取向性电磁板的制造方法

申请号 CN201280035465.X 申请日 2012-08-15 公开(公告)号 CN103687967A 公开(公告)日 2014-03-26
申请人 杰富意钢铁株式会社; 发明人 渡边诚; 新垣之启; 高宫俊人; 大久保智幸; 千田邦浩;
摘要 本 发明 涉及取向性电磁 钢 板的制造方法,其中,对以mass%计含有C:0.001%~0.10%、Si:1.0%~5.0%、Mn:0.01%~1.0%、S和Se:合计0.01%~0.05%、sol.Al:0.003%~0.050%和N:0.001%~0.020%的钢 板坯 进行 热轧 、 冷轧 、一次再结晶 退火 ,涂布以MgO为主要成分的退火分离剂,并进行最终退火。本发明所涉及的取向性电磁钢板的制造方法中,使一次再结晶退火中的500℃~600℃间的升温速度S1为100℃/s以上、使600℃~700℃间的升温速度S2为30℃/s~0.5×S1℃/s,并对退火分离剂中所含有的离子半径为离子- 氧 间引 力 为以下的元素相对于MgO的总含量W(mol%)进行调整以使其满足0.01S2-5.5≤Ln(W)≤0.01S2-4.3。
权利要求

1.一种取向性电磁板的制造方法,其中,对具有下述成分组成的钢板坯进行热轧、1次冷轧或夹着中间退火的2次以上的冷轧,从而形成最终板厚,进行一次再结晶退火,涂布以MgO为主要成分的退火分离剂,然后实施最终退火,所述成分组成中,含有C:
0.001mass%~0.10mass%、Si:1.0mass%~5.0mass%、Mn:0.01mass%~1.0mass%、选自S和Se中的1种或2种:合计0.01mass%~0.05mass%、sol.Al:0.003mass%~0.050mass%以及N:0.001mass%~0.020mass%,剩余部分由Fe和不可避免的杂质构成,该取向性电磁钢板的制造方法的特征在于,
使上述一次再结晶退火中的500℃~600℃间的升温速度S1为100℃/s以上、使
600℃~700℃间的升温速度S2为30℃/s~0.6×S1℃/s,
同时对上述退火分离剂中所含有的离子半径为 离子-间引
以下的元素相对于MgO的总含量W(mol%)进行调整以使其在与上述S2的关系中满足下述(1)式,
0.01S2-5.5≤Ln(W)≤0.01S2-4.3 (1)。
2.如权利要求1所述的取向性电磁钢板的制造方法,其特征在于,上述一次再结晶退火后进行脱退火。
3.如权利要求1或2所述的取向性电磁钢板的制造方法,其特征在于,上述离子半径为 离子-氧间引力为 以下的元素为选自Ca、Sr、Li和Na中的1种或2
种以上。
4.如权利要求1~3任一项所述的取向性电磁钢板的制造方法,其特征在于,除了上述成分组成之外,上述钢板坯进一步含有选自Cu:0.01mass%~0.2mass%、Ni:0.01mass%~
0.5mass%、Cr:0.01mass% ~ 0.5mass%、Sb:0.01mass% ~ 0.1mass%、Sn:0.01mass% ~
0.5mass%、Mo:0.01mass%~0.5mass%和Bi:0.001mass%~0.1mass%中的1种或2种以上。
5.如权利要求1~4任一项所述的取向性电磁钢板的制造方法,其特征在于,除了上述成分组成之外,上述钢板坯进一步含有选自B:0.001mass%~0.01mass%、Ge:
0.001mass% ~0.1mass%、As:0.005mass%~ 0.1mass%、P:0.005mass% ~0.1mass%、Te:
0.005mass%~0.1mass%、Nb:0.005mass%~0.1mass%、Ti:0.005mass%~0.1mass%和V:
0.005mass%~0.1mass%中的1种或2种以上。

说明书全文

取向性电磁板的制造方法

技术领域

