übertragungsvolumen (11) in einem Gehäuse (20) angeordnet sind,- dass die Betätigungseinrichtung (15) außen am Gehäuse (20) oder außerhalb des Gehäuses (20) angeordnet ist,- dass wenigstens eine Wand (21) des Gehäuses (20) für die magnetischen Kräfte (14) der Betätigungseinrichtung (15) durchlässig ausgestaltet ist.
Bauteil nach Anspruch 15 oder 16,
dadurch gekennzeichnet,
dass die Betätigungseinrichtung (15) einen Aktuator (16) aufweist, der wenigstens einen Magneten (18) zur Erzeugung der magnetischen Kräfte (14) aufweist und entlang eines für das Betätigungsvolumen (11) vorbestimmten Verstellwegs relativ zu den Kontakten (12, 13) verstellbar ist.
Bauteil nach den Ansprüchen 16 und 17,
dadurch gekennzeichnet,
dass der Aktuator (16) berührungslos entlang des Gehäuses (20) verstellbar ist.
Bauteil nach Anspruch 15 oder 16,
dadurch gekennzeichnet,
dass die Betätigungseinrichtung (15) einen Magnetkrafterzeuger aufweist, der nach Art eines Linearmotors ausgebildet ist, sich entlang eines für das Betätigungsvolumen (11) vorbestimmten Verstellwegs erstreckt und zur Erzeugung von das Betätigungsvolumen (11) entlang des Verstellwegs antreibenden magnetischen Kräften (14) dient.
Bauteil nach einem der Ansprüche 15 bis 19,
dadurch gekennzeichnet,- dass das Bauteil ein Potentiometer (6) ist, dessen Kollektorbahn (13) und Widerstandsbahn (12) jeweils einen Kontakt bilden,- dass Kollektorbahn (13) und Widerstandsbahn (12) berührungslos beieinander angeordnet sind,- dass das Betätigungsvolumen (11) Kollektorbahn (13) und Widerstandsbahn (12) miteinander verbindet,- dass mit der Betätigungseinrichtung (15) die Relativlage des Übertragungsvolumens (11) entlang der Kollektorbahn (13) und entlang der Widerstandsbahn (12) einstellbar ist.
Bauteil nach einem der Ansprüche 15 bis 20,
dadurch gekennzeichnet,
dass das Bauteil (6) ein Mitglied aus der folgenden Bauteilgruppe ist: Potentiometer, abgedichtetes Potentiometer, Potentiometer mit integriertem Schalter, Schalter, abgedichteter Schalter, Endschalter, Näherungsschalter, Stufenschalter, Incremental-Encoder, Absolut-Encoder, Relais, abgedichtetes Relais.
Elektrisch leitende, magnetische Flüssigkeit, mit einer Trägerflüssigkeit (3), die ein Pulver (1) nach einem der Ansprüche 1 bis 13 enthält.
说明书全文

Die vorliegende Erfindung betrifft ein elektrisch leitendes, magnetisches Pulver.

In einer Vielzahl von elektrischen Anwendungen müssen zwischen mehreren elektrischen Kontakten elektrisch leitende Verbindungen hergestellt werden, beispielsweise um ein elektrisches Steuersignal bzw. eine elektrische Spannung bzw. einen elektrischen Strom zwischen den miteinander verbundenen Kontakten zu übertragen. Betrachtet werden hierbei vor allem dynamische Verbindungen, also Verbindungen, die in Abhängigkeit vorbestimmter Bedingungen geschlossen und geöffnet oder verändert werden.

Beispielsweise werden bei einem Schalter darin angeordnete Kontakte in Abhängigkeit einer Betätigung des Schalters miteinander verbunden oder voneinander getrennt. Derartige Schalter können beispielsweise als Endschalter ausgestaltet sein, die unterschiedliche Relativlagen zwischen den Kontakten und einem Verbindungselement zum Verbinden der Kontakte erkennen. Bei mechanischen Lösungen wird das Verbindungselement körperlich mit den Kontakten kontaktiert, um die jeweilige Verbindung. herzustellen. Alternativ sind elektronisch arbeitende Lösungen möglich, bei denen der Schalter beispielsweise induktiv, kapazitiv, optisch, mit Ultraschall oder unter Verwendung des Halleffekts betätigt wird, um das jeweils gewünschte Schaltsignal zu generieren.

