电感器组件的温度调节

申请号 CN201310556807.9 申请日 2013-11-11 公开(公告)号 CN103802665B 公开(公告)日 2017-10-27
申请人 福特全球技术公司; 发明人 贝赫扎得·瓦凡卡; 布赖恩·理查德·莱特; 布兰登·G·都彬斯; 沙雷斯·斯坎特·柯扎雷卡尔; 素德·库马尔;
摘要 本 发明 涉及电感器组件的 温度 调节。提供一种车辆,车辆具有 变速器 ,变速器具有电感器组件。电感器组件安装在变速器内,以使电感器组件由变速器 流体 通 过喷 射、溅射和浸没中的至少一种来直接冷却。变速器包括至少一个 齿轮 ,所述至少一个齿轮被构造为在旋转时在变速器的输入和输出之间传递 扭矩 并且将流体溅射到电感器组件上以冷却电感器组件。
权利要求

1.一种车辆,包括:
变速器,包括壳体;
电感器组件,设置在所述壳体内并包括线圈和芯,线圈具有暴露的外表面区域部分,芯形成在线圈上以使所述外表面区域部分的至少一部分暴露于变速器内的流体以冷却线圈;

至少两个中间齿轮,可旋转地结合到变速器并被设置在由变速器限定的腔室内,所述中间齿轮与所述流体接触并被构造为在旋转期间使所述流体的一部分溅射到电感器组件上以冷却电感器组件,其中,所述中间齿轮被构造为将发动机和与发动机轴向相邻布置的至少一个电机机械地连接到驱动轴
2.如权利要求1所述的车辆,其中,所述线圈与安装在变速器的外部的开关电连通,其中,所述流体流经所述线圈并且方便来自线圈的热传递。
3.如权利要求1所述的车辆,其中,电感器组件安装在所述腔室的上部区域内并且所述流体蓄积在所述腔室的下部区域中。
4.如权利要求3所述的车辆,所述车辆还包括:喷嘴,布置在所述腔室的上部区域中并且被构造为使所述流体朝着电感器组件移动。
5.如权利要求1所述的车辆,其中,电感器组件安装在所述腔室中位于上部区域和下部区域之间的中间区域内,
其中,所述车辆还包括布置在中间区域中的喷嘴,所述喷嘴被构造为使流体朝着电感器组件移动。

说明书全文

电感器组件的温度调节

技术领域

[0001] 一个或多个实施例涉及一种安装在变速器壳体内部的DC-DC转换器的电感器组件。

背景技术

[0002] 如这里所使用的术语“电动车辆”包括具有用于车辆推进的电机的车辆,例如电池电动车辆(BEV)、混合动电动车辆(HEV)和插电式混合动力电动车辆(PHEV)。BEV包括电机,其中用于电机的能量源是可从外部电网再充电的电池。在BEV中,电池是用于车辆推进的能量源。HEV包括内燃发动机和一个或多个电机,其中用于发动机的能量源是燃料并且用于电机的能量源是电池。在HEV中,发动机是用于车辆推进的主要能量源,电池提供用于车辆推进的补充能量(电池缓冲燃料能并以电的形式回收动能)。PHEV类似于HEV,但是PHEV具有可从外部电网再充电的更大容量电池。在PHEV中,电池是用于车辆推进的主要能量源,一直至电池消耗至低能量平,此时,PHEV与HEV类似地操作以进行车辆推进。
[0003] 电动车辆可包括连接在电池和电机之间的电压转换器(DC-DC转换器)。具有AC电机的电动车辆还包括连接在DC-DC转换器和每个电机之间的逆变器。电压转换器增加(“升高”)或减小(“降低”)电压电势以方便扭矩容量优化。DC-DC转换器包括电感器(或电抗器)组件、开关二极管。典型的电感器组件包括围绕磁芯缠绕的导电线圈。当电流流经线圈时,电感器组件产生热量。在Jaura等人的第2004/0045749号美国专利公布中公开了通过使流体在邻近电感器的管道中循环来冷却DC-DC转换器的已有方法。发明内容
[0004] 在一个实施例中,提供一种车辆,车辆具有变速器,变速器具有电感器组件和至少一个齿轮,所述至少一个齿轮被构造为在旋转时在变速器的输入和输出之间传递扭矩并且将流体溅射到电感器组件上以冷却电感器组件。
