烧结体及具备其的噪声滤波器

申请号 CN201180037296.9 申请日 2011-08-03 公开(公告)号 CN103038189A 公开(公告)日 2013-04-10
申请人 京瓷株式会社; 发明人 竹之下英博;
摘要 本 发明 提供强度提高了的 铁 氧 体 烧结 体及具备其的噪声 滤波器 ,所述铁氧体烧结体中,Cu的含量以CuO换算为1摩尔%以上且10摩尔%以下,且包含Fe、Zn、Ni、Cu及O的 尖晶石 结构的结晶作为主相存在,并且平均粒径为0.5μm以上且10μm以下的Cu化合物的粒子存在于 晶界 中。该铁氧体烧结体通过使Cu化合物的粒子存在于晶界中,由此能够抑制主相的晶粒生长而成为由微细结晶形成的组织形态,并且能够抑制晶界的破坏的传播,所以成为强度提高了的铁氧体烧结体。
权利要求

1.一种烧结体,其特征在于,
Cu的含量以CuO换算为1摩尔%以上且10摩尔%以下,且包含Fe、Zn、Ni、Cu及O的尖晶石结构的结晶作为主相存在,并且平均粒径为0.5μm以上且10μm以下的Cu化合物的粒子存在于晶界中。
2.根据权利要求1所述的铁氧体烧结体,其特征在于,
所述主相中所含的Cu的浓度X与所述Cu化合物中所含的Cu的浓度Y的比率X/Y为
0.1以上且0.33以下。
3.根据权利要求1或2所述的铁氧体烧结体,其特征在于,
所述Cu化合物以Cu2O形式存在。
4.根据权利要求3所述的铁氧体烧结体,其特征在于,
所述Cu化合物的粒子的50%以上以所述Cu2O形式存在。
5.根据权利要求1~权利要求4中任一项所述的铁氧体烧结体,其特征在于,相对于构成所述主相的成分100质量%,含有以分别换算成CaO、SiO2及P2O5的值的总和计为0.005质量%以上且0.1质量%以下的Ca、Si及P的氧化物。
6.根据权利要求1~权利要求5中任一项所述的铁氧体烧结体,其特征在于,构成所述主相的Cu以外的成分组成为以Fe2O3换算的Fe为40摩尔%以上且50摩尔%以下、以ZnO换算的Zn为15摩尔%以上且35摩尔%以下及以NiO换算的Ni为10摩尔%以上且30摩尔%以下。
7.根据权利要求1~权利要求6中任一项所述的铁氧体烧结体,其特征在于,相对于构成所述主相的成分100质量%,含有以TiO2换算为0.5质量%以下且不包含
0质量%的Ti。
8.根据权利要求1~权利要求7中任一项所述的铁氧体烧结体,其特征在于,所述晶界中存在Zn化合物。
9.一种噪声滤波器,其特征在于,
在权利要求1~权利要求8中任一项所述的铁氧体烧结体上缠绕金属线而成。

说明书全文

烧结体及具备其的噪声滤波器

技术领域

[0001] 本发明涉及一种铁氧体烧结体及具备其的噪声滤波器。

背景技术

[0002] 由Fe-Zn-Ni-Cu系铁氧体材料形成的铁氧体烧结体被广泛用作感应器、变压器、稳定器、电磁石、噪声滤波器等的磁心。
[0003] 尤其是电动汽车、混合动汽车等大多搭载有复杂化、高密度化的电子控制电路,作为噪声对策,大多使用以由Fe-Zn-Ni-Cu系铁氧体材料形成的铁氧体烧结体作为磁心的噪声滤波器。
[0004] 作为这样的Fe-Zn-Ni-Cu系铁氧体材料,例如专利文献1中提出了一种铁氧体烧结体,其由如下的Fe-Zn-Ni-Cu系材料形成,即,在铁氧体烧结体的断裂面中将晶界的Cu量设为X、晶粒内的Cu量设为Y时X/Y≤3.0,且20~140℃时的损失(磁心损耗)的最小值3
为30kW/m 以下(50kHz、50mT)。
[0005] 现有技术文献
[0006] 专利文献
[0007] 专利文献1:日本特开平8-310856号公报

发明内容

[0008] 发明要解决的问题
[0009] 专利文献1记载的是损失(磁心损耗)小、且电阻率大的铁氧体烧结体,并没有记载对应目前的电子仪器的小型化、薄型化而提高铁氧体烧结体所需的强度。另外,用于车载用的噪声滤波器的铁氧体烧结体要求较少发生因在树脂铸模后的固化时施加的外部应力而使烧结体的一部分产生缺损或龟裂而破损。