[0001] 本发明涉及取向性电磁钢板(grain-oriented electrical steel sheet)的制造方法;具体而言,涉及损特性和覆膜特性在制品卷材的整个全长均优异的取向性电磁钢板的制造方法。此处,上述“覆膜”是指以镁橄榄石(Mg2SiO4)为主体的陶瓷质覆膜(下文中也简称为“覆膜”),另外“覆膜特性”是指有无颜色不均、点状覆膜缺陷等覆膜的外观品质。

背景技术

[0002] 电磁钢板是作为变压器或发电机等的铁芯材料而被广泛使用的软磁性材料。特别是取向性电磁钢板,其晶体取向高度集中在被称为Goss取向的{110}<001>取向,因此具有良好的铁损特性,良好的铁损特性直接导致变压器或发电机等的能量损失的降低。作为改善该铁损特性的方法,已知有减少板厚、基于Si等的添加而使比电阻增加、提高晶体取向的取向性、向钢板赋予张、使钢板表面平滑化、二次再结晶晶粒的细粒化、磁畴细化等,这些方法是有效的。
[0003] 其中,作为对二次再结晶晶粒进行细粒化的技术,已知有:在脱退火时进行快速加热的方法或者在上进行脱碳退火之前进行快速加热处理而改善一次再结晶织构的方法。例如,在专利文献1公开了一种得到低铁损的取向性电磁钢板的技术,其中,对轧制至最终板厚的钢板进行脱碳退火之前,在浓度为500ppm以下的气氛中,以100℃/s以上的加热速度快速加热处理至800℃~950℃,按照使脱碳退火工序的前部区域的温度为比快速加热的到达温度低的775℃~840℃、使紧接着的后部区域的温度为比前部区域高的815℃~875℃的方式实施脱碳退火,从而得到低铁损的取向性电磁钢板;另外,在专利文献2中也公开了一种得到低铁损的取向性电磁钢板的技术,其中,在即将对轧制至最终板厚的钢板进行脱碳退火之前,在PH2O/PH2为0.2以下的非氧化性气氛中以100℃/s以上的加热速度进行加热处理以使温度达到700℃以上,从而得到低铁损的取向性电磁钢板。
[0004] 另外,在专利文献3中公开了一种制造覆膜特性和磁特性优异的电磁钢板的技术,其中,以95℃/s以上的升温速度将脱碳退火工序的升温阶段的至少600℃以上的温度-6 -1区域加热至800℃以上,并且,该温度区域的气氛由以体积分率计含有10 ~10 的氧的惰性气体构成,使脱碳退火的均热时的气氛的构成成分为H2和H2O或者H2、H2O和惰性气体,
3 2
并且,使PH2O/PH2为0.05~0.75,另外,使单位面积的气氛流量为0.01~1Nm/min·m 的范围,将覆膜和钢板混合存在的区域中的钢板晶粒的晶粒取向与Goss取向的偏差度控制在适当范围,从而制造覆膜特性和磁特性优异的电磁钢板;另外,在专利文献4中也公开了一种制造覆膜特性和磁特性优异的电磁钢板的技术,其中,以100℃/s以上的升温速度将脱碳退火工序的升温阶段的至少650℃以上的温度区域加热至800℃以上,并且使该温-6 -2
度区域为以体积分率计含有10 ~10 的氧的惰性气体,另一方面,使脱碳退火的均热时的气氛的构成成分为H2和H2O或者H2、H2O和惰性气体,并且,使PH2O/PH2为0.15~0.65,从而将覆膜的GDS分析中Al的发光强度出现峰值的放电时间和Fe的发光强度达到累积值(bulk value)的1/2的放电时间控制为适当范围,由此制造覆膜特性和磁特性优异的电磁钢板。
[0005] 现有技术文献
[0006] 专利文献
[0007] 专利文献1:日本特开平10-298653号公报
[0008] 专利文献2:日本特开平07-062436号公报
[0009] 专利文献3:日本特开2003-27194号公报
[0010] 专利文献4:专利第3537339号

发明内容

[0011] 发明要解决的问题
[0012] 通过应用这些技术,二次再结晶晶粒微细化,覆膜特性得到改善,但仍处于难以说是完美的状况。例如,专利文献1的技术中,暂时升温至高温后,以比该到达温度低的温度进行保温处理,但难以进行到达温度的控制,经常会偏离目标温度。其结果,在同一卷材内或不同卷材之间品质的波动较大,存在着欠缺稳定性的问题。另外,专利文献2的技术中,使升温时的气氛的PH2O/PH2降低至0.2以下,但如专利文献4所公开的那样,最终会影响覆膜特性的不仅是H2O和H2的分压比PH2O/PH2,H2O的绝对分压也会对其产生影响,因此覆膜特性的改善无法说是充分的,仍存在进一步改善的余地。