[0005] 在另一实施例中,提供一种变速器,变速器具有壳体和布置在壳体内的圆柱形电感器组件。圆柱形电感器组件包括线圈和芯,线圈具有暴露的外表面区域部分,芯形成在线圈上以使所述外表面区域部分的至少一部分暴露于变速器内的流体以冷却线圈。
[0006] 一种变速器包括:壳体;圆柱形电感器组件,布置在壳体内并且包括线圈和芯,所述线圈具有暴露的外表面区域部分,所述芯形成在线圈上以使所述外表面区域部分的至少一部分暴露于变速器内的流体以冷却线圈。
[0007] 变速器限定腔室并且圆柱形电感器组件安装在所述腔室的下部区域内,其中,流体蓄积在下部区域中以使圆柱形电感器组件浸没在流体中。
[0008] 变速器限定腔室并且圆柱形电感器组件安装在所述腔室的上部区域内,其中,流体蓄积在所述腔室的下部区域中。
[0009] 所述变速器还包括:喷嘴,布置在所述腔室的上部区域中并且被构造为使流体朝着圆柱形电感器组件移动。
[0010] 变速器限定腔室并且圆柱形电感器组件安装在所述腔室中位于上部区域和下部区域之间的中间区域内,其中,变速器还包括:喷嘴,布置在中间区域中并且被构造为使流体朝着圆柱形电感器组件移动。
[0011] 所述变速器还包括:至少一个元件,可旋转地结合到变速器并且布置在由变速器限定的腔室内,所述元件与流体接触并且被构造为在旋转期间使一部分流体移动到圆柱形电感器组件上。
[0012] 所述至少一个元件还包括至少两个中间齿轮,所述中间齿轮被构造为将发动机和与发动机轴向相邻布置的至少一个电机机械地连接到驱动轴
[0013] 变速器限定第二腔室,在所述第二腔室中布置多个齿轮,其中,在变速器中在所述第二腔室和所述腔室之间形成通道以方便流体在各腔室之间流动,其中,所述至少一个元件还包括延伸穿过变速器的旋转轴
[0014] 在另一实施例中,提供一种变速器,变速器具有壳体和平面电感器组件。平面电感器组件包括绝缘的线轴、围绕线轴缠绕并且具有暴露的表面区域部分的线圈以及由线轴支撑的芯。平面电感器组件布置在壳体内以使暴露的表面区域部分的至少一部分暴露于壳体内的流体以冷却线圈。
[0015] 一种变速器包括:壳体;平面电感器组件,(i)包括绝缘的线轴、围绕线轴缠绕并且具有暴露的表面区域部分的线圈以及由线轴支撑的芯,以及(ii)布置在壳体内以使暴露的表面区域部分的至少一部分暴露于壳体内的流体以冷却线圈。
[0016] 变速器限定腔室并且平面电感器组件安装在所述腔室的下部区域内,其中,流体蓄积在下部区域中以使平面电感器组件浸没在流体中。
[0017] 变速器限定腔室并且平面电感器组件安装在所述腔室的上部区域内,其中,流体蓄积在所述腔室的下部区域中。
[0018] 所述变速器还包括:喷嘴,布置在所述腔室的上部区域中并且被构造为使流体朝着平面电感器组件移动。
[0019] 变速器限定腔室并且平面电感器组件安装在所述腔室中位于上部区域和下部区域之间的中间区域内,其中,变速器还包括:喷嘴,布置在中间区域中并且被构造为使流体朝着平面电感器组件移动。
[0020] 所述变速器还包括:至少一个元件,可旋转地结合到变速器并且布置在由变速器限定的腔室内,所述元件与流体接触并且被构造为在旋转期间使一部分流体移动到平面电感器组件上。
[0021] 如此,电感器组件通过方便使用变速器流体对导体和芯进行直接冷却来相对于已有的电感器组件提供优点。电感器组件安装在变速器腔室内,以使电感器组件由变速器流体通过喷射、溅射和/或浸没来直接冷却。附图说明
[0022] 图1是根据一个或多个实施例的变速器和具有电感器组件的可变电压转换器(VVC)的正视图,并示出了用于在变速器内安装电感器组件的三个不同区域;
[0023] 图2是包括图1的变速器和VVC的车辆的示意图;
[0024] 图3是图1的VVC的电路图;
[0025] 图4是根据另一实施例的电感器组件的剖视图;
[0026] 图5是图1的电感器组件的放大正向透视图;