[0010] 本发明的目的在于提供强度提高了的铁氧体烧结体及具备其的噪声滤波器。
[0011] 用于解决问题的方案
[0012] 本发明的铁氧体烧结体,其特征在于,Cu的含量以CuO换算为1摩尔%以上且10摩尔%以下,且包含Fe、Zn、Ni、Cu及O的尖晶石结构的结晶作为主相存在,并且平均粒径为0.5μm以上且10μm以下的Cu化合物的粒子存在于晶界中。
[0013] 另外,本发明的噪声滤波器,其特征在于,在上述构成的铁氧体烧结体上缠绕金属线而成。
[0014] 发明效果
[0015] 根据本发明的铁氧体烧结体,Cu的含量以CuO换算为1摩尔%以上且10摩尔%以下,且包含Fe、Zn、Ni、Cu及O的尖晶石结构的结晶作为主相存在,并且平均粒径为0.5μm以上且10μm以下的Cu化合物的粒子存在于晶界中,由此可以抑制作为主相的结晶的晶粒生长而成为由微细结晶形成的组织形态,并且能够抑制晶界的破坏的传播,所以可以成为强度提高了的铁氧体烧结体。
[0016] 另外,根据本发明的噪声滤波器,通过在上述构成的铁氧体烧结体上缠绕金属线而成,由此可以制成具有优异的噪声除去性能的噪声滤波器。附图说明
[0017] 图1中,表示本实施方式的铁氧体烧结体的一个例子的(a)为环形磁心的立体图、(b)为绕线管磁心的立体图。

具体实施方式

[0018] 以下,对本实施方式的铁氧体烧结体及使用其的噪声滤波器的一个例子进行说明。
[0019] 本实施方式的铁氧体烧结体的特征在于,Cu的含量以CuO换算为1摩尔%以上且10摩尔%以下,且包含Fe、Zn、Ni、Cu及O的尖晶石结构的结晶作为主相存在,并且平均粒径为0.5μm以上且10μm以下的Cu化合物的粒子存在于晶界中。由此,可以抑制作为主相的结晶的晶粒生长而成为由微细结晶形成的组织形态,并且可以抑制由外部应力所致的晶界的破坏的传播,因此可以成为强度提高了的铁氧体烧结体。另外,若Cu化合物的粒子即便在晶界中也存在于三相点,则可以更有效地抑制晶界的破坏的传播。
[0020] 另外,为了抑制主相的晶粒生长而成为由更微细结晶形成的组织形态、并且更加抑制晶界的破坏的传播,优选使Cu化合物的平均粒径为1μm以上且小于5μm的范围。
[0021] 在此,关于铁氧体烧结体中是否存在包含Fe、Zn、Ni、Cu及O的尖晶石结构的结晶,可以使用X射线衍射装置(XRD)进行测定、并使用JCPDS卡根据得到的X射线衍射图谱进行鉴定。另外,也可以利用带有能量分散型X射线衍射装置(EDS)的扫描型电子显微镜(SEM)进行鉴定。另外,也可以利用透射型电子显微镜(TEM)观察铁氧体烧结体的任意表面、并利用使用了能量分散型X射线衍射装置的选区电子衍射(Selected-area electron diffraction)法进行鉴定。
[0022] 另外,Cu化合物的粒子的平均粒径可以如下求得,即,利用带有能量分散型X射线衍射装置的扫描型电子显微镜在任意表面测定特定的多个(例如10个)Cu化合物的粒径,算出得到的10个粒径的平均值。需要说明的是,粒径是以对象粒子的内接圆与外接圆的直径的平均值作为对象粒子的粒径。另外,也可以使用带有能量分散型X射线衍射装置的透射型电子显微镜求出。
[0023] 另外,本实施方式的铁氧体烧结体中,优选使主相中所含的Cu的浓度X与Cu化合物中所含的Cu的浓度Y的比率X/Y为0.1以上且0.33以下。比率X/Y为0.1以上且0.33以下时,可以进一步提高铁氧体烧结体的强度。