[0013] 另外,关于专利文献3的技术,其特征在于,使覆膜与基底金属混合存在的区域中的晶粒的取向偏离高斯取向,但即使是在以切板(切り板(cutlength sheet test piece))改善了磁特性的情况下,因安装至变压器时这样的复杂磁化过程而导致谐波成分重叠时,有时反而会导致磁特性劣化。进一步,专利文献4的技术中,在与专利文献3同样的氧分压下进行升温,因此与专利文献3同样存在着被膜和基底金属混合存在的区域中的晶粒取向偏离Goss取向的问题。另外,还存在着下述问题:因钢板成分或冷轧过程中的制造条件的细微变动,GDS的Al的峰位置会发生变化而不稳定。即,存在着下述问题:因Al、C、Si、Mn等成分的细微变动或者热轧板退火时的温度分布、气氛等的不同,Al峰位置有时会偏向钢板表面侧,因该原因而导致磁特性和覆膜特性不稳定。
[0014] 本发明是鉴于以往技术所存在的上述问题点而完成的,其目的在于,提供一种取向性电磁钢板的有利的制造方法,其中,通过使二次再结晶晶粒细粒化,从而可以在制品卷材的整个全长实现低铁损,并且可以被覆形成有均匀的覆膜。
[0015] 用于解决问题的手段
[0016] 为了解决上述课题,发明人着眼于一次再结晶退火的升温过程和退火分离剂中所添加的微量成分,并且追求一种使二次再结晶晶粒稳定地细粒化、且确保覆膜均匀性所需要的条件。其结果发现:将一次再结晶退火分为低温区域和高温区域、并且分别将两温度区域中的升温速度控制在适当范围是有效的。即,通过提高一次再结晶退火的升温速度以使二次再结晶晶粒细粒化,这在以往是已知的,但本发明人进行了进一步研究,结果发现:通过使一次再结晶的前驱过程即回复过程的升温速度高于通常的脱碳退火中的升温速度,同时将发生一次再结晶的高温区域的升温速度限制在上述低温区域的升温速度的60%以下,从而可以回避由在此期间的制造条件的变动而导致的不良影响,可以稳定地得到铁损降低效果。进一步发现:根据上述高温区域的升温速度而将退火分离剂中所添加的微量成分量调整为适当范围,从而可以稳定地被覆形成均匀的覆膜,由此完成了本发明。
[0017] 基于上述见解的本发明为取向性电磁钢板的制造方法,其中,对具有下述成分组成的钢板坯进行热轧、1次冷轧或夹着中间退火的2次以上的冷轧,从而形成最终板厚,进行一次再结晶退火,涂布以MgO为主要成分的退火分离剂,然后实施最终退火,所述成分组成中,含有C:0.001mass%~0.10mass%、Si:1.0mass%~5.0mass%、Mn:0.01mass%~1.0mass%、选 自S 和Se 中 的 1种 或2种:合 计 0.01mass%~ 0.05mass%、sol.Al:
0.003mass%~0.050mass%以及N:0.001mass%~0.020mass%,剩余部分由Fe和不可避免的杂质构成,该取向性电磁钢板的制造方法的特征在于,使上述一次再结晶退火中的500℃~
600℃间的升温速度S1(℃/s)为100℃/s以上、使600℃~700℃间的升温速度S2(℃/s)为30℃/s~0.6×S1℃/s,同时对上述退火分离剂中所含有的离子半径为 离子-氧间引力为 以下的元素相对于MgO的总含量W(mol%)进行调整以使其在与上述S2的关系中满足下述(1)式,
[0018] 0.01S2-5.5≤Ln(W)≤0.01S2-4.3 (1)。
[0019] 本发明的取向性电磁钢板的制造方法的特征在于,在一次再结晶退火后进行脱碳退火。
[0020] 另外,本发明的取向性电磁钢板的制造方法的特征在于,离子半径为离子-氧间引力为 以下的元素为选自Ca、Sr、Li和Na中的1种或2种以上。
[0021] 另外,对于本发明的取向性电磁钢板的制造方法中的钢板坯,其特征在于,除了上述成分组成之外,上述钢板坯进一步含有选自Cu:0.01mass%~0.2mass%、Ni:0.01mass% ~ 0.5mass%、Cr:0.01mass% ~ 0.5mass%、Sb:0.01mass% ~ 0.1mass%、Sn:
0.01mass%~0.5mass%、Mo:0.01mass%~0.5mass%和Bi:0.001mass%~0.1mass%中的1种或2种以上。
[0022] 另外,对于本发明的取向性电磁钢板的制造方法中的钢板坯,其特征在于,除了上述成分组成之外,上述钢板坯进一步含有选自B:0.001mass%~0.01mass%、Ge:0.001mass%~ 0.1mass%、As:0.005mass% ~0.1mass%、P:0.005mass%~ 0.1mass%、Te:
0.005mass%~0.1mass%、Nb:0.005mass%~0.1mass%、Ti:0.005mass%~0.1mass%和V:
0.005mass%~0.1mass%中的1种或2种以上。
[0023] 发明效果
[0024] 根据本发明,可在取向性电磁钢板的制品卷材全长使二次再结晶晶粒细粒化、低铁损化,同时可在卷材整个全长被覆形成均匀的覆膜,因此可以大幅提高成品率。进一步,通过使用由本发明的方法所制造的取向性电磁钢板,可以大幅提高变压器等的铁损特性。

具体实施方式

[0025] 首先,对本发明的取向性电磁钢板的素材、即钢板坯的成分组成进行说明。
[0026] C:0.001mass%~0.10mass%
[0027] C是对于产生高斯取向晶粒而有用的成分,为了体现出上述效果,需要使含量为0.001mass%以上。另一方面,C若超过0.10mass%,则在作为随后工序的脱碳工序中很难脱碳至不会引起磁时效的0.005mass%以下。因此,C需要为0.001mass%~0.10mass%的范围。优选为0.01mass%~0.08mass%的范围。
[0028] Si:1.0mass%~5.0mass%
[0029] Si是提高钢的电阻以降低铁损并且使铁的BCC组织稳定化以能够进行高温热处理所必须的成分,需要至少添加1.0mass%的Si。但是,超过5.0mass%的添加会使钢硬质化,导致难以进行冷轧。因此,Si需要为1.0mass%~5.0mass%的范围。优选为2.5mass%~4.0mass%的范围。
[0030] Mn:0.01mass%~1.0mass%
[0031] Mn特别有助于钢的热脆性的改善,并且是在含有S、Se的情况下可形成MnS或MnSe等析出物以发挥作为抑制剂的功能的元素。Mn的含量若少于0.01mass%,则无法充分得到上述效果;另一方面,若超过1.0mass%,则MnSe等析出物粗大化而失去作为抑制剂的效果。因此,Mn需要为0.01mass%~1.0mass%的范围。优选为0.04mass%~0.40mass%的范围。
[0032] sol.Al:0.003mass%~0.050mass%
[0033] Al是一种有用成分,其在钢中形成AlN作为分散第二相析出并发挥作为抑制剂的作用。但是,添加量以sol.Al计小于0.003mass%的情况下,AlN的析出量不充分;另一方面,若添加量超过0.050mass%,则AlN粗大地析出而失去作为抑制剂的作用。因此,Al需要以sol.Al计为0.003mass%~0.050mass%的范围。优选为0.01mass%~0.04mass%的范围。
[0034] N:0.001mass%~0.020mass%
[0035] 与Al同样,N是形成AlN所必要的成分。但是,添加量小于0.001mass%的情况下,AlN的析出不充分;另一方面,若添加量超过0.020mass%,则在坯料加热时会产生起泡等。因此,N为0.001mass%~0.020mass%的范围。优选为0.005mass%~0.010mass%的范围。
[0036] S和Se的1种或2种:合计0.01mass%~0.05mass%