Andere Anwendungen sind z.B. Potentiometer, bei denen eine Kollektorbahn entlang einer Widerstandsbahn angeordnet ist und bei denen ein Verbindungselement den Kollektor mit dem Widerstand verbindet. Das Verbindungselement ist dabei entlang der Bahnen verstellbar, wobei das Ausgangssignal des Potentiometers von der Relativlage des Verbindungselements entlang der Bahnen abhängt. Bei einer mechanischen Lösung ist das Verbindungselement üblicherweise als Schleifer ausgestaltet. Da derartige Lösungen verschleißanfällig sind, werden auch hier bereits elektrische bzw. elektronische Lösungen angewandt, die berührungslos und somit verschleißfrei arbeiten. Potentiometer werden beispielsweise für Weg- und Winkelsensoren benötigt.

Dynamische Verbindungen, die mit körperlicher oder schleifender Kontaktierung des Verbindungselements mit den jeweiligen Kontakten arbeiten, können zwar relativ preiswert hergestellt werden, sind jedoch verschleißanfällig und im Hinblick auf eine lange Lebensdauer und Zuverlässigkeit des jeweiligen Bauteils nachteilig. Im Unterschied dazu können elektronische Systeme berührungslos arbeiten, so dass quasi kein Verschleiß auftritt. Elektronische Systeme sind allerdings vergleichsweise teuer. Desweiteren kann auch bei elektronischen Systemen eine hohe Zuverlässigkeit nur begrenzt gewährleistet werden.

Die vorliegende Erfindung beschäftigt sich mit dem Problem, für das dynamische Verbinden von wenigstens zwei elektrischen Kontakten einen Weg aufzuzeigen, der preiswert realisierbar ist und bei einer hohen Zuverlässigkeit eine lange Lebenszeit eines damit arbeitenden Systems ermöglicht.

Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.

Die Erfindung beruht auf dem allgemeinen Gedanken, ein elektrisch leitendes und magnetisches oder ferro-magnetisches Pulver bereitzustellen. Ein derartiges CMP (Conductive Magnet Powder) vereint in sich zwei Eigenschaften, nämlich die Beeinflussbarkeit durch magnetische Kräfte einerseits und die elektrische Leitfähigkeit andererseits. Hierdurch ist es möglich, das CMP mittels magnetischer Kräfte, also insbesondere berührungslos zu manipulieren, beispielsweise um das CMP relativ zu elektrischen Kontakten zu bewegen. Desweiteren können mit dem CMP zwei oder mehr elektrische Kontakte miteinander verbunden werden, da das CMP erfindungsgemäß hinreichend elektrisch leitfähig ist. Ebenso ist es möglich, das CMP entlang, von Kontakten, beispielsweise in einem Potentiometer, zu positionieren. Zwar kommt es auch hier zu einem körperlichen Kontakt zwischen dem CMP und den jeweiligen Kontakten, jedoch können Reibungsbeiwerte zwischen den relativ kleinen. Partikeln und einem Festkörper extrem klein sein. Dementsprechend können die elektrischen Kontakte mit dem CMP quasi verschleißfrei kontaktiert werden.

Mit dem CMP kann in einem elektrischen Bauteil ein Verbindungselement bereit gestellt werden, das mittels magnetischer Kräfte berührungslos relativ zu den jeweiligen Kontakten verstellt werden kann. Hierdurch können verschleißfrei arbeitende Systeme realisiert werden, die zuverlässig arbeiten und eine hohe Lebensdauer besitzen.

Dabei ist es insbesondere möglich, das CMP und die jeweiligen Kontakte in einem, insbesondere hermetisch abgeschlossenen, Gehäuse unterzubringen und das Gehäuse so auszugestalten, dass die magnetischen Kräfte zum Verstellen des CMP von außen durch eine Wand des Gehäuses hindurch auf das CMP einwirken können. Hierdurch eröffnen sich für die jeweiligen Bauteile neuartige Anwendungsgebiete.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen. Figurenbeschreibung anhand der Zeichnungen.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder funktional gleiche oder ähnliche Bauteile beziehen.

