前後加速度センサの異常判定装置及び方法

申请号 JP2011538752 申请日 2011-04-14 公开(公告)号 JPWO2012140763A1 公开(公告)日 2014-07-28
申请人 トヨタ自動車株式会社; 发明人 齋藤 敬; 敬 齋藤; 板橋 界児; 界児 板橋;
摘要 本発明の異常判定装置及び方法は、車両の走行制御に使用される車両の前後 加速 度を検出する前後加速度センサの異常判定装置及び方法であり、前後加速度センサにより検出された車両の前後加速度の積算値を演算し、積算値と車輪速度に基づく車速とに基づいて前後加速度センサの異常判定を行う。車輪速度に基づく車速が0であり且つ検出された車両の前後加速度の増加変化率が増加変化率基準値以下である状態が、演算開始基準時間以上経過したときに、積算値の演算が開始される。
权利要求
  • 車両の走行制御に使用される車両の前後加速度を検出する前後加速度センサの異常判定装置であって、前後加速度センサにより検出された車両の前後加速度の積算値を演算し、前記積算値と車輪速度に基づく車速とに基づいて前後加速度センサの異常判定を行う前後加速度センサの異常判定装置に於いて、検出された車両の前後加速度の増加変化率が増加変化率基準値以下である状態が、演算開始基準時間以上経過したときに、積算値の演算を開始することを特徴とする前後加速度センサの異常判定装置。
  • 検出可能な車輪速度の最小値に対応する車速以上の値を判定開始車速基準値として、車輪速度に基づく車速が前記判定開始車速基準値未満であるときには、前記前後加速度センサが異常であるとの判定が行われないことを特徴とする請求項1に記載の前後加速度センサの異常判定装置。
  • 前記前後加速度センサの異常判定は前記積算値と車輪速度に基づく車速との偏差が異常判定基準値以上であるか否かによって行われ、車輪速度に基づく車速が前記判定開始車速基準値以上になるまで、前記異常判定基準値は前記前後加速度センサが異常であると判定されない値に設定されることを特徴とする請求項2に記載の前後加速度センサの異常判定装置。
  • 前記積算値が増大し始めた時点より判定開始基準時間が経過するまでは、前記前後加速度センサが異常であるとの判定が行われないことを特徴とする請求項1に記載の前後加速度センサの異常判定装置。
  • 前記前後加速度センサの異常判定は前記積算値と車輪速度に基づく車速との偏差が異常判定基準値以上であるか否かによって行われ、前記積算値が増大し始めた時点より前記判定開始基準時間が経過するまで、前記異常判定基準値は前記前後加速度センサが異常であると判定されない値に設定されることを特徴とする請求項4に記載の前後加速度センサの異常判定装置。
  • 前後加速度センサにより検出された車両の前後加速度に対し特定の通過周波数帯域にてフィルタ処理を行い、フィルタ処理後の車両の前後加速度の積算値を演算することを特徴とする請求項1乃至5の何れか一つに記載の前後加速度センサの異常判定装置。
  • 前記車両の走行制御は車輪速度に基づく車速が走行制御開始車速基準値以上であるときに実行され、前記走行制御開始車速基準値は前記判定開始車速基準値よりも高いことを特徴とする請求項1乃至6の何れか一つに記載の前後加速度センサの異常判定装置。
  • 前記積算値の演算及び前記前後加速度センサの異常判定は車輪速度に基づく車速が前記走行制御開始車速基準値よりも低い判定終了車速基準値以上になると終了されることを特徴とする請求項1乃至7の何れか一つに記載の前後加速度センサの異常判定装置。
  • 車両は四輪駆動車であり、前記車輪速度に基づく車速は、四輪の車輪速度の平均値、四輪の車輪速度のうちの最大値を除く三つの車輪速度の平均値、及び四輪の車輪速度のうちの最大値及び最小値を除く二つの車輪速度の平均値の何れかであることを特徴とする請求項1乃至8の何れか一つに記載の前後加速度センサの異常判定装置。
  • 駆動輪の駆動力を制御することにより前記車両の走行制御を行い、車輪速度及び車両の前後加速度に基づいて駆動輪がスリップ状態にあると判定されるときには前記車両の走行制御を中止する車両の走行制御装置であって、請求項1乃至9の何れか一つに記載の前後加速度センサの異常判定装置を有し、車両は四輪駆動車であり、前記異常判定装置により前後加速度センサが異常であると判定されているときには、駆動輪がスリップ状態にあるか否かに関係なく前記車両の走行制御を中止することを特徴とする車両の走行制御装置。
  • 車両は四輪駆動状態と二輪駆動状態とに切り替わる四輪駆動車であり、車両が二輪駆動状態にあるときには、前記異常判定装置は前記前後加速度センサの異常判定を行わないことを特徴とする請求項10に記載の車両の走行制御装置。
  • 車両が二輪駆動状態にあるときには、非駆動輪の車輪速度及び駆動輪の車輪速度に基づいて駆動輪がスリップ状態にあるか否かが判定されることを特徴とする請求項11に記載の車両の走行制御装置。
  • 前記車両の走行制御は車両の加減速に伴うばね上の共振振動を抑制するばね上制振制御であることを特徴とする請求項10乃至12の何れか一つに記載の車両の走行制御装置。
  • 車両の走行制御に使用される車両の前後加速度を検出する前後加速度センサの異常判定方法であって、前後加速度センサにより検出された車両の前後加速度の積算値を演算し、前記積算値と車輪速度に基づく車速とに基づいて前後加速度センサの異常判定を行う前後加速度センサの異常判定方法に於いて、検出された車両の前後加速度の増加変化率が増加変化率基準値以下である状態が、演算開始基準時間以上経過したときに、積算値の演算を開始することを特徴とする前後加速度センサの異常判定方法。
  • 駆動輪の駆動力を制御することにより前記車両の走行制御を行い、車輪速度及び車両の前後加速度に基づいて駆動輪がスリップ状態にあると判定されるときには前記車両の走行制御を中止する車両の走行制御方法であって、請求項1乃至9の何れか一つに記載の前後加速度センサの異常判定装置を有し、車両は四輪駆動車であり、前記異常判定装置により前後加速度センサが異常であると判定されているときには、駆動輪がスリップ状態にあるか否かに関係なく前記車両の走行制御を中止することを特徴とする車両の走行制御方法。
  • 说明书全文