[0037] S和Se是有用成分,它们与Mn、Cu结合而形成MnSe、MnS、Cu2-xSe、Cu2-xS,在钢中作为分散第二相析出,并且发挥作为抑制剂的作用。所述S、Se的总含量小于0.01mass%的情况下,无法充分得到上述效果;另一方面,若超过0.05mass%,则坯料加热时的固溶不完全,不仅如此,还会导致制品板中产生表面缺陷。因此,无论是在单独添加还是在复合添加的情况下,S和Se为0.01mass%~0.05mass%的范围。优选合计为0.01mass%~0.03mass%的范围。
[0038] 除了上述必须成分之外,本发明的取向性电磁钢板的钢板坯还可进一步含有选自Cu:0.01~0.2mass%、Ni:0.01~0.5mass%、Cr:0.01~0.5mass%、Sb:0.01~0.1mass%、Sn:0.01~0.5mass%、Mo:0.01~0.5mass%和Bi:0.001~0.1mass%中的1种或2种以上。
[0039] Cu、Ni、Cr、Sb、Sn、Mo和Bi是容易在晶界或表面发生偏析的元素,它们是具有作为辅助性抑制剂的作用的元素,因此为了进一步提高磁特性,也可以添加这些元素。但是,无论是哪一种元素,添加量不满足上述下限值的情况下,在二次再结晶过程的高温区域中抑制一次再结晶晶粒的粗大化的效果不充分;另一方面,超过上述上限值的添加有可能导致覆膜的外观不良或二次再结晶不良。因此,在进行添加时,优选以上述范围进行添加。
[0040] 另外,除了上述必需成分和任意添加成分之外,本发明的取向性电磁钢板的钢板坯可进一步含有选自B:0.001~0.01mass%、Ge:0.001~0.1mass%、As:0.005~0.1mass%、P:0.005 ~ 0.1mass%、Te:0.005 ~ 0.1mass%、Nb:0.005 ~ 0.1mass%、Ti:
0.005~0.1mass%和V:0.005~0.1mass%中的1种或2种以上。
[0041] 上述B、Ge、As、P、Te、Nb、Ti和V也具有作为辅助性抑制剂的作用,并且是对于进一步改善磁特性而有效的元素。但是,不满足上述添加量的情况下,在二次再结晶过程的高温区域中无法充分获得抑制一次再结晶晶粒的粗大化的效果。另一方面,若超过上述添加量,则容易产生二次再结晶不良或覆膜的外观不良。因此,在添加上述元素时,优选以上述范围进行添加。
[0042] 接着,对本发明的取向性电磁钢板的制造方法进行说明。
[0043] 本发明的取向性电磁钢板的制造方法由下述一系列的工序构成:利用以往公知的精炼工艺将具有如上所述的成分组成的钢熔炼,通过连续铸造法或凝锭-开坯轧制法等方法制造钢素材(钢板坯),然后对上述钢板坯进行热轧以得到热轧板;根据需要实施热轧板退火后,通过1次冷轧或夹着中间退火的2次以上的冷轧以得到最终板厚的冷轧板,实施一次再结晶退火和脱碳退火,然后涂布以MgO为主要成分的退火分离剂,实施最终成品退火,然后根据需要经过兼具绝缘覆膜的涂布/烧结的平坦化退火。
[0044] 需要说明的是,在上述制造方法中,对于一次再结晶退火和退火分离剂以外的制造条件没有特别限制,可采用以往公知的方法。因此,以下对本发明中的一次再结晶退火条件和退火分离剂的条件进行说明。
[0045] <一次再结晶退火>
[0046] 如上所述,对轧制至最终板厚的冷轧板进行一次再结晶退火的条件、尤其是加热过程中的升温速度对于二次再结晶组织会产生较大影响,因此需要严格地控制。因此,在本发明中,为了在制品卷材全长使二次再结晶晶粒稳定地细粒化、提高制品卷材内铁损特性优异的区域的比率,将上述加热过程分为进行回复的低温区域和产生一次再结晶的高温区域,对各自区域的升温速度进行适当控制。
[0047] 具体而言,使一次再结晶的前驱过程、即产生回复的低温区域(500℃~600℃)的升温速度S1为高于通常情况的100℃/s以上,同时使产生一次再结晶的高温区域(600℃~700℃)的升温速度S2为30℃/s以上且低温区域的升温速度的60%以下。由此,即使在钢成分或一次再结晶退火以前的制造条件变动的情况下,也可以使二次再结晶晶粒细粒化、在制品卷材全长实现低铁损。