[0027] 图6是图1的一部分的放大侧向透视图,示出了安装在上部区域中的电感器组件;
[0028] 图7是示出用于冷却图5的电感器组件的热阻网络的视图;
[0029] 图8是示出图4和图5的电感器组件的稳态热阻的比较的曲线图;
[0030] 图9是示出图4和图5的电感器组件的热阻抗的比较的曲线图;
[0031] 图10是根据一个或多个实施例的变速器的另一正视图,示出了安装在中间区域内的图1的电感器组件;
[0032] 图11是根据一个或多个实施例的变速器的另一正视图,示出了安装在下部区域内的图1的电感器组件;
[0033] 图12是根据一个或多个实施例的变速器的后视图,示出了安装在上部区域内的图1的电感器组件;
[0034] 图13是根据另一实施例的电感器组件的正向透视图;
[0035] 图14是根据另一实施例的电感器组件的正向透视图。

具体实施方式

[0036] 根据需要,在这里公开本发明的详细实施例;然而,应该理解,公开的实施例仅仅是可按照各种和替代的形式实施的本发明的示例。附图未必按照比例绘制;一些特征可被夸大或最小化以示出特定部件的细节。因此,在这里公开的特定结构和功能性细节不应被解释为是限制性的,而仅仅解释为用于教导本领域技术人员以各种方式应用本发明的代表性基础
[0037] 参照图1,示出了根据一个或多个实施例的DC-DC转换器并且DC-DC转换器总体上由标号10表示。DC-DC转换器10也可被称为可变电压转换器(VVC)10。VVC10是具有安装在变速器12的内部和外部的部件的组件。VVC10包括安装在变速器12的内部的电感器组件14和安装在变速器12的外部的多个开关和二极管(图3中示出)。通过在变速器12内安装电感器组件14,电感器组件14可由变速器流体直接冷却,这允许提高热性能。
[0038] 参照图2,描述插电式混合动力电动车辆(PHEV)16内的变速器12,PHEV16是在内燃发动机20的辅助下由电机18推进的电动车辆并且可连接到外部电网。根据一个或多个实施例,电机18是AC电动机,并且在图1中被描述为“电动机”18。电机18接收电功率并提供用于车辆推进的驱动扭矩。电机18还用作用于通过再生制动将机械功率转换成电功率的发电机。
[0039] 根据一个或多个实施例,变速器12具有动力分配构造。变速器12包括第一电机18和第二电机24。根据一个或多个实施例,第二电机24是AC电动机,并且在图1中被描述为“发电机”24。与第一电机18类似,第二电机24接收电功率并提供输出扭矩。第二电机24还用作用于将机械功率转换成电功率并优化经过变速器12的功率流的发电机。
[0040] 变速器12包括行星齿轮单元26,行星齿轮单元26包括太阳齿轮28、行星架30和环形齿轮32。太阳齿轮28连接到第二电机24的输出轴以接收发电机扭矩。行星架30连接到发动机20的输出轴以接收发动机扭矩。行星齿轮单元26组合发电机扭矩和发动机扭矩并且提供围绕环形齿轮32的组合的输出扭矩。行星齿轮单元26用作无级变速器,而没有任何固定或“阶梯”比率。
[0041] 根据一个或多个实施例,变速器12还包括单向离合器(O.W.C.)和发电机制动器33。O.W.C.结合到发动机20的输出轴以仅允许输出轴沿一个方向旋转。O.W.C.防止变速器
12反向驱动发动机20。发电机制动器33结合到第二电机24的输出轴。发电机制动器33可被致动以“制动”或阻止第二电机24和太阳齿轮28的输出轴旋转。在其它实施例中,去除O.W.C.和发电机制动器33并且由用于发动机20和第二电机24的控制策略替代O.W.C.和发电机制动器33。