    本発明は、車両の走行制御に使用される車両の前後加速度を検出する前後加速度センサに係り、更に詳細には前後加速度センサの異常判定装置及び方法に係る。

    自動車等の車両に於いて、走行制御に使用される車両の前後加速度を検出する前後加速度センサの異常を判定する異常判定装置は従来から種々提案されている。 例えば前後加速度に基づく車速と車輪速度に基づく車速を比較することにより前後加速度センサの異常判定を行うことが知られている(特許文献1参照)。 前後加速度に基づく車速は前後加速度センサにより検出された車両の前後加速度を積分することにより演算され、車輪速度に基づく車速は車輪速度センサにより検出された車輪速度に基づいて演算される。

    特開平01−195168号公報

    〔発明が解決しようとする課題〕
    当技術分野に於いてよく知られている如く、前後加速度センサは極僅かな前後加速度をも検出することができるのに対し、車輪速度センサは極低速の車輪速度を検出することができない。 そのため従来の前後加速度センサの異常判定装置においては、車輪速度が車輪速度センサによる検出が可能になる値よりも高い値に上昇してから前後加速度の積分演算等が開始されるようになっている。

    しかし車両が走行を開始すると、車輪速度センサが車輪速度を検出することができない微低速域に於いても車両の前後加速度は上昇する。 そのため車輪速度が車輪速度センサによる検出が可能になる値よりも高い値に上昇してから前後加速度の積分演算が開始されると、前後加速度の積分値は前後加速度が上昇し始めた後積分演算が開始されるまでの前後加速度を含まない値になる。 従って前後加速度に基づく車速には未積分の値に相当する誤差が含まれるため、前後加速度センサが正常であるにも拘らず異常であると判定されたり、前後加速度センサが異常であるにも拘らず正常であると判定されたりする場合がある。

    また車両が走行を開始する前の段階から前後加速度の積分演算が開始されると、前後加速度センサの作動が開始された直後の不安定な作動状況に於ける前後加速度センサの不安定な出値が積分されてしまう。 従って前後加速度に基づく車速には不安定な出力値に起因する誤差が含まれるため、前後加速度センサが異常であるか否かの判定が誤判定になる場合がある。

    本発明の主要な目的は、前後加速度センサにより検出された車両の前後加速度に基づく車速に含まれる誤差を低減することにより、前後加速度センサが異常であるか否かの判定が誤判定になる虞れを低減することである。
    〔課題を解決するための手段及び発明の効果〕