[0024] 需要说明的是,主相中所含的Cu的浓度X与Cu化合物中所含的Cu的浓度Y的比率X/Y可以通过使用例波长分散型X射线显微分析装置(WDX-EPMA)而算出。具体而言,根据利用波长分散型X射线显微分析装置对铁氧体烧结体的任意表面的Cu元素的分布状态进行测定而得到的颜色映射图像(color mapping image),将检测出的特性X射线的强度的计数值大的位置视为Cu化合物,将任意选择的多个Cu化合物中的Cu的计数值的平均值设为Cu的浓度Y,将不存在Cu化合物的主相部分的多个位置中的Cu的计数值的平均值设为Cu的浓度X,算出比率X/Y。另外,关于上述计算方法中的Cu化合物是否存在于晶界中的确认,可以使用对与颜色映射图像同样的位置进行拍摄而得到的SEM照片来进行。
[0025] 另外,本实施方式的铁氧体烧结体优选使Cu化合物以Cu2O形式存在。
[0026] 在铁氧体烧结体的一部分上形成电极部时,在酸性敷液例如磷酸溶液等中浸渍规定时间,然后进行从Ni镀敷、Zn镀敷、Sn镀敷、Ni-Zn镀敷或Sn-Zn镀敷等中适当选择的镀敷处理。此时,铁氧体烧结体中,Cu化合物以Cu2O形式存在时,Cu2O对酸性镀敷液的耐腐蚀性优异,因此即便在酸性镀敷液浸渍后也能够维持铁氧体烧结体的强度。
[0027] 另外,本实施方式的铁氧体烧结体更优选Cu化合物粒子的50%以上以Cu2O形式存在。如上所述,Cu2O对于酸性镀敷液具有较高的耐腐蚀性,通过提高Cu2O存在的比例,能够进一步提高对酸性镀敷液的耐腐蚀性、更高地维持铁氧体烧结体的强度。
[0028] 需要说明的是,关于Cu化合物是否以Cu2O形式存在的确认,例如可以对铁氧体烧结体的一部分进行机械研磨,利用离子铣削装置对其表面进行加工,并利用使用了透射型电子显微镜的选区电子衍射法对存在于晶界中的Cu化合物的粒子的化合物结构进行确认即可。另外,关于Cu化合物的50%以上是否以Cu2O形式存在,可以通过对确认到存在于晶界中的至少10个Cu化合物反复确认上述化合物结构来进行确认。
[0029] 另外,在本实施方式的铁氧体烧结体中,优选:相对于构成主相的成分100质量%,含有以分别换算成CaO、SiO2及P2O5的值的总和计为0.005质量%以上且0.1质量%以下的Ca、Si及P的氧化物。以上述的范围含有Ca、Si及P的氧化物时,Ca、Si及P的氧化物作为烧结助剂起作用,并且能够促进烧结而使组织致密化,所以可以提高铁氧体烧结体的强度。
[0030] 另外,本实施方式的铁氧体烧结体中,构成主相的Cu以外的成分组成优选分别含有以Fe2O3换算为40摩尔%以上且50摩尔%以下的Fe、以ZnO换算为15摩尔%以上且35摩尔%以下的Zn及以NiO换算为10摩尔%以上且30摩尔%以下的Ni。在此,以Fe2O3换算的Fe为40摩尔%以上且50摩尔%以下的原因为:如果以该范围含有Fe,则存在电阻值变高、显示良好绝缘性的倾向。另外,以ZnO换算的Zn为15摩尔%以上且35摩尔%以下的原因为:如果以该范围含有Zn,则存在居里温度(Tc)变高的倾向。另外,以NiO换算的Ni为10摩尔%以上且30摩尔%以下的的原因为:如果以该范围含有Ni,则存在居里温度和导磁率(μ)变高的倾向。由此,可以成为强度优异且显示良好的导磁率及居里温度的铁氧体烧结体。
[0031] 另外,为了成为强度优异且显示更良好的导磁率及居里温度的铁氧体烧结体,构成主相的成分优选以Fe2O3换算的Fe为49摩尔%以上且50摩尔%以下、以ZnO换算的Zn为25摩尔%以上且35摩尔%以下、以NiO换算的Ni为10摩尔%以上且20摩尔%以下及以CuO换算的Cu为4摩尔%以上且7摩尔%以下。
[0032] 进而,本实施方式的铁氧体烧结体,优选相对于构成主相的成分100质量%含有以TiO2换算为0.5质量%以下(不包含0)的Ti。相对于构成主相的成分100质量%含有以TiO2换算为0.5质量%以下(不包含0)的Ti时,可以提高导磁率、并且可以抑制导磁率的温度变化率。另外,优选Ti成分不凝聚而分散地存在于晶界中。
[0033] 需要说明的是,关于Ti成分在晶界中的分散性,例如可以使用波长分散型X射线显微分析装置对铁氧体烧结体的任意表面的Ti元素的分布状态进行测定、并通过观察经颜色映射而得到的图像来进行确认。观察的结果是,分散性差时Ti元素在相当于晶界的部分出现局部性的高浓度即计数值大,所以在经颜色映射而得到的图像中以与相当于其他晶界的部分相比不同的色调来表示。