[0048] 以下对于其理由进行说明,已知高斯取向{110}<001>的二次再结晶晶核存在于<111>纤维组织中所产生的形变带之中,上述<111>纤维组织在轧制组织中容易蓄积应变能,上述形变带即使在<111>纤维组织中也是特别容易蓄积应变能的区域。
[0049] 此处,一次再结晶退火的加热过程的低温区域(500℃~600℃)中的升温速度S1小于100℃/s的情况下,在应变能极高的形变带中优先产生回复(应变能的减小),因此无法促进高斯取向{110}<001>的再结晶。与此相对,使S1为100℃/s以上的情况下,可以在维持应变能高的状态下将变形组织保持至高温,因此可以在相对较低的温度(600℃左右)引起高斯取向{110}<001>的再结晶。使S1为100℃/s以上的理由就在于此。S1优选为120℃/s以上。
[0050] 另一方面,为了控制二次再结晶后的高斯取向{110}<001>的粒径,将被高斯取向{110}<001>蚕食的<111>组织的量控制至适当范围也是重要的。即,若<111>取向过多,则二次再结晶晶粒的成长得以促进,即使高斯取向{110}<001>的核占据多数,在核各自成长之前一个组织有可能粗大化而形成粗大颗粒;相反,若<111>取向过少,则二次再结晶晶粒难以成长,从而有可能引起二次再结晶不良。
[0051] 该<111>取向虽然并非如形变带那样蓄积应变能,但该<111>取向是由与周围相比应变能高的<111>纤维组织再结晶而产生的,因此使600℃为止的升温速度S1为100℃/s以上来进行加热的本发明的热循环中,其是仅次于高斯取向{110}<001>而容易引起再结晶的晶体取向。因此,若以较高的升温速度加热至高斯取向以外的晶粒引起一次再结晶的高温(700℃以上),则高斯取向{110}<001>和仅次于其而容易再结晶的<111>取向的再结晶在受到抑制的情况下达到高温,然后所有取向一下子产生再结晶。因此,一次再结晶后的织构随机化,高斯取向{110}<001>变少,二次再结晶晶粒无法充分成长。因此,在本发明中,使600℃~700℃的升温速度S2为低于由S1所规定的升温速度的
0.6×S1℃/s以下。
[0052] 相反,若600℃~700℃的升温速度小于30℃/s,则仅次于高斯取向{110}<001>而容易引起再结晶的<111>取向增加,因此二次再结晶晶粒有可能粗大化。以上是使S2为30℃/s以上0.6×S1℃/s以下的理由。优选的是,S2的下限为50℃/s,另外,上限为0.55×S1℃/s。
[0053] 如此,降低高温区域的升温速度S2不仅会给晶体取向带来良好的影响,对于覆膜形成也会带来良好的影响。其原因在于,覆膜的形成从加热过程的600℃左右开始,但若在该温度区域快速加热,则会导致以初期氧化不充分的状态进行均热处理,因此在均热中产生急剧的氧化,内部氧化物的二氧化(SiO2)会呈现以棒状向钢板内部延伸的枝晶状形态。以这种形态进行最终退火时,SiO2难以移动至表面,基底金属内部出现镁橄榄石的游离物,从而成为磁特性和覆膜特性劣化的原因。因此,通过降低S2,可以回避因上述快速加热所导致的不良影响。
[0054] 需要说明的是,在专利文献1~4中公开了改善加热时的气氛的技术,但无论哪一篇专利文献均是在600℃~700℃的高温区域进行快速加热,因此快速加热结束时的到达温度波动较大,难以对内部氧化物的形态进行控制。因此,无法在制品卷材内确保内部氧化物的均匀性,难以得到磁特性和覆膜特性在整个长度上优异的制品板。
[0055] 需要说明的是,对于最终冷轧后的一次再结晶退火中的其它条件,例如均热温度、均热时间、均热时的气氛、冷却速度等条件,根据常规方法进行即可,没有特别限制。
[0056] 另外,多数情况下,一次再结晶退火通常与脱碳退火一并进行;在本发明中,也可以进行兼具脱碳退火的一次再结晶退火,或者在一次再结晶退火后另外实施脱碳退火。
[0057] 进一步,在一次再结晶退火之前或之后、或者一次再结晶退火中实施氮化处理以增强抑制剂,在本发明中也可应用氮化处理。
[0058] <退火分离剂>