    本発明によれば、車両の走行制御に使用される車両の前後加速度を検出する前後加速度センサの異常判定装置であって、前後加速度センサにより検出された車両の前後加速度の積算値を演算し、積算値と車輪速度に基づく車速とに基づいて前後加速度センサの異常判定を行う前後加速度センサの異常判定装置に於いて、検出された車両の前後加速度の増加変化率が増加変化率基準値以下である状態が、演算開始基準時間以上経過したときに、積算値の演算を開始することを特徴とする前後加速度センサの異常判定装置が提供される。

    また本発明によれば、車両の走行制御に使用される車両の前後加速度を検出する前後加速度センサの異常判定方法であって、前後加速度センサにより検出された車両の前後加速度の積算値を演算し、積算値と車輪速度に基づく車速とに基づいて前後加速度センサの異常判定を行う前後加速度センサの異常判定方法に於いて、検出された車両の前後加速度の増加変化率が増加変化率基準値以下である状態が、演算開始基準時間以上経過したときに、積算値の演算を開始することを特徴とする前後加速度センサの異常判定方法が提供される。

    これらの構成によれば、検出された車両の前後加速度の増加変化率が増加変化率基準値以下である状態が、演算開始基準時間以上経過したときに、前後加速度の積算値の演算が開始される。 演算開始基準時間は、例えばイグニッションスイッチが閉成されることにより前後加速度センサや異常判定装置の作動が開始されてから車両が走行を開始するまでに要する時間よりも短くてよい。

    よって前後加速度センサの作動が開始された直後の前後加速度センサの不安定な出力値が積算されることを防止すると共に、車両の前後加速度が上昇し始める前の段階から前後加速度の積算を開始することができる。 従って前後加速度の積算値、即ち車両の前後加速度に基づく車速に含まれる誤差を低減することができ、これにより前後加速度センサが異常であるか否かの判定が誤判定になる虞れを低減することができる。

    上記構成に於いて、検出可能な車輪速度の最小値に対応する車速以上の値を判定開始車速基準値として、車輪速度に基づく車速が前記判定開始車速基準値未満であるときには、前後加速度センサが異常であるとの判定が行われないようになっていてよい。

    この構成によれば、車輪速度に基づく車速が判定開始車速基準値未満であるときには、前後加速度センサが異常であるとの判定が行われない。 従って車輪速度に基づく車速が判定開始車速基準値未満であり、車輪速度に基づく車速を正確に求めることができないことに起因して前後加速度センサが誤って異常であると判定されることを防止することができる。

    また上記構成に於いて、前後加速度センサの異常判定は積算値と車輪速度に基づく車速との偏差が異常判定基準値以上であるか否かによって行われ、車輪速度に基づく車速が判定開始車速基準値以上になるまで、異常判定基準値は前後加速度センサが異常であると判定されない値に設定されるようになっていてよい。

    この構成によれば、車輪速度に基づく車速が判定開始車速基準値以上になるまで、換言すれば車輪速度に基づく車速を正確に求めることができるようになるまで、前後加速度センサが異常であると判定されることが阻止される。 よって車輪速度に基づく車速が判定開始車速基準値未満である状況に於いて、車輪速度に基づく車速を正確に求めることができないことに起因して前後加速度センサが誤って異常であると判定されることを効果的に防止することができる。

    また上記構成に於いて、積算値が増大し始めた時点より判定開始基準時間が経過するまでは、前後加速度センサが異常であるとの判定が行われないようになっていてよい。

    この構成によれば、積算値が増大し始めた時点より判定開始基準時間が経過するまでは、前後加速度センサが異常であるとの判定が行われない。 よって判定開始基準時間を適宜に設定することにより,車輪速度が検出可能な車輪速度の最小値よりも低い状況に於いて、車輪速度に基づく車速を正確に求めることができないことに起因して前後加速度センサが誤って異常であると判定される虞れを低減することができる。

    上記構成に於いて、前後加速度センサの異常判定は積算値と車輪速度に基づく車速との偏差が異常判定基準値以上であるか否かによって行われ、積算値が増大し始めた時点より判定開始基準時間が経過するまで、異常判定基準値は前後加速度センサが異常であると判定されない値に設定されるようになっていてよい。

    この構成によれば、積算値が増大し始めた時点より判定開始基準時間が経過するまで、前後加速度センサが異常であると判定されることが阻止される。 よって車輪速度が検出可能な最小値未満である状況に於いて、車輪速度に基づく車速を正確に求めることができないことに起因して前後加速度センサが誤って異常であると判定されることを効果的に防止することができる。