[0042] 变速器12包括具有中间齿轮的中间轴,所述中间齿轮包括第一齿轮34、第二齿轮36和第三齿轮38。行星输出齿轮40连接到环形齿轮32。行星输出齿轮40与第一齿轮34啮合以在行星齿轮单元26和中间轴之间传递扭矩。输出齿轮42连接到第一电机18的输出轴。输出齿轮42与第二齿轮36啮合以在第一电机18和中间轴之间传递扭矩。变速器输出齿轮44连接到驱动轴46。驱动轴46通过差速器50结合到一对驱动车轮48。变速器输出齿轮44与第三齿轮38啮合以在变速器12和驱动车轮48之间传递扭矩。
[0043] 车辆16包括能量储存装置,例如用于储存电能的电池52。电池52是能够输出电功率以操作第一电机18和第二电机24的高压电池。电池52还在第一电机18和第二电机24操作为发电机时从第一电机18和第二电机24接收电功率。电池52是由多个电池模(未示出)构成的电池组,其中每个电池模块包含多个电池单体(未示出)。车辆16的其它实施例预计到补充或替代电池52的不同类型的能量储存装置,例如电容器和燃料电池(未示出)。高压总线将电池52电连接到第一电机18和第二电机24。
[0044] 车辆包括用于控制电池52的电池能量控制模块(BECM)54。BECM54接收指示车辆状况和电池状况(例如,电池温度、电压和电流)的输入。BECM54计算并估计电池参数,例如电池荷电状态(BSOC)和电池功率容量。BECM54将指示BSOC和电池功率容量的输出(BSOC,Pcap)提供给其它车辆系统和控制器
[0045] 变速器12包括VVC10和逆变器56。VVC10和逆变器56电连接在主电池52和第一电机18之间;并且电连接在电池52和第二电机24之间。根据一个或多个实施例,VVC10“升高”或增加由电池52提供的电功率的电压电势。VVC10还“降低”或减小由电池52提供的电功率的电压电势。逆变器56将由主电池52(通过VVC10)提供的DC功率转换成用于操作电机18、24的AC功率。逆变器56还将由电机18、24提供的AC功率整流为用于对主电池52充电的DC。变速器
12的其它实施例包括多个逆变器(未示出),例如与每个电机18、24关联的一个逆变器。
[0046] 变速器12包括用于控制电机18、24、VVC10和逆变器56的变速器控制模块(TCM)58。TCM58被构造为监测(例如)电机18、24的位置、速度和功耗。TCM58还监测在VVC10和逆变器
56内的各个位置的电参数(例如,电压和电流)。TCM58将与这种信息对应的输出信号提供给其它车辆系统。
[0047] 车辆16包括车辆系统控制器(VSC)60,VSC60与其它车辆系统和控制器通信以协调它们的功能。虽然VSC60被示出为单个控制器,但是VSC60可包括可用于根据总的车辆控制逻辑控制多个车辆系统的多个控制器或软件
[0048] 车辆控制器(包括VSC60和TCM58)通常包括任何数量的微处理器、ASIC、IC、存储器(例如,FLASH、ROM、RAM、EPROM和/或EEPROM)和软件代码,它们彼此协作以执行一系列操作。控制器还包括基于计算和测试数据并存储在存储器内的预定数据或“查找表”。VSC60使用通用总线协议(例如,CAN和LIN)经一个或多个有线或无线车辆连接与其它车辆系统和控制器(例如,BECM54和TCM58)通信。VSC60接收表示变速器12的当前位置(例如,驻车、倒车、空档或驾驶)的输入(PRND)。VSC60还接收表示加速踏板位置的输入(APP)。VSC60将表示期望车轮扭矩、期望发动机速度和发电机制动命令的输出提供给TCM58;并且将接触器控制提供给BECM54。
[0049] 车辆16包括制动系统(未示出),该制动系统包括制动踏板、增压器、主缸以及与驱动车轮48的机械连接,以实施摩擦制动。该制动系统还包括位置传感器压力传感器或其某种组合,以提供与驾驶员对制动扭矩的请求对应的信息(例如,制动踏板位置(BPP))。该制动系统还包括制动系统控制模块(BSCM)62,BSCM62与VSC60通信以协调再生制动和摩擦制动。根据一个实施例,BSCM62将再生制动命令提供给VSC60。