[0034] 另外,本实施方式的铁氧体材料可以均以0.05质量%以下的范围含有例如S、Cr2O3、ZrO2等作为不可避免的杂质。
[0035] 另外,关于构成铁氧体烧结体的主相的成分组成,可以使用ICP(Inductively Coupled Plasma:感应耦合等离子体)发射光谱分析装置或荧光X射线分析装置,求出Fe、Zn、Ni及Cu的金属元素量,并分别换算成Fe2O3、ZnO、NiO及CuO,由得到的换算值和各自的分子量算出摩尔%。
[0036] 另外,关于Ca、Si、P及Ti,也可以同样地使用ICP发射光谱分析装置或荧光X射线分析装置,求出Ca、Si、P及Ti的金属元素量,并分别换算成CaO、SiO2、P2O5及TiO2,算出相对于构成主相的成分100质量%的质量比例。
[0037] 另外,本实施方式的铁氧体烧结体中,更优选在晶界中存在Zn化合物。在Zn化合物存在于晶界中时,可以抑制主相间的磁力的相互作用、且减小导磁率的温度变化率。特别优选该Zn化合物即便在晶界中也存在于三相点。需要说明的是,本实施方式中,Zn化合物是Zn的氧化物以及含有Zn、O和Fe、Ni、Cu及Ti中的至少1种的化合物中的任一种。
[0038] 另外,Zn化合物可以如下地确认,即,对铁氧体烧结体的一部分进行机械研磨,利用离子铣削装置对其表面进行加工,并通过使用透射型电子显微镜,利用选区电子衍射法对存在于晶界中的粒子的化合物结构进行确认。
[0039] 下面,详细示出本实施方式的铁氧体烧结体的制造方法。
[0040] 首先,使用由Fe、Zn、Ni、Cu的氧化物或者利用烧成而生成氧化物的酸盐、硝酸盐等金属盐构成的1次原料,将其以规定的比例进行配合。此时,关于以Cu的氧化物或者利用烧成而生成氧化物的碳酸盐、硝酸盐等作为Cu源的1次原料,优选使其粒径为1.5μm以上且15μm以下这样的较大的粒径。更优选使粒径为3μm以上且10μm以下。
[0041] 另外,为了含有以换算成CaO、SiO2及P2O5的值的总和计为0.005质量%以上且0.1质量%以下的Ca、Si及P的氧化物,只要相对于1次原料100质量%添加0.005质量%以上且0.1质量%以下即可。
[0042] 另外,配合各个1次原料后,用球磨机、振动磨机等进行粉碎混合后,在700℃以上且900℃以下的最高温度进行煅烧,得到煅烧粉体。此时作为升温至最高温度的升温速度,优选为50℃/hr以上。若升温至最高温度的升温速度为50℃/hr以上,则可以抑制Cu在主相中的固溶,且容易使平均粒径为0.5μm以上且10μm以下的Cu化合物存在于晶界中。
[0043] 接着,用喷雾造粒装置(喷雾干燥机)将向得到的煅烧粉体中加入规定量的粘合剂而成的浆料造粒成球状颗粒,使用得到的球状颗粒进行压制成形,得到规定形状的成形体。然后,用脱脂炉在400~800℃的范围对成形体进行脱脂,制成脱脂体后,用烧成炉在1000~1200℃的最高温度对其进行烧成,由此可以得到本实施方式的铁氧体烧结体。此时将烧成工序中的从700℃至最高温度的升温速度设为50℃/hr以上且300℃/hr以下。通过以该范围的温度进行升温,由此抑制Cu在主相中的固溶、且容易使平均粒径为0.5μm以上且10μm以下的Cu化合物存在于晶界中,因此提高铁氧体烧结体的强度。
[0044] 另外,上述成形体的烧成工序中,将烧成时的最高温度保持规定时间后,将降温至300℃的降温速度设为400℃/h以上进行降温时,可以使Cu化合物以Cu2O形式存在。进而,通过将至300℃的降温速度设为500℃/h以上,可以使存在于晶界中的Cu化合物的50%以上为Cu2O。