    また上記構成に於いて、前後加速度センサにより検出された車両の前後加速度に対し特定の通過周波数帯域にてフィルタ処理を行い、フィルタ処理後の車両の前後加速度の積算値を演算するようになっていてよい。

    この構成によれば、前後加速度センサの温度ドリフトや路面勾配に起因する低周波成分の影響を低減することができ、またノイズに起因する高周波成分の影響を低減することができる。 よってフィルタ処理が行われない場合に比して、車両の前後加速度の積算値を正確に演算することができ、これにより前後加速度センサが異常であるか否かの判定を正確に行うことができる。

    また上記構成に於いて、車両の走行制御は車輪速度に基づく車速が走行制御開始車速基準値以上であるときに実行され、走行制御開始車速基準値は判定開始車速基準値よりも高くてよい。

    この構成によれば、車両の走行制御が開始される前に前後加速度センサが異常であるか否かの判定を行うことができる。 よって前後加速度センサに異常が生じても、異常な前後加速度センサにより検出された前後加速度が車両の走行制御に使用されることを防止し、これにより車両の走行制御が不適切に実行されることを防止することができる。

    また上記構成に於いて、積算値の演算及び前後加速度センサの異常判定は車輪速度に基づく車速が走行制御開始車速基準値よりも低い判定終了車速基準値以上になると終了されるようになっていてよい。

    この構成によれば、車輪速度に基づく車速が走行制御開始車速基準値よりも低い判定終了車速基準値以上になると、積算値の演算及び前後加速度センサの異常判定は終了される。 よって車両の走行制御が開始される前に積算値の演算及び前後加速度センサの異常判定を終了させることができる。 従って車両の走行制御が開始された後も積算値の演算及び前後加速度センサの異常判定が継続される場合に比して異常判定装置の負荷を低減することができる。

    また上記構成に於いて、車両は四輪駆動車であり、車輪速度に基づく車速は、四輪の車輪速度の平均値、四輪の車輪速度のうちの最大値を除く三つの車輪速度の平均値、及び四輪の車輪速度のうちの最大値及び最小値を除く二つの車輪速度の平均値の何れかであってよい。

    この構成によれば、車輪速度に基づく車速は複数の車輪速度に基づく値である。 よって例えば車輪速度に基づく車速が何れか一つの車輪速度に基づく値である場合に比して、車輪速度に基づく車速を正確な値にすることができ、これにより前後加速度センサが異常であるか否かの判定を正確に行うことができる。

    また本発明によれば、駆動輪の駆動力を制御することにより車両の走行制御を行い、車輪速度及び車両の前後加速度に基づいて駆動輪がスリップ状態にあると判定されるときには車両の走行制御を中止する車両の走行制御装置であって、上記の何れかの前後加速度センサの異常判定装置を有し、車両は四輪駆動車であり、異常判定装置により前後加速度センサが異常であると判定されているときには、駆動輪がスリップ状態にあるか否かに関係なく車両の走行制御を中止することを特徴とする車両の走行制御装置が提供される。

    また本発明によれば、駆動輪の駆動力を制御することにより車両の走行制御を行い、車輪速度及び車両の前後加速度に基づいて駆動輪がスリップ状態にあると判定されるときには車両の走行制御を中止する車両の走行制御方法であって、上記の何れかの前後加速度センサの異常判定装置を有し、車両は四輪駆動車であり、異常判定装置により前後加速度センサが異常であると判定されているときには、駆動輪がスリップ状態にあるか否かに関係なく車両の走行制御を中止することを特徴とする車両の走行制御方法が提供される。

    これらの構成によれば、前後加速度センサが異常であり、車輪速度及び車両の前後加速度に基づいて駆動輪がスリップ状態にあるか否かを正確に判定することができないときには、車両の走行制御を中止させることができる。 よって前後加速度センサが異常であると判定されている状況に於いて、車両の走行制御が不適切に実行されることを防止することができる。

    また上記構成に於いて、車両は四輪駆動状態と二輪駆動状態とに切り替わる四輪駆動車であり、車両が二輪駆動状態にあるときには、前後加速度センサの異常判定は行われないようになっていてよい。

    車両が二輪駆動状態にあるときには、車両の前後加速度を要することなく非駆動輪の車輪速度及び駆動輪の車輪速度に基づいて駆動輪がスリップ状態にあるか否かを判定することができるので、前後加速度センサの異常判定が行われる必要がない。 上記構成によれば、車両が二輪駆動状態にあるときには、前後加速度を検出する前後加速度センサの異常判定は行われないので、前後加速度センサの異常判定が不必要に行われることを防止することができる。