[0050] 车辆16包括用于控制发动机20的发动机控制模块(ECM)64。VSC60将基于多个输入信号(包括APP)并与驾驶员对车辆推进的请求对应的输出(期望发动机扭矩)提供给ECM64。
[0051] 根据一个或多个实施例,车辆16被构造为插电式混合动力电动车辆(PHEV)。电池52周期性地经充电端口66从外部电源或电网接收AC能量。车辆16还包括车载充电器68,充电器68从充电端口66接收AC能量。充电器68是将接收的AC能量转换成适合于对电池52充电的DC能量的AC/DC转换器。进而,充电器68在再充电期间将DC能量提供给电池52。
[0052] 虽然在上下文中示出并描述了PHEV16,但是应该理解,可在其它类型的电动车辆(例如,HEV或BEV)上实现VVC10的实施例。
[0053] 参照图3,VVC10包括用于升高输入电压(Vbat)以提供输出电压(Vdc)的第一开关单元78和第二开关单元80。第一开关单元78包括与第一二极管84并联连接但是极性改变(反向并联)的第一晶体管82。第二开关单元80包括与第二二极管88反向并联连接的第二晶体管86。每个晶体管82、86可以是任何类型的可控开关(例如,绝缘栅双极型晶体管(IGBT)或场效应晶体管(FET))。另外,每个晶体管82、86由TCM58单独控制。电感器组件14被描述为串联连接在主电池52和开关单元78、80之间的输入电感器。当提供电流时,电感器14产生磁通量。当流经电感器14的电流改变时,产生时变磁场,并且感应出电压。VVC10的其它实施例包括不同的电路构造(例如,超过两个开关)。
[0054] 返回参照图1,变速器12包括变速器壳体90,变速器壳体90被示出为没有盖以示出内部部件。如上所述,发动机20、电动机18和发电机24包括与行星齿轮单元26的对应齿轮啮合的输出齿轮。在变速器壳体90的内部腔室92内发生这些机械连接。电力电子壳体94安装到变速器12的外表面。逆变器56和TCM58安装在电力电子壳体94内。VVC10包括安装在电力电子壳体94内的部件(例如,图3中示出的开关78、80和二极管84、88)和安装在变速器壳体90的内部腔室92内的电感器组件14。
[0055] 变速器12包括用于润滑并冷却位于变速器腔室92内的齿轮(例如,中间齿轮34、36、38)的流体96(例如油)。变速器腔室92被密封以保留流体96。变速器12还包括用于使流体96在腔室92中循环的和管道(未示出)。
[0056] 旋转元件(例如,齿轮和轴)可使流体96移动或“溅射”到其它部件上。这种“溅射”区域由图1中的字母“A”表示并且位于腔室92的上部。在区域A中,电感器组件14由当旋转元件(例如,第二中间齿轮36和差速器50)旋转时从旋转元件溅射的变速器流体96冷却。
[0057] 根据一个或多个实施例,变速器12包括用于将变速器流体96直接喷射在壳体90内的部件上的喷嘴98。这种“喷射”区域由图1中的字母“B”表示并且位于腔室92的中间部分。电感器组件14可安装在区域B内(如图10中所示)并由从喷嘴98喷射的变速器流体96冷却。
电感器组件14还可接收从邻近的旋转元件(例如,行星齿轮单元26)溅射的变速器流体96。
变速器12的其它实施例预计到多个喷嘴,安装在腔室92的其它位置的一个或多个喷嘴(例如,安装在区域A中的喷嘴)。
[0058] 另外,变速器流体96在腔室92的下部蓄积。这种“浸没”区域由图1中的字母“C”表示并且位于腔室92的下部。电感器组件14可安装在区域C内(如图11中所示)并浸没在变速器流体96中。
[0059] 图4示出了根据已有方法的被构造为间接冷却的电感器组件100。这种电感器组件100安装在变速器壳体90的外部(例如,安装在图1的电力电子壳体94内)。电感器组件100包括围绕磁芯112缠绕的导体110。磁芯112包括多个芯元件,所述多个芯元件分隔开以限定气隙114。陶瓷分隔件可放置在芯元件之间以保持气隙114。电感器组件100包在电感器壳体