[0045] 另外,通过将烧成后的铁氧体烧结体以800℃以上且1200℃以下的温度、3分钟以上且30分钟以下的时间进行热处理,由此可以使主相所含的Cu成分容易发生移动,能够提高存在于晶界中的Cu化合物的浓度。即,通过以上述温度进行热处理,由此使主相中所含的Cu的浓度X与Cu化合物所含的Cu的浓度Y的比率X/Y的值变小,并且可以使比率X/Y为0.1以上且0.33以下。
[0046] 另外,作为本实施方式的其他制造方法,也可以应用向煅烧粉体中加入1μm以上且12μm以下的CuO的方法。需要说明的是,在使用该制造方法的情况下,与向煅烧粉体中加入的CuO的量相应地减少作为1次原料配合时的量。向煅烧粉体中加入的CuO的添加量设定为以摩尔比率计为CuO总含量的30%以下为佳。
[0047] 需要说明的是,如果根据需要向煅烧粉体中加入在将煅烧粉体设为100质量%时为0.5质量%以下的范围内的量的TiO2、或者利用烧成而生成TiO2的碳酸盐、硝酸盐等金属盐时,可以使导磁率提高、并且使导磁率的温度变化率降低。
[0048] 另外,通过向煅烧粉体中加入2μm以上且4μm以下的ZnO,由此可以使Zn化合物存在于铁氧体烧结体的晶界中。需要说明的是,ZnO在煅烧粉体中的添加量以ZnO换算优选为0.001摩尔%以上且0.03摩尔%以下。
[0049] 而且,利用这样的制造方法得到的本实施方式的铁氧体烧结体的强度优异,所以能够成为可与部件的小型化、薄型化对应的烧结体。
[0050] 另外,本实施方式的铁氧体烧结体可以通过缠绕金属线而作为用于除去电路的噪声的噪声滤波器而使用。进而,通过构成主相的成分组成的调整,可以成为除了具有优异的强度外导磁率及居里温度也高、且导磁率的温度变化率的绝对值也小的铁氧体烧结体,因此在其上缠绕金属线而成的噪声滤波器具有优异的噪声除去性能。
[0051] 图1中,表示本实施方式的铁氧体烧结体的一个例子的(a)为环形磁心的立体图、(b)为绕线管磁心的立体图。
[0052] 另外,本实施方式的噪声滤波器是在图1(a)所示的例子的环状的环形磁心1、或者图1(b)所示例子的绕线管状的绕线管磁心2的各自的绕线部1a、2a上缠绕金属线形成线圈而成的噪声滤波器。
[0053] 下面,对本实施方式的铁氧体烧结体的特性的评价方法进行说明。
[0054] 关于3点弯曲强度,可以利用基于JIS R1601-2008的试验片形状及测定方法求出。
[0055] 关于导磁率,例如可以在外形尺寸为外径13mm、内径7mm、厚度3mm的图1(a)所示的环状环形磁心1的形状的铁氧体烧结体上,遍及绕线部1a的整个周围均匀地缠绕10圈线径为0.2mm的覆膜导线,在LCR测定仪中以频率100kHz的条件测定而求出。
[0056] 另外,导磁率的温度变化率如下求得。即,使用同样的试样,与恒温槽内的测定夹具连接。需要说明的是,测定夹具与LCR测定仪连接,在100kHz的频率下进行测定,将25℃下时的导磁率设为μ25、从25℃降温至-40℃时的最低的导磁率设为μ-40、从25℃升温至150℃时的最高的导磁率设为μ150,以(μ-40-μ25)/μ25×100的计算式求出低温侧的导磁率的温度变化率X-40~25,以(μ150-μ25)/μ25×100的计算式求出高温侧的导磁率的温度变化率X25~150。进而,居里温度可以使用同样的试样、并通过使用LCR测定仪的电桥电路(bridge circuit)法求出。
[0057] 以下,对本发明的实施例进行具体说明,但本发明并不限定于该实施例。
[0058] 实施例1
[0059] 设定成表1所示的Fe2O3、NiO、ZnO的总量(比率相同),并改变CuO的添加量及粒径、以及煅烧时及烧成时的条件,制作铁氧体烧结体,对存在于晶界中的Cu化合物的平均粒径及3点弯曲强度进行了测定。