    また上記構成に於いて、車両が二輪駆動状態にあるときには、非駆動輪の車輪速度及び駆動輪の車輪速度に基づいて駆動輪がスリップ状態にあるか否かが判定されるようになっていてよい。

    この構成によれば、車両が二輪駆動状態にあるときには、非駆動輪の車輪速度は車体速度に対応しているので、非駆動輪の車輪速度及び駆動輪の車輪速度に基づいて駆動輪がスリップ状態にあるか否かを判定することができる。

    また上記構成に於いて、車両の走行制御は車両の加減速に伴うばね上の共振振動を抑制するばね上制振制御であってよい。

    この構成によれば、前後加速度センサが異常であり、車輪速度及び車両の前後加速度に基づいて駆動輪がスリップ状態にあるか否かを正確に判定することができないときには、ばね上制振制御を中止させることができる。 よって前後加速度センサが異常であると判定されている状況に於いて、ばね上制振制御が不適切に実行されることを防止することができる。

    また上記構成に於いて、車輪速度に基づく車速が0であり且つ検出された車両の前後加速度の増加変化率が増加変化率基準値以下である状態が、演算開始基準時間以上経過したときに、積算値の演算が開始されるようになっていてよい。

    また上記構成に於いて、前後加速度センサの異常判定は車輪速度に基づく車速が判定開始車速基準値以上であるときに行われるようになっていてよい。

    また上記構成に於いて、前後加速度センサの異常判定は積算値が増大し始めた時点よりの経過時間が判定開始基準時間以上であるときに行われるようになっていてよい。

    また上記構成に於いて、積算値が増大し始めた時点より車輪速度が検出可能な車輪速度の最小値以上になるまでに要する時間を最低待機時間として、判定開始基準時間は最低待機時間以上の値に設定されてよい。

    本発明による前後加速度センサの異常判定装置の第一の実施形態が適用された四輪駆動車の走行制御装置を示す概略構成図である。

    車両の走行制御としてばね上制振制御を行うばね上制振コントローラを示すブロック図である。

    第一の実施形態に於ける前後加速度センサの異常判定のルーチンを示すフローチャートである。

    本発明による前後加速度センサの異常判定装置の第二の実施形態に於ける前後加速度センサの異常判定のルーチンを示すフローチャートである。

    第一の実施形態の修正例として構成された本発明による前後加速度センサの異常判定装置の第三の実施形態に於ける前後加速度センサの異常判定のルーチンを示すフローチャートである。

    第二の実施形態の修正例として構成された本発明による前後加速度センサの異常判定装置の第四の実施形態に於ける前後加速度センサの異常判定のルーチンを示すフローチャートである。

    車両が四輪駆動状態にて走行を開始する際に於ける車輪速度Viに基づく車速Vw、実際の車速Va、車両の前後加速度Gx、前後加速度Gxの積算値Vxの変化の一例を示すグラフである。

    車両が四輪駆動状態にて走行を開始する際に於ける車輪速度Viに基づく車速Vw、実際の車速Va、車両の前後加速度Gx、前後加速度Gxの積算値Vxの変化の他の例を示すグラフである。

    以下に添付の図を参照しつつ、本発明を好ましい幾つかの実施形態について詳細に説明する。
    第一の実施形態

    図1は本発明による前後加速度センサの異常判定装置の第一の実施形態が適用された四輪駆動車の走行制御装置を示す概略構成図である。

    図1に於いて、100は車両102に搭載された走行制御装置を全体的に示している。 また10はエンジンを示しており、エンジン10の駆動力はトルクコンバータ12及びトランスミッション14を介して出力軸16へ伝達される。 出力軸16の駆動力は駆動状態を切替えるトランスファー18により前輪用駆動軸20若しくは後輪用駆動軸22へ伝達される。 エンジン10の出力は運転者により操作されるアクセルペダル23の踏み込み量等に応じてエンジン制御装置24により制御される。

    またトランスファー18は駆動状態を四輪駆動(4WD)状態と二輪駆動(2WD)状態とに切替えるアクチュエータを含んでいる。 このアクチュエータは運転者により操作される選択スイッチ(SW)26に応答して4WD制御装置28により制御される。 選択スイッチ26はH4位置、H2位置、N位置、L4位置に切替えられるようになっている。