116(例如,壳体)内部,并且在电感器组件100周围的空的空间被导热、电绝缘的粘性材料(例如,灌封料(potting compound)118)填充。电感器壳体116固定到冷板120,并且热油脂
122施加在电感器壳体116和冷板120之间。通道124形成为贯穿冷板120。冷的流体或冷却液(例如,50%水和50%乙二醇)流经通道124。热量通过传导而从导体110和芯112传递到灌封料
118,然后传递到壳体116、热油脂122并最终传递到冷板120中。来自冷板120的热量通过对流传递到流经通道124的冷却液中。另外,冷板120可包括用于通过对流将热量传递到周围空气中的翅片126。
[0060] 从导体110到流经冷板120的通道124的冷却液的热传递路径的热阻较高。热油脂122、灌封料118和冷板120大大加剧了这个热阻。结果,灌封的电感器组件100的热性能受到限制,并且在各位置的电感器组件100的温度增加并且可能在高电功率负载时超过预定温度界限。在一个或多个实施例中,如果电感器组件100的温度超过这种预定界限,则控制器(例如,图1的TCM)可限制电感器组件100的性能。
[0061] 电感器组件100的温度取决于流经导体110的电流的量和横跨导体110的电压电势。电动车辆的最近趋势包括电感器的更高的电流容量。例如,在PHEV中用于延长电行驶里程的增加的电池功率和在HEV中用于相同功率的减少的电池单体导致电动车辆中的电感器额定电流增加。另外,由于高频脉动电流的更高的幅度,使得减小的电池电压还导致电感器ac损失的增加。因此,由于另外的热量产生,导致电感器组件100的温度通常将会增加,并且如果热量不耗散,则电感器温度可能超过预定界限。一种解决方案是增加导体线圈的横截面积以减小电感器损失并且还改善散热(由于更大的表面积)。然而,这种变化将会增加电感器组件的总体尺寸。在所有车辆应用场合可能难以封装更大的电感器组件,并且更大的部件影响车辆燃料经济性和成本。
[0062] 相较于增加电感器组件100的尺寸,为了增加电感器热性能和热容量,如参照图1所描述的,电感器组件100可安装在变速器腔室92内并使用变速器流体96来直接冷却。变速器流体96是可用于直接接触电气部件(例如,导体110和芯112)的电绝缘体。然而,如果电感器组件100经受这种直接冷却,则可去除与电感器组件100关联的多余部件。例如,灌封料118和铝壳体116可被去除。然而,灌封料118和壳体116支撑导体110和芯112。另外,与变速器12的外部的振动相比,在变速器12的内部振动更严重。因此,修改电感器组件100的总体结构以便去除灌封料118和壳体116并且将该组件安装在变速器12的内部。
[0063] 图5示出了根据一个或多个实施例的被构造为安装在变速器12内的电感器组件14。电感器组件14提供参照图4描述的电感器组件100的简化版本,因为多余部件(例如,灌封料、铝壳体、冷板和热油脂)已被去除。电感器组件14包括形成为两个相邻管状线圈的导体210、芯212和绝缘体214。根据示出的实施例,芯212具有双“C”构造的大体上平面形状。绝缘体214在物理上分离导体210和芯212并且由电绝缘聚合材料(例如,聚苯硫醚(PPS))形成。
[0064] 导体210由导电材料(例如,或铝)形成并缠绕为两个相邻的螺旋形线圈。根据一个或多个实施例,通过沿边缘工艺(edgewise process)使用矩形(或平坦)类型导线形成线圈。输入和输出导线从导体210延伸并连接到安装在变速器12外部的部件(例如,如图2和图3中所示的电池52和开关78、80)。芯212由磁性材料(例如,合金粉末)形成。芯212可形成为整体(单件)结构(如图13中所示)或者形成为多个段(未示出)以在每个线圈内形成气隙。绝缘体214可形成为线轴结构,其中,可围绕线轴缠绕导体210。根据一个或多个实施例,绝缘体214包括凸缘216,凸缘216具有用于容纳用于安装电感器组件14的固件(未示出)的孔。电感器组件14的其它实施例预计到与托架分离的绝缘体,该绝缘体可由聚合物、纸(例如, 纸)或施加到导体的涂层(未示出)形成。