Es zeigen, jeweils schematisch,

Fig. 1
eine Ansicht auf ein Volumen eines erfindungsgemäßen elektrisch leitenden, magnetischen Pulvers,

Fig. 2
eine Ansicht auf ein elektrisch leitendes Partikel,

Fig. 3
ein Schaltbild eines Potentiometers,

Fig. 4
eine vereinfachte Prinzipdarstellung eines potentiometrischen Wegaufnehmers in einer Draufsicht,

Fig. 5
einen Längsschnitt durch den Wegaufnehmer entsprechend den Schnittlinien V in Fig. 4,

Fig. 6
einen Querschnitt durch den Wegaufnehmer entsprechend Schnittlinien VI in Fig. 4,

Fig. 7
einen Querschnitt wie in Fig. 6, jedoch bei einer anderen Ausführungsform des Wegaufnehmers,

Fig. 8
eine Ansicht auf ein Volumen einer erfindungsgemäßen elektrisch leitenden, magnetischen Flüssigkeit.

Entsprechend Fig. 1 enthält ein Volumen eines erfindungsgemäßen elektrisch leitenden, magnetischen Pulvers 1, im folgenden auch CMP-Volumen 1 genannt, elektrisch leitende, magnetische Partikel 2. Grundsätzlich können die Partikel 2 aus einem beliebigen, magnetisch anziehbaren, also ferromagnetischen Material bestehen. Wichtig ist, dass die Partikel 2 von magnetischen Kräften anziehbar sind. Die Partikel 2 können dabei weichmagnetisch oder hartmagnetisch sein. Grundsätzlich kann es ausreichend sein, einen vorbestimmten Anteil der Partikel 2 elektrisch leitend und magnetisch auszubilden. Bevorzugt wird jedoch eine Variante, bei der alle Partikel 2 des Pulvers 1 elektrisch leitend und magnetisch sind, so dass das Pulver 1 dann aus elektrisch leitenden und magnetischen Partikeln 2 besteht.

Bei einer besonderen Ausführungsform können die Partikel 2 aus einem magnetischen und elektrisch leitenden Material bestehen. Beispielsweise können die Partikel 2 aus Eisen oder Stahl oder Nickel bestehen.

Bei einer anderen Ausführungsform können die Partikel 2 einen magnetischen Kern 4 aufweisen, der mit einer elektrisch leitenden Beschichtung 5 versehen ist. Der magnetische Kern 4 kann dann aus einem elektrisch nichtleitenden Material bestehen. Beispielsweise bestehen die Kerne 4 aus Ferrit, das als Grundwerkstoff zur Herstellung von Magnetkörpern, z.B. in Generatoren oder Elektromotoren, dient. Die Oberfläche der Kerne 4 muss dabei nicht vollständig beschichtet sein, ebenso müssen nicht sämtliche Kerne 4 mit der Beschichtung 5 versehen sein. Bevorzugt wird jedoch eine Ausführungsform, bei welcher die Kerne 4 an ihrer Oberfläche vollständig beschichtet sind und/oder bei welcher sämtliche Kerne 4 mit der Beschichtung 5 versehen sind. Die Konzentration der elektrisch leitfähigen Partikel 2 im Pulver 1 wird in Abhängigkeit der gewählten elektrischen Leitfähigkeit des CMP-Volumens 1 ausgewählt.

Die elektrische Beschichtung 5 der Kerne 4 kann beispielsweise mit Kohlenstoff oder mit einem Metall, insbesondere mit einem mehr oder weniger edlen Metall realisiert werden.

Vorzugsweise sind die Partikel 2 vormagnetisiert. Dies hat zur Folge, dass sich die einzelnen Partikel 2 gegenseitig wie kleine Magnete anziehen und zu einem zusammenhängenden Volumen konglomerieren. Ein derartiges Volumen oder Konglomerat der magnetisierten Partikel 2 verhält sich dynamisch quasi wie eine Flüssigkeit. Um besonders niedrige Reibungswerte zwischen den einzelnen Partikeln 2 innerhalb des Pulvers 1 (innere Reibung) und/oder zwischen dem Pulver 1 und beispielsweise einem elektrischen Kontakt (äußere Reibung) zu erzielen, können die Partikel 2 eine relativ kleine mittlere Korngröße aufweisen, die insbesondere kleiner als 50 µm oder kleiner 40 µm oder kleiner 35 µm ist. Zusätzlich oder alternativ kann die innere Reibung und die äußere Reibung auch dadurch reduziert werden, dass die Partikel 2 kugelförmig oder annähernd kugelförmig ausgebildet sind. Das Pulver 1 besitzt dann ein im wesentlichen kugelförmiges Korn.