    選択スイッチ26がH4位置にあるときには、トランスファー18は出力軸16の駆動力を前輪用駆動軸20及び後輪用駆動軸22へ伝達する4WD位置に設定される。 これに対し選択スイッチ26がH2位置にあるときには、トランスファー18は出力軸16の駆動力を後輪用駆動軸22のみへ伝達する2WD位置に設定される。 選択スイッチ26がN位置にあるときには、トランスファー18は出力軸16の駆動力を前輪用駆動軸20及び後輪用駆動軸22の何れにも伝達しない位置に設定される。 更に選択スイッチ26がL4位置にあるときには、トランスファー18はH4位置の場合よりも低車速高トルク用の駆動力として出力軸16の駆動力を前輪用駆動軸20及び後輪用駆動軸22へ伝達する4WD位置に設定される。

    図1に示されている如く、4WD制御装置28は選択スイッチ26より入力される指令信号に基づきトランスファー18に対する4WD制御装置28の指令位置が2WD位置及び4WD位置の何れであるかを示す信号をエンジン制御装置24へ出力する。 エンジン制御装置24は4WD制御装置28の指令位置に応じてエンジン10の出力を制御する。

    前輪用駆動軸20の駆動力は前輪ディファレンシャル30により左前輪車軸32L及び右前輪車軸32Rへ伝達され、これにより左右の前輪34FL及び34FRが回転駆動される。 同様に後輪用駆動軸22の駆動力は後輪ディファレンシャル36により左後輪車軸38L及び右後輪車軸38Rへ伝達され、これにより左右の後輪40RL及び40RRが回転駆動される。

    左右の前輪34FL、34FR及び左右の後輪40RL、40RRの制動力は制動装置42の油圧回路44により対応するホイールシリンダ46FL、46FR、46RL、46RRの制動圧が制御されることによって制御される。 図には示されていないが、油圧回路44はリザーバ、オイルポンプ、種々の弁装置等を含んでいる。 各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル47の踏み込み操作に応じて駆動されるマスタシリンダ48により制御され、また必要に応じて後に詳細に説明する如く走行制御用電子制御装置50により制御される。

    電子制御装置50には車輪速度センサ52FL、52FR、52RL、52RRより左右前輪及び左右後輪の車輪速度Vi(i=fl、fr、rl、rr)を示す信号が入力される。 また電子制御装置50には前後加速度センサ54より車両の前後加速度Gxを示す信号が入力され、選択スイッチ26よりトランスファー18が何れの位置にあるかを示す信号が入力される。 尚前後加速度センサ54は車両の加速方向を正として車両の前後加速度Gxを検出する。 更に電子制御装置50には圧力センサ56よりマスタシリンダ48内の圧力であるマスタシリンダ圧力Pmを示す信号が入力される。

    またエンジン制御装置24にはアクセルペダル23に設けられたアクセル開度センサ58よりアクセル開度Accを示す信号が入力される。 尚エンジン制御装置24、4WD制御装置28、電子制御装置50は実際には例えばCPU、ROM、RAM、入出力装置を含む一つのマイクロコンピュータ及び駆動回路にて構成されていてよい。

    後に詳細に説明する如く、電子制御装置50は車速Vが制御実行基準値Vdcs(正の定数)以上であるときに、車両の走行制御として車両の加減速に伴うばね上の共振振動を抑制するばね上制振制御を行う。 ばね上制振制御は電子制御装置50によって図2に示されたばね上制振コントローラ56の制御が達成されることにより行われる。

    図2に示されている如く、ばね上制振コントローラ56は補正量演算ブロック58と四輪駆動時スリップ判定ブロック60と二輪駆動時スリップ判定ブロック62と異常判定ブロック64と制御停止判定ブロック66とを有している。 ばね上制振コントローラ56は車両の加減速に伴うばね上の共振振動を抑制するためのエンジン10の目標トルク補正量ΔTeを演算し、目標トルク補正量ΔTeを示す信号をエンジン制御装置24へ出力する。

    補正量演算ブロック58は車輪速度Viに基づいて車速Vを演算する。 そして補正量演算ブロック58は車速Vが制御実行基準値Vdcs以上であるときには、アクセル開度Accや車輪速度Viに基づいて目標トルク補正量ΔTeを演算し、目標トルク補正量ΔTeを示す信号を制御停止判定ブロック66へ出力する。