[0065] 参照图6,电感器组件14可安装在变速器腔室92内。在示出的实施例中,电感器组件14安装在变速器腔室92的上部内,从而电感器组件14由从齿轮(例如,第二中间齿轮36和差速器50)溅射的变速器流体96直接冷却。当电流流经导体210时,电感器组件14产生热量。当流体96流经电感器组件14时,热量通过对流而从导体210和芯212传递到流体96。
[0066] 图7示出了图6中示出的电感器组件14的热阻网络300和热流方向。热传递(或热流)的方向由箭头和标号310表示。变速器流体312以由变量(Toil_in)表示的入口温度进入变速器腔室314。在图7中由于功率损失而耗散热量的变速器元件由电阻器表示,包括电动机电阻器316、发电机电阻器318、变速器壳体电阻器320和电感器组件电阻器322。流体312在这些元件上移动,并且热量传递到流体312中。
[0067] 在电感器的情况下,在导体和芯(图6中示出)中产生热量。由于电感器组件14的导体和芯直接暴露于流体而非如图4的电感器组件100中所示的电感器组件14的导体和芯被涂覆在灌封料中,所以热量有效地从电感器组件14耗散而没有任何热障碍。热负载316-322加热流体312,并且作为结果,流体312以更高的温度(Toil_out>>Toil_in)离开变速器腔室314。
[0068] 为了数学上的简单性,入口流体312和出口流体312的整体平均温度可用于分析热性能。因此,根据如下所示的等式1和2计算针对于电感器的溅射冷却性能的热阻(θinductor):
[0069]
[0070]
[0071] 其中,Qinductor是以瓦特为单位的热损失
[0072] 使用变速器流体直接冷却电感器组件14通过使系统具有更高能效(更高燃料效率)来提高电感器的冷却容量并且允许更小和更轻的电感器结构,这导致更低的电感器成本。在变速器壳体内部的电感器的溅射ATF冷却的新技术大大提高了电感器(稳态)热容量和瞬态热性能。
[0073] 图8是示出图4和图5的电感器组件的稳态热阻的比较的曲线图,并且由标号400表示。条410表示具有不包括灌封料并安装在变速器腔室内且由变速器流体直接冷却的结构(如图6中所示)的电感器组件(例如,电感器组件14)的热阻摄氏度/瓦特(C/W)。条412表示具有包括灌封料并安装在变速器外部且由流经冷板的冷却液间接冷却的结构(如图4中所示)的电感器组件(例如,电感器组件100)的热阻(C/W)。条414表示当灌封的电感器组件100安装在变速器腔室内并且由变速器流体直接冷却(未示出)时灌封的电感器组件100的热阻(C/W)。
[0074] 对于灌封的电感器(例如,电感器组件100),通过两种冷却方法得到的热阻412、414大约相同,导致相同的稳态热性能,但是导致更好的瞬态热性能(未示出)。然而,当使用非灌封的电感器(例如,电感器组件14)时,使用变速器流体直接冷却电感器的影响很大。针对于直接冷却的非灌封的电感器的热阻410(0.18C/W)与针对于直接和间接冷却的灌封的电感器的热阻414(0.51C/W)之间的差异大约为65%。