[0060] 首先,按照表1所示的比例称量粒径为0.5μm以上且3μm以下的Fe2O3、ZnO及NiO粉末和粒径为1μm~17μm的CuO粉末,用球磨机粉碎混合后,以表1所示的升温速度进行升温,在最高温度800℃进行了煅烧。然后,用喷雾造粒装置(喷雾干燥机)将向得到的煅烧粉体中加入粘合剂而成的浆料造粒成球状颗粒,使用得到的球状颗粒进行压制成形,得到纵40mm、横55mm、长65mm的棱柱形状的成形体。需要说明的是,各试样均分别成形多个。然后,用脱脂炉将成形体在600℃的最高温度下保持5小时进行脱脂,得到脱脂体。
[0061] 之后,将脱脂体放入烧成炉中,在大气气氛中以表1所示的升温速度从700℃升温至最高温度1150℃,在最高温度1150℃保持3小时,得到烧结体。
[0062] 然后,对作为得到的烧结体的各试样实施磨削加工,得到厚度3mm、宽度4mm、总长45mm的试验片形状。另外,使用该试验片基于JIS R1601-2008测定3点弯曲强度。
[0063] 另外,对于测定3点弯曲强度后的试样,利用带有能量分散型X射线衍射装置的扫描型电子显微镜,对任意表面的各试样测定10个Cu化合物的粒径,算出得到的10个粒径的平均值,由此求出平均粒径。
[0064] 需要说明的是,关于铁氧体烧结体中存在包含Fe、Zn、Ni、Cu及O的尖晶石结构的结晶,通过使用X射线衍射装置(XRD)进行测定、并使用JCPDS卡根据得到的X射线衍射图谱进行鉴定来确认。另外,关于构成铁氧体烧结体的主相的成分组成,使用ICP发射光谱分析装置,求出Fe、Zn、Ni及Cu的金属元素量并分别换算成Fe2O3、ZnO、NiO及CuO,由得到的换算值和各自的分子量算出摩尔%,确认了如表1的添加量所示的组成。
[0065] [表1]
[0066]
[0067] 根据表1的结果,试样No.2~5、8~13、16、17及19~24的3点弯曲强度为150MPa以上,由此可见,通过使CuO为1摩尔%以上且10摩尔%以下、Cu化合物的平均粒径为0.5μm以上且10μm以下,从而实现铁氧体烧结体的强度提高。
[0068] 另外,可见:Cu化合物的平均粒径为1μm以上且小于5μm的试样No.4、5、9、10、17、20~22的3点弯曲强度特别高,为175MPa以上。
[0069] 另外,可见:为了使铁氧体烧结体的晶界中存在平均粒径为0.5μm以上且10μm以下的Cu化合物,优选使CuO添加量为1摩尔%以上且10摩尔%以下、CuO1次原料的粒径为1.5μm以上且15μm以下、煅烧时的升温速度为50℃/hr以上、烧成时的升温速度为50℃/hr以上且300℃/hr以下。
[0070] 实施例2
[0071] 下面,使用向煅烧粉体中添加CuO的方法制作铁氧体烧结体,对存在于晶界中的Cu化合物的平均粒径及3点弯曲强度进行测定。
[0072] 需要说明的是,有关试样的制作,除了在煅烧后的粉体中按照表2所示的添加量及粒径添加CuO以外,利用与实施例1的表1的试样No.19同样的制造方法进行。另外,存在于晶界中的Cu化合物的平均粒径的测定及3点弯曲强度的测定按照与实施例1同样的方法进行。另外,CuO的添加量在任意的试样中均为配合时和煅烧粉体添加时共计5摩尔%。结果示于表2。
[0073] [表2]
[0074]
[0075] 根据表2的结果,试样No.39~41及44~46的3点弯曲强度为150MPa以上,由此可见,即便在通过向煅烧粉体中添加1μm以上且12μm以下的CuO而使存在于晶界中的Cu化合物的平均粒径为0.5μm以上且10μm以下时,也可以实现铁氧体烧结体的强度提高。
[0076] 另外,由试样No.38~42和43~47的强度的结果可知,煅烧粉体中的CuO添加量以摩尔比率计优选为CuO的总添加量的30%以下。
[0077] 实施例3