Entsprechend Fig. 8 ist es außerdem möglich, das Pulver 1 in eine Flüssigkeit oder Trägerflüssigkeit 3 einzubinden, wodurch sich die Reibung ebenfalls reduzieren läßt. Hierdurch kann eine elektrisch leitende und magnetische Flüssigkeit 1' (Conductive Magnet Fluid oder kurz CMF) geschaffen werden. Die hierzu verwendete Trägerflüssigkeit 3 kann mit den darin enthaltenen Partikeln 2 dann eine Dispersion bilden. Als Trägerflüssigkeit 3 eignet sich beispielsweise ein Öl. Vorteilhaft ist eine Trägerflüssigkeit 3, die eine relativ große Oberflächenspannung besitzt. Eine große Oberflächenspannung bewirkt einen relativ starken Zusammenhalt des so gebildeten CMF-Volumens 1' und wirkt einem Kriechen sowie einer Haftung der Trägerflüssigkeit 3 an einem damit in Berührung stehenden Körper entgegen. Besonders vorteilhaft ist eine Ausführungsform, bei der als Trägerflüssigkeit 3 ein nicht migrierendes Öl verwendet wird.

Zur Verdeutlichung ist in Fig. 2 ein einzelnes Partikel 2 dargestellt, das einen magnetischen Kern 4 aufweist, der an seiner Außenseite mit einer elektrisch leitenden Beschichtung 5 versehen ist.

Das erfindungsgemäße elektrisch leitende, magnetische Pulver 1 kann besonders einfach dadurch hergestellt werden, dass elektrisch leitende und magnetische Partikel 2 in einer schüttfähigen Korngröße bereitgestellt werden. Die elektrisch leitenden und magnetischen Partikel 2 können beispielsweise dadurch hergestellt werden, dass magnetische Kerne 4 mit einer elektrisch leitenden Beschichtung 5 versehen werden.

Das CMP-Volumen 1 bzw. das erfindungsgemäße elektrisch leitende, magnetische Pulver 1 eignet sich in besonderer Weise für eine Verwendung in einem elektrischen Bauteil zur Übertragung eines elektrischen Signals und/oder einer elektrischen Spannung und/oder eines elektrischen Stroms zwischen wenigstens zwei elektrischen Kontakten.

In den Fig. 3 bis 7 wird am Beispiel eines Potentiometers ohne Beschränkung der Allgemeinheit exemplarisch ein elektrisches Bauteil beschrieben, in dem das erfindungsgemäße elektrisch leitende, magnetische Pulver 1 zur Anwendung kommen kann. Es ist klar, dass grundsätzlich auch bei anderen elektrischen Bauteilen zwei oder mehr elektrische Kontakte mit Hilfe des erfindungsgemäßen elektrisch leitenden, magnetischen Pulvers 1 dynamisch miteinander verbunden werden können.

Entsprechend Fig. 3 besitzt ein Potentiometer 6 drei Anschlüsse 7, 8, 9 sowie einen Widerstand 10, auf den der mit 8 bezeichnete Anschluss mit einem durch einen Pfeil symbolisierten Verbindungselement 11 an verschiedenen Positionen, also bei verschiedenen Widerstandswerten zugreifen kann. In Abhängigkeit der Positionierung des Verbindungselements 11 erzeugt das Potentiometer 6 an seinen Anschlüssen 7, 8, 9 Ausgangssignale, die in einer entsprechenden Schaltung ausgewertet werden können.

Fig. 4 zeigt eine Ausführungsform, bei welcher das Potentiometer 6 als linearer Wegaufnehmer ausgestaltet ist. Das Potentiometer 6 enthält eine Widerstandsbahn 12, die einen ersten elektrischen Kontakt bildet, sowie eine Kollektorbahn 13, die einen zweiten elektrischen Kontakt bildet. Das Verbindungselement 11 ist hier durch ein Volumen, insbesondere ein tropfenförmiges Konglomerat, des elektrisch leitenden, magnetischen Pulvers 1 gebildet und wird daher im folgenden auch als Betätigungsvolumen 11 oder CMP-Volumen 1 bezeichnet. Das Betätigungsvolumen 11 bzw. das CMP-Volumen 1 ist dabei so positioniert, dass das CMP-Volumen 1 sowohl die Kollektorbahn 13 als auch die Widerstandsbahn 12 kontaktiert. Es ist klar, dass hier grundsätzlich auch ein Volumen der weiter oben beschriebenen elektrisch leitenden, magnetischen Flüssigkeit 1' (CMF-Volumen) in entsprechender Weise verwendet werden kann. Die nachfolgenden Ausführungen gelten somit grundsätzlich auch für ein CMF-Volumen 1'.