[0075] 参照图9,在PHEV在电动车辆(EV)模式下操作期间,电感器组件通常经历高电流瞬态和热负载瞬态。车辆热管理系统使用高时间常数控制电感器温度,以使电感器温度不超过预定温度界限。图9是示出灌封的间接冷却的电感器组件的热阻抗和非灌封的直接冷却的电感器组件的热阻抗的比较的曲线图,并且由标号500表示。这种随着时间的热阻抗值对应于电感器组件的瞬态性能。非灌封的直接冷却的电感器组件(例如,图6的电感器组件14)的热阻抗由标号510表示。灌封的间接冷却的电感器组件(例如,图4的电感器组件100)的热阻抗由标号512表示。如曲线图500中所示,曲线510的时间常数大约为曲线512的时间常数的三分之一。另外,存在于变速器腔室内部的其它元件和变速器壳体的热质量对电感器的有效热质量做出贡献,这使导体线圈的变热减慢。因此,通过非灌封的直接冷却的电感器组件大大提高了稳态和瞬态热性能,在非灌封的直接冷却的电感器组件中,线圈和芯完全暴露于变速器流体(如图6中所示)。
[0076] 图10示出了根据一个或多个实施例的电感器组件14的喷射冷却。根据一个或多个实施例,变速器12包括用于将变速器流体96直接喷射在壳体90内的部件上的喷嘴98。这种“喷射”区域由字母“B”表示并且位于腔室92的中间部分。
[0077] 与区域A的电感器组件14的安装方向相比,电感器组件14可基于封装限制和变速器流体96的流动沿不同方向安装在区域B中。例如,与图6中示出的平面安装构造相比,横向地安装图10中示出的电感器组件14。电感器组件14还可接收从区域B中邻近的旋转元件(例如,行星输出齿轮40)溅射的变速器流体96。变速器12的其它实施例预计到区域B中的多个喷嘴或者安装在腔室92的其它位置的另外的喷嘴(例如,以虚线示出并且在区域A中示出的喷嘴98)。
[0078] 图11示出了通过浸没来进行的电感器组件14的冷却。变速器流体96蓄积在腔室92的下部。这种“浸没”区域由字母“C”表示。在示出的实施例中,电感器组件14按照平面构造安装在区域C内并浸没在变速器流体96中。
[0079] 参照图12,根据一个或多个实施例,电感器组件14安装在变速器壳体90的后腔室550内。变速器12包括一个或多个通道510,所述一个或多个通道510将后腔室550连接到前腔室以使流体96能够在各腔室之间流动。与变速器12的前腔室(图1、图6和图10-12中示出)类似,后腔室550包括用于冷却并润滑旋转部件的变速器流体96。这种旋转部件使变速器流体96移动或溅射到邻近安装的部件上。另外,变速器12可包括位于后腔室550内用于将变速器流体96喷射在部件上的一个或多个喷嘴98。这种“溅射/喷射”区域由字母“D”表示。
[0080] 参照图13,示出了根据一个或多个实施例的具有圆柱形芯的集成电感器组件并且集成电感器组件总体上由标号600表示。集成电感器组件600包括彼此一体地形成的形成为线圈的导体610、整体(单件)芯612和绝缘体614。类似于图5的平面电感器组件14,集成电感器组件600是被构造为安装在变速器腔室92的区域A、B或C内(图1)或者安装在后腔室550的区域D内(图12)的非灌封的设计。
[0081] 参照图14,示出了根据一个或多个实施例的具有圆柱形芯的圆柱形电感器组件并且圆柱形电感器组件总体上由标号700表示。圆柱形电感器组件700包括形成为线圈的导体710、两件芯712和在物理上分离导体710与芯712的绝缘体714。类似于图5的平面电感器组件14和图13的集成电感器组件600,圆柱形电感器组件700是被构造为安装在变速器腔室92的区域A、B或C内(图1)或者安装在后腔室550的区域D内(图12)的非灌封的设计。
[0082] 如此,电感器组件14、600、700通过方便导体和芯的直接冷却来提供相对于已有的电感器组件100的优点。这种直接冷却可用于冷却已有的电感器组件100设计或简化的(非灌封的)电感器组件14、600、700设计。
[0083] 尽管在上面描述了示例性实施例,但是这些实施例并非意图描述本发明的所有可能的形式。相反地,在本说明书中使用的词语是描述性词语而非限制性词语,并且应该理解,在不脱离本发明的精神和范围的情况下,可做出各种修改。另外,各种实现的实施例的特征可被组合以形成本发明的进一步的实施例。
QQ群二维码
意见反馈