[0078] 下面,使用利用与表1的试样No.4同样的制造方法制作的试样,并以表3所示的温度热处理5分钟,获得试样No.48~54。另外,试样No.55是与不进行热处理的试样No.4同样的试样。另外,关于各个试样的主相中所含的Cu的浓度X和Cu化合物中所含的Cu的浓度Y,使用波长分散型X射线显微分析装置对Cu元素的分布状态进行测定,从得到的颜色映射图像对Cu化合物的存在进行确认,选择任意5个Cu化合物,求出这些Cu的计数值的平均值即Cu化合物中所含的Cu的浓度Y。另外,从不存在Cu化合物的主相部分任意选择5个位置,求出这些Cu的计数值的平均值即主相中所含的Cu的浓度X。然后,算出比率X/Y。结果示于表3。需要说明的是,通过对与上述的Cu化合物的选择位置同样的位置进行拍摄而得到的SEM照片,确认到Cu化合物存在于晶界中。
[0079] 另外,3点弯曲强度的测定按照与实施例1同样的方法进行。结果示于表3。
[0080] [表3]
[0081]
[0082] 由表3的结果可知,热处理温度为800~1200℃的范围的试样No.49~53的3点弯曲强度的值为200MPa以上、比率X/Y为0.1以上且0.33以下,由此实现强度的提高。
[0083] 实施例4
[0084] 下面,为了确认存在于晶界中的Cu2O的影响进行了试验。
[0085] 首先,使用与实施例1同样的制造方法,准备与表1的试样No.17同样的试样的脱脂体。然后,在最高温度1150℃保持3小时进行烧成,然后分别以300℃/h、400℃/h、500℃/h、550℃/h、600℃/h的降温速度降温至300℃,得到试样No.56~59。需要说明的是,降温时开放(damper),且从插入烧成炉内的金属制导管送入常温的空气。
[0086] 然后,对各试样确认Cu化合物是否以Cu2O形式存在于晶界中。首先,利用机械加工将各试样细细地切断成多个,对切断后的试样表面进行机械研磨,利用离子铣削装置对其表面进行加工。接着,利用使用了透射电子显微镜的选区电子衍射法对加工后的试样表面确认存在于晶界中的Cu化合物粒子的化合物结构。需要说明的是,该确认取10个各试样来进行。然后,算出有无Cu2O的存在及Cu2O的存在比例。
[0087] 接着,将各试样在用于非电解镀镍的酸性镀敷液即次磷酸水溶液中浸渍5分钟后,在纯水中进行清洗,依据JIS R1601-2008测定3点弯曲强度。结果示于表4。
[0088] [表4]
[0089]
[0090] 由表4的结果可知,对以300℃/h的降温速度降温至300℃的实施例1的试样No.17未确认到Cu2O的存在,未浸渍时的3点弯曲强度为190MPa,与此相对,浸渍酸性镀敷液后的3点弯曲强度的值降低至155MPa。
[0091] 与此相对,在以400℃/h以上的降温速度降温至300℃的试样No.56~59中确认到Cu2O的存在,3点弯曲强度的值为160Mpa以上,存在于晶界中的Cu2O对酸性镀敷液的耐腐蚀性优异,由此能够维持铁氧体烧结体的强度。
[0092] 另外,可知:在以500℃/h以上的降温速度降温至300℃的试样No.57~59中,通过使存在Cu2O的晶界的存在比例为50%以上,由此3点弯曲强度的值为175MPa以上、且能够更高地维持铁氧体烧结体的强度。
[0093] 实施例5
[0094] 下面,制作包含Ca、Si及P的氧化物的试样,进行3点弯曲强度的测定。
[0095] 设定成与表1的试样No.17同样的组成范围,并在配合时相对于该成分100质量%按照表5所示的量添加CaO、SiO2及P2O5,利用与实施例1同样的制造方法,得到厚度3mm、宽度4mm、总长45mm的试验片形状的试样No.60~83。然后,依据JIS R1601-2008测定3点弯曲强度。结果示于表5。
[0096] [表5]
[0097]
[0098] 根据表5的结果,试样No.67~80的3点弯曲强度的值为200MPa以上,可见:通过含有以分别换算成CaO、SiO2及P2O5的值的总和计为0.005质量%以上且0.1质量%以下的Ca、Si及P的氧化物,可以实现强度的提高。
[0099] 实施例6