    尚目標トルク補正量ΔTeの演算は本発明の要旨をなすものではなく、例えば本願出願人の出願にかかる特開2010−106817号公報に記載されている如き要領にて行われてよい。 即ちアクセル開度Accに基づいてフィードフォワード補正量ΔTeffが演算され、車輪速度Viに基づいてフィードバック補正量ΔTefbが演算され、補正量ΔTeff及びΔTefbに基づいて目標トルク補正量ΔTeが演算されてよい。

    エンジン制御装置24はアクセル開度Acc等に基づいてエンジン10の目標トルクTetを演算する。 そしてエンジン制御装置24は目標トルク補正量ΔTeを示す信号を受信していないときには、目標トルクTetに基づいてエンジン10の出力トルクを制御する。 またエンジン制御装置24は目標トルク補正量ΔTeを示す信号を受信しているときには、エンジン10の目標トルクTetを目標トルク補正量ΔTeにて補正した補正後の目標トルクTetaに基づいてエンジン10の出力トルクを制御する。

    車両が非制動の四輪駆動状態にあるときには、車両が四輪駆動状態にあることを示す信号が4WD制御装置28より四輪駆動時スリップ判定ブロック60へ入力される。 スリップ判定ブロック60は四輪の車輪速度Vi及び車両の前後加速度Gxに基づいて推定車体速度Vbを演算する。 そしてスリップ判定ブロック60は車輪速度Vi及び推定車体速度Vbに基づいて何れかの駆動輪に駆動スリップが生じているか否かを判定し、その判定結果を示す信号を制御停止判定ブロック66へ出力する。

    尚非制動の四輪駆動時の駆動スリップの判定は本発明の要旨をなすものではなく、例えば本願出願人の出願にかかる特開2011−37338号公報に記載されている如き要領にて行われてよい。 即ち四輪の車輪速度Viのうち最も低いVminに基づいて第一の推定車体速度Vb1が求められる。 また直前の推定車体速度をVbfとし、推定時間間隔をΔtとして、Vbf+Gx*Δtにより第二の推定車体速度Vb2が求められる。 そして第一の推定車体速度Vb1及び第二の推定車体速度Vb2に基づいて推定車体速度Vbが求められる。

    また車両が非制動状態にあるか否かの判定は例えばマスタシリンダ圧力Pmに基づいて制動力が車輪に付与されているか否かの判定により行われてよい。 また駆動状態が四輪駆動状態であっても、車両が制動状態にあるときには、スリップ判定ブロック60は駆動スリップが生じているか否かの判定を行わない。

    これに対し車両が非制動の二輪駆動状態にあるときには、車両が二輪駆動状態にあることを示す信号が4WD制御装置28より二輪駆動時スリップ判定ブロック62へ入力される。 スリップ判定ブロック62は従動輪の車輪速度Viに基づいて推定車体速度Vbを演算し、駆動輪の車輪速度Vi及び推定車体速度Vbに基づいて各駆動輪の駆動スリップ量又は駆動スリップ率を演算する。 そしてスリップ判定ブロック62は駆動スリップ量又は駆動スリップ率が基準値以上であるか否かの判定により、何れかの駆動輪に駆動スリップが生じているか否かを判定し、その判定結果を示す信号を制御停止判定ブロック66へ出力する。

    前後加速度センサの異常判定ブロック64は、後に詳細に説明する如く図3に示された前後加速度センサの異常判定ルーチンに従って、車輪速度Vi及び車両の前後加速度Gxに基づいて前後加速度センサ54が異常であるか否かを判定する。

    下記の(a1)〜(a3)の何れも行われていないときには、制御停止判定ブロック66は目標トルク補正量ΔTeを示す信号がエンジン制御装置24へ出力されることを許可する。 これに対し下記の(a1)〜(a3)の何れかが行われているときには、制御停止判定ブロック66は目標トルク補正量ΔTeを示す信号がエンジン制御装置24へ出力されることを阻止することにより、ばね上制振制御を停止する。
    (a1)四輪駆動状態に於いてスリップ判定ブロック60により何れかの車輪に駆動スリップが発生していると判定されている。
    (a2)二輪駆動状態に於いてスリップ判定ブロック62により何れかの駆動輪に駆動スリップが発生していると判定されている。
    (a3)四輪駆動状態に於いて異常判定ブロック64により前後加速度センサ54が異常であると判定されている。

    次に図3に示されたフローチャートを参照して第一の実施形態に於ける前後加速度センサの異常判定のルーチンについて説明する。 尚図3に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。 このことは後述の他の実施形態についても同様である。