[0059] 对于上述一次再结晶退火或进一步脱碳退火后的钢板,在之后涂布退火分离剂,实施最终退火以进行二次再结晶,本发明的特征在于,此时根据上述升温速度S2将退火分离剂中所添加的微量成分的含量调节至适当范围,同时将上述微量添加成分限定在离子半径为 且粒子-氧间引力为 以下的元素。此处,满足这样的条件的元素为Ca、Sr、Li和Na等,这些元素可以单独添加,或者也可以复合2种以上来添加。
[0060] 此处,将所添加的微量元素的离子半径限定为 的范围是因为接近于退火分离剂的主料即MgO的镁离子的离子半径 即,其原因在于,覆膜的形成反应中,2+ 2-
退火分离剂中的MgO的Mg 离子或O 离子因扩散而移动,与钢板表面的SiO2发生反应即
2MgO+SiO2→Mg2SiO4,从而生成镁橄榄石。但通过导入离子半径处于上述范围的元素,在
2+
最终退火中使其与Mg 离子置换,同时通过由离子半径的不同而产生的晶格失配而在MgO的晶格中导入晶格缺陷,从而容易引起扩散,促进上述反应。若离子半径与上述范围相比过
2+
大或过小,则不会发生与Mg 的离子的置换反应,因此无法期待反应促进效果。
[0061] 另外,如上所述,离子半径作用于MgO侧,与此相对,在将原子的离子半径表示为2
Ri、价态为Z、氧离子的离子半径表示为Ro、价态为2时,离子-氧间引力为由2Z/(Ri+Ro)表示的值,其是表示所添加的微量元素主要作用于内部氧化物侧的SiO2的程度的指标,具体而言,该值越小,则意味着在最终退火中SiO2向表层的富集得到促进。
[0062] 即,据认为:SiO2在形成覆膜时,经由奥斯特瓦尔德成长这样的离解-重聚集过程向钢板表层移动,但此处,若导入离子-氧间引力为 以下的离子,则SiO2的键合被切断而容易引起上述离解过程,SiO2在表层富集而与MgO接触的机会升高,因此镁橄榄石的形成反应得以促进。但是,离子-氧间引力若超过 则无法得到上述效果。
[0063] 另外,对于满足上述条件的成分在退火分离剂中所含有的含量而言,相对于MgO的添加量设为W(mol%)时,需要根据一次再结晶退火的高温区域中的升温速度S2而控制在满足下述(1)式的范围,
[0064] 0.01×S2-5.5≤Ln(W)≤0.01×S2-4.3…(1)。
[0065] 因为,若高温区域的升温速度S2变得过高,则所形成的内部氧化物的枝晶状二氧化硅(SiO2)深深地进入钢板表层下,因此需要提高上述微量添加成分来促进SiO2在最终退火中向钢板表面移动。相反,若S2降低,则枝晶状二氧化硅不会深深地进入,因此即使上述微量添加成分量少,SiO2也能够向钢板表面移动。因此,微量添加成分的添加量W需要根据升温速度S2而调整为适当范围,W若低于上述(1)式的范围,则会失去促进SiO2向表层移动的效果;另一方面,若超过上述(1)式的范围,则SiO2向表面的移动过度进行,镁橄榄石的形态劣化,会引起覆膜的外观不良。优选的是,Ln(W)的下限为0.01×S2-5.2、上限为0.01×S2-4.5。
[0066] 需要说明的是,作为添加至退火分离剂的微量成分,除了上述元素之外,还可以添加以往公知的氧化酸盐或氯化物等。这些元素具有改善磁特性的效果和通过追加氧化而使覆膜的量增加的效果,上述微量成分的效果是独立的,因此可以复合添加。
[0067] 需要说明的是,优选的是,上述退火分离剂为浆料状的涂布液,并且使合水分量为0.5mass%~3.7mass%的范围,在两面以8g/m2~14g/m2的范围进行涂布、干燥。
[0068] 需要说明的是,本发明的取向性电磁钢板的制造方法在上述最终退火、被覆形成绝缘覆膜后,还可以实施照射激光或等离子体电子束等的磁畴细化处理。特别是在照射电子束的方法中,可以有效地利用本发明的覆膜强化方案。即,电子束照射中,电子束透过覆膜而使钢板的表面温度上升,因此覆膜变得容易剥离。另一方面,本发明通过促进镁橄榄石形成反应,从而可以形成均匀且牢固的覆膜,因此可以抑制由电子束照射导致的覆膜剥离。
[0069] 实施例1