Diese Positionierung des CMP-Volumens 1 wird entsprechend Fig. 5 mit Hilfe magnetischer Kräfte 14 realisiert, die in Fig. 5 durch unterbrochene Linien symbolisiert sind. Die magnetischen Kräfte 14 werden von einer Betätigungseinrichtung 15 erzeugt. Bei der hier gezeigten Ausführungsform weist diese Betätigungseinrichtung 15 einen Aktuator 16 auf, der entsprechend Pfeilen 17 relativ zu den Kontakten bzw. Bahnen 12, 13 des Potentiometers 6 verstellbar ist. Zur Erzeugung der magnetischen Kräfte 14 kann der Aktuator 16 zumindest einen Magneten 18 enthalten, der als Permanentmagnet oder als Elektromagnet ausgestaltet sein kann.

Bei einer Relativverstellung des Aktuators 16 relativ zu den Kontakten bzw. Bahnen 12, 13 wird ein Magnetfeld, das die magnetischen Kräfte 14 erzeugt, entsprechend mit verstellt. Da die magnetischen Kräfte 14 auf das CMP-Volumen 1 einwirken, folgt das Volumen 11 den Verstellbewegungen des Aktuators 18, was in Fig. 5 durch entsprechende Pfeile 19 angedeutet ist. Durch Verstellen des Aktuators 18 kann somit die Positionierung des Volumens 11 entlang der Bahnen bzw. Kontakte 12, 13 verändert werden, wodurch sich in entsprechender Weise das Ausgangssignal des Potentiometers 6 ändert.

Sofern das Potentiometer 6 als Wegaufnehmer verwendet wird, kann der Aktuator 16 mit einem Objekt verbunden werden, dessen Relativbewegungen mit dem Wegaufnehmer erfasst werden sollen.

Wie aus Fig. 5 deutlich hervorgeht, können die Kontakte 12, 13 bzw. die Widerstandsbahn 12 und die Kollektorbahn 13 sowie das CMP-Volumen 1 in einem Gehäuse 20 untergebracht sein, dass zweckmäßig nach außen hermetisch abgedichtet ist. Dieses Gehäuse 20 ist hier zumindest an einer den Bahnen oder Kontakten 12, 13 gegenüberliegenden Wand 21 für die magnetischen Kräfte 14 durchlässig ausgestaltet. Die außerhalb des Gehäuses 20 bzw. außen am Gehäuse 20 angeordnete Betätigungseinrichtung 15 kann somit durch die Wand 21 hindurch auf das CMP-Volumen 1 einwirken. Dementsprechend bewirkt eine Relativverstellung des Aktuators 16 entlang der Außenseite des Gehäuses 20 eine entsprechende Relativverstellung des CMP-Volumens 1 im Gehäuse 20. Entsprechend Fig. 5 kann der Aktuator 16 vorteilhafterweise relativ zum Gehäuse 20 so positioniert werden, dass er beabstandet zum Gehäuse 20, also berührungslos entlang des Gehäuses 20 verstellbar ist.

Die erfindungsgemäße Anwendung des elektrisch leitenden, magnetischen Pulvers 1 im Potentiometer 6 zur Realisierung der dynamischen Kontaktierung der Bahnen oder Kontakte 12, 13 führt zu einer minimalen Reibung zwischen dem CMP-Volumen 1 und der Oberfläche der Kontakte oder Bahnen 12, 13. Die Kräfte zum Verstellen des CMP-Volumens 1 sind daher sehr klein. Desweiteren tritt ein Verschleiß der Kontakte oder Bahnen 12, 13 sowie des CMP-Volumens 1 quasi nicht auf, wodurch sich die Lebensdauer und Zuverlässigkeit des Potentiometers 6 erhöht. Schließlich führt auch die berührungslose Anordnung des Aktuators 16 relativ zum Gehäuse 20 zu einer minimalen bzw. fehlenden Reibung, so dass auch hier ein Verschleiß vermieden werden kann. Ein weitere Vorteil der insgesamt extrem reduzierten Reibung kann darin gesehen werden, dass die zum Verstellen des Potentiometers 6 erforderlichen Stellkräfte extrem klein sind, so dass das Potentiometer 6 als Präzisionsinstrument ausgestaltet werden kann.