[0100] 下面,改变Fe2O3、NiO、ZnO及CuO的组成而制作试样,为了评价这些试样的导磁率、居里温度及导磁率的温度变化率进行了试验。需要说明的是,就试样的制造方法而言,除了使烧成后的试样尺寸为外径13mm、内径7mm、厚度3mm的环形磁心的形状以外,按照与实施例1的试样No.16同样的制造方法进行制作。
[0101] 然后,在得到的试样上缠绕10圈线径为0.2mm的覆膜线,使用LCR测定仪在频率为100kHz的条件下测定导磁率。另外,使用与用于测定导磁率的试样同样的试样,并利用使用了LCR测定仪的电桥电路法测定电感,求出居里温度。
[0102] 另外,使用与用于测定导磁率(μ)的试样同样的试样,分别测定-40℃、25℃、150℃的导磁率μ-40、μ25、μ150,以μ-40/μ25×100的计算式求出从-40℃至25℃的导磁率的温度变化率X-40~25,以μ150/μ25×100的计算式求出从25℃至150℃的导磁率的温度变化率X25~150。结果示于表5。
[0103] [表6]
[0104]
[0105] 由表6的结果可知,通过使以Fe2O3换算的Fe为40摩尔%以上且50摩尔%以下、以ZnO换算的Zn为15摩尔%以上且35摩尔%以下、以NiO换算的Ni为10摩尔%以上且30摩尔%以下及以CuO换算的Cu为1摩尔%以上且10摩尔%以下,由此能够成为导磁率及居里温度高、并且导磁率的温度变化率小的铁氧体烧结体。
[0106] 另外,可知:通过使以Fe2O3换算的Fe为49摩尔%以上且50摩尔%以下、以ZnO换算的Zn为25摩尔%以上且35摩尔%以下、以NiO换算的Ni为10摩尔%以上且20摩尔%以下及以CuO换算的Cu为4摩尔%以上且7摩尔%以下,由此能够成为导磁率及居里温度更高、导磁率的温度变化率小的铁氧体烧结体。
[0107] 实施例7
[0108] 下面,改变Fe2O3、NiO、ZnO和CuO的组成、以及TiO2的添加量而制作试样,为了评价这些试样的导磁率、居里温度及导磁率的温度变化率进行了试验。需要说明的是,除了相对于煅烧粉体100质量%按照表7所示的范围添加TiO2以外,利用与实施例1的试样No.16同样的制造方法制作试样,测定方法按照与实施例6同样的方法进行。另外,实施例6的试样No.84~103和实施例7的试样No.104~123中不同的仅为有无含有TiO2。
[0109] [表7]
[0110]
[0111] 由表7的结果可知,通过包含以TiO2换算为0.5质量%以下的Ti,由此能够提高导磁率并且降低导磁率的温度变化率。尤其是,在以Fe2O3换算的Fe为49摩尔%以上且50摩尔%以下、以ZnO换算的Zn为25摩尔%以上且35摩尔%以下、以NiO换算的Ni为10摩尔%以上且20摩尔%以下及以CuO换算的Cu为4摩尔%以上且7摩尔%以下并且包含以TiO2换算为0.5质量%以下的Ti时,能够成为导磁率及居里温度更高、导磁率的温度变化率小的铁氧体烧结体。
[0112] 实施例8
[0113] 下面,将Fe2O3设为50摩尔%、NiO设为15摩尔%、CuO设为5摩尔%、TiO2设为0.3质量%,关于ZnO,使用平均粒径3μm的ZnO并且使配合时及煅烧粉体中的添加量如表
8所示,除此以外,利用与实施例7的试样No.120同样的制造方法制作试样。然后,按照与实施例4同样的方法进行了Zn化合物的确认。另外,导磁率、居里温度及导磁率的温度变化率的测定方法按照与实施例6同样的方法进行。结果示于表8。需要说明的是,关于居里温度,由于没有观察到变化所以省略对其的记载。
[0114] [表8]
[0115]
[0116] 由表8的结果可知,通过使Zn化合物存在于晶界中,能够使导磁率的温度变化率减小。另外,在向煅烧粉体中添加的Zn化合物的添加量为0.005摩尔%以上且0.03摩尔%以下时,能够维持或提高导磁率并且使导磁率的温度变化率减小。
[0117] 符号说明
[0118] 1:环形磁心
[0119] 1a:绕线部
[0120] 2:绕线管磁心
[0121] 2a:绕线部
QQ群二维码
意见反馈