[0070] 按照1430℃×30分钟的方式将含有C:0.06mass%、Si:3.3mass%、Mn:0.08mass%、S:0.023mass%、sol.Al:0.03mass%、N:0.007mass%、Cu:0.2mass%和Sb:0.02mass%的钢板坯加热后进行热轧,得到板厚为2.2mm的热轧板,实施1000℃×1分钟的热轧板退火后,进行冷轧,得到板厚为0.23mm的冷轧板。然后,使500℃~600℃间的升温速度S1和600℃~700℃间的升温速度S2如表1那样进行各种变化来加热后,实施兼具在840℃均热保持2分钟的脱碳退火的一次再结晶退火。然后,将退火分离剂制备成浆料状,该退火分离剂以MgO为主要成分并且添加有10mass%的TiO2、且如表1所示那样以氧化物的形式添加有各种量的离子半径和离子-氧间引力不同的元素。使水合水分量(hydrated ignition loss)为
2
3.0mass%,然后以12g/m(每双面)进行退火分离剂浆料的涂布、干燥,卷绕成卷材,进行最终成品退火后,涂布由磷酸镁-胶态二氧化硅-铬酸酐-二氧化硅粉末构成的涂布液,实施兼具上述涂布液的烧结和形状矫正的800℃×30秒的平坦化退火,得到制品卷材。
[0071] 从如此得到的制品卷材的长度方向以一定间隔连续采集试验片,测定卷材全长的铁损,求出铁损W17/50为0.80W/kg以下的部分相对于制品卷材全长的比率。另外,在上述试验片采集时,目视检查钢板表面,确认有无颜色不均和点状覆膜缺陷等覆膜不良,求出没有覆膜不良的优良品部分相对于全长的比率。
[0072] 上述结果一并示于表1。由此可知,使升温速度和退火分离剂中的微量添加成分为符合本发明的条件而制造得到的本发明例的钢板中,W17/50≤0.80W/kg的比率均为70%以上、且覆膜外观良好的部分的比率为全长的99%以上,磁特性和覆膜特性也均为良好。
[0073] [表1]
[0074]
[0075] 实施例2
[0076] 按照1430℃×30分钟的方式将具有表2所示的各种成分组成的钢板坯加热后,进行热轧而得到板厚为2.2mm的热轧板,实施1000℃×1分钟的热轧板退火后,冷轧至板厚为1.5mm,实施1100℃×2分钟的中间退火,进一步进行冷轧,得到最终板厚为0.23mm的冷轧板,然后通过电解蚀刻形成线状沟槽从而实施磁畴细化处理。然后,按照500℃~600℃间的升温速度S1为200℃/s、600℃~700℃间的升温速度S2为50℃/s的方式将上述冷轧板加热至700℃后,以10℃/s的升温速度在700℃~840℃间进行加热,在PH2O/PH2为0.4的气氛下实施兼具840℃×2分钟的脱碳退火的一次再结晶退火。然后,将退火分离剂制备成浆料状,该退火分离剂以MgO为主要成分并且添加有10mass%的TiO2、且以氧化物的形式添加有各种量的离子半径为 离子-氧间引力为 的Li。以12g/m2(每双面)
进行退火分离剂浆料的涂布,以使水合水分量为3.0mass%,进行干燥,卷绕成卷材,进行最终成品退火后,涂布由磷酸镁-胶态二氧化硅-铬酸酐-二氧化硅粉末构成的涂布液,实施兼具上述涂布液的烧结和钢带的形状矫正的800℃×20秒的平坦化退火,得到制品卷材。
[0077] 从如此得到的制品卷材的长度方向以一定间隔连续采集试验片后,在氮气气氛中实施800℃×3hr的消除应力退火,然后利用Epstein试验测定铁损W17/50,求出铁损W17/50为0.80W/kg以下的部分相对于制品卷材全长的比率。另外,在上述试验片采集时,目视检查钢板表面,确认有无颜色不均和点状覆膜缺陷等覆膜不良,求出没有覆膜不良的优良品部分相对于全长的比率。
[0078] 上述测定结果一并示于表2。由此可知,使升温速度和退火分离剂中的微量添加成分为符合本发明条件而制造得到的本发明例的钢板的W17/50≤0.80W/kg的比率均为70%以上、且覆膜良好的部分的比率为全长的99%以上,本发明例的钢板的磁特性和覆膜特性也均为良好。
[0079]
[0080] 实施例3
[0081] 按照1430℃×30分钟的方式将含有C:0.06mass%、Si:3.3mass%、Mn:0.08mass%、
QQ群二维码
意见反馈