Die Widerstandsbahn 12 und die Kollektorbahn 13 können beispielsweise in Form eines leitfähigen Kunststoffs, sogenannte Leitplastik,. auf ein Substrat 22 aufgebracht sein. Entsprechend Fig. 6 sind in das Substrat 22 zwei Leiterbahnen 23, 24 eingebettet, von denen die eine zu dem mit 7 bezeichneten Anschluss führt und an die Widerstandsbahn 12 angeschlossen ist. Die andere Leiterbahn 24 führt zu dem mit 8 bezeichneten Anschluss und ist mit der Kollektorbahn 13 abgedeckt. Die Widerstandsbahn 12 ist an ihren Enden zum einen mit der Leiterbahn 23 und zum anderen mit dem mit 9 bezeichneten Anschluss verbunden.

Bei der Ausführungsform gemäß Fig. 6 sind im Gehäuse 20 außerdem Längsstege 25 angeordnet, die sich hier auf den Bahnen bzw. Kontakten 12, 13 abstützen. Die Längsstege 25 sind elektrisch nicht leitend und schließen zwischen sich einen Kanal 26 ein, in dem das CMP-Volumen 1 untergebracht und entlang der Bahnen 12, 13 verstellbar ist. Hierdurch ist das CMP-Volumen 1 in einem definierten Raum eingeschlossen, so dass sich das Volumen 11 auch dann immer wieder neu formieren kann, wenn er beispielsweise durch Erschütterungen geteilt werden sollte.

Während bei der Ausführungsform gemäß Fig. 6 die Kollektorbahn 13 und die Widerstandsbahn 12 in einer Ebene nebeneinander auf dem Substratkörper 22 angeordnet sind, zeigt Fig. 7 eine andere Ausführungsform, bei welcher die Widerstandsbahn 12 und die Kollektorbahn 13 zwar beieinander, jedoch in verschiedenen Ebenen einander gegenüber liegen. Bei dieser Ausführungsform kann das Potentiometer 6 vergleichsweise kompakt gebaut werden, z.B. ist nur ein Längssteg 25 zum Abtrennen des Kanals 26 erforderlich. Ebenso reduziert sich das erforderliche CMP-Volumen 1.

Bei den hier gezeigten Ausführungsformen besitzt die Betätigungseinrichtung 15 den Aktuator 16, der relativ zu den Kontakten bzw. Bahnen 12, 13 verstellt werden kann und dabei die entsprechende Positionierung des CMP-Volumens 1 bewirkt. Bei einer anderen Ausführungsform kann die Betätigungseinrichtung 15 einen Magnetkrafterzeuger aufweisen, der nach Art eines Linearmotors ausgebildet ist. Dieser Magnetkrafterzeuger erstreckt sich dann entlang eines für das CMP-Volumen 1 vorbestimmten Verstellwegs. Im vorliegenden Fall würde sich der Magnetkrafterzeuger dann entlang der Bahnen bzw. Kontakte 12, 13 erstrecken. Der Magnetkrafterzeuger kann dann magnetische Kräfte erzeugen, die das CMP-Volumen 1 entlang dieses Verstellwegs, also entlang der Kontakte bzw. Bahnen 12, 13 antreibt. Somit ist es möglich, ohne Relativbewegung zwischen der Betätigungseinrichtung 15 und den Kontakten oder Bahnen 12, 13 eine Relativverstellung des CMP-Volumens 1 zu erzeugen, in dem lediglich ein entsprechendes Magnetfeld entlang der Bahnen oder Kontakte 12, 13 positioniert wird.

Weitere Bauteile, die elektrische Kontakte enthalten, die mit Hilfe des erfindungsgemäßen elektrisch leitenden, magnetischen Pulvers 1 dynamisch kontaktiert werden können, sind beispielsweise ein Potentiometer wie in den Fig. 4 bis 7, das zusätzlich mit einem oder mehren Schaltern ausgestattet ist, ein Schalter, ein abgedichteter Schalter, ein Endschalter, ein Näherungsschalter, ein Stufenschalter, ein Incremental-Encoder, ein Absolut-Encoder, ein Relais, ein abgedichtetes Relais und so weiter.

QQ群二维码
意见反馈