    まずステップ10に於いてはフラグFが1であるか否かの判別、即ち車両の前後加速度Gxの積算値Vxの演算開始条件が成立していると既に判定されたか否かの判別が行われる。 そして肯定判別が行われたときには制御はステップ40へ進み、否定判別が行われたときには制御はステップ20へ進む。

    ステップ20に於いては車両の前後加速度Gxの積算値Vxの演算開始条件が成立しているか否かの判別が行われる。 そして否定判別が行われたときには制御はステップ10へ戻り、肯定判別が行われたときにはステップ30に於いてフラグFが1にセットされた後制御はステップ60へ進む。

    この場合下記の(b1)及び(b2)が成立しているときに積算値Vxの演算開始条件が成立していると判定されてよい。 尚下記の(b2)に於いて「全ての車輪速度Viが0であること」は条件項目より除外されてもよい。
    (b1)車両が制動状態にない。
    (b2)全ての車輪速度Viが0であり且つ前後加速度Gxの増加変化率Rgxが増加変化率基準値Rgx0(正の定数)以下である状況が演算開始基準時間Tgcs(正の定数)以上経過している。

    ステップ40に於いては車両が加速状態にあるときには四輪の車輪速度Viのうちの最小値Vminが車速Vに設定され、車両がエンジンブレーキによる減速状態にあるときには四輪の車輪速度Viのうちの最大値Vmaxが車速Vに設定される。

    ステップ50に於いては車両の前後加速度Gxの積算値Vxの演算及び前後加速度センサ54の異常判定の終了条件が成立しているか否かの判別が行われる。 そして肯定判別が行われたときには制御はステップ70へ進み、否定判別が行われたときにはステップ60へ進む。

    この場合下記の(c1)及び(c2)の何れかが成立しているときに終了条件が成立していると判定されてよい。
    (c1)車両が制動状態にある。
    (c2)車速Vが終了基準値Ve(ばね上制振制御の実行基準値Vdcsよりも低い正の定数)以上である。

    ステップ60に於いては4WD制御装置28より入力される駆動状態を示す信号に基づき車両が四輪駆動状態にあるか否かの判別が行われる。 そして肯定判別が行われたときには制御はステップ80へ進む。 これに対し否定判別が行われたときにはステップ70に於いてフラグFが0にリセットされると共に、前後加速度Gxの積算値Vxの演算及び前後加速度センサ54の異常判定が終了される。

    ステップ80に於いては車両の前後加速度Gxに対しバンドパスフィルタ処理が行われると共に、バンドパスフィルタ処理後の車両の前後加速度Gxの積算値Vxが前後加速度Gxに基づく車速として演算される。 この場合バンドパスフィルタ処理の通過帯域は、温度ドリフトや路面勾配に起因する低周波成分及びノイズに起因する高周波成分を除去するが、車両の加減速に伴う周波数帯域の前後加速度を通過させる帯域に設定される。

    ステップ90に於いては四輪の車輪速度Viのうち最大値Vmax及び最小値Vminを除く高い方の車輪速度Vmedh及び低い方の車輪速度Vmedlの平均値が車輪速度Viに基づく車速Vwとして演算される。

    ステップ100に於いては車速Vwが前後加速度センサの異常判定の開始基準値Vws(正の定数)以上であるか否かの判別が行われる。 そして肯定判別が行われたときには制御はステップ150へ進み、否定判別が行われたときには図3に示されたフローチャートによる制御が一旦終了される。 尚異常判定の開始基準値Vwsは車輪速度センサ52FL〜52RRによる車輪速度の検出が可能な車輪速度に対応する車速Vw0以上の値、好ましくは車速Vw0よりも高い値である。

    ステップ150に於いては前後加速度Gxの積算値Vxと車輪速度Viに基づく車速Vwとの偏差の絶対値が異常判定基準値ΔVs(正の定数)以上であるか否かの判別が行われる。 そして否定判別が行われたときにはステップ160に於いて前後加速度センサ54が正常であると判定され、肯定判別が行われたときにはステップ170に於いて前後加速度センサ54が異常であると判定される。

    以上の説明より解る如く、車両の前後加速度Gxの積算値Vxの演算開始条件(b1)及び(b2)が成立すると、ステップ20に於いて肯定判別が行われる。 そして終了条件(c1)又は(c2)が成立しステップ50に於いて肯定判別が行われるまで、駆動状態が四輪駆動状態である限りステップ80以降のステップが実行される。

    車速Vwが前後加速度センサの異常判定の開始基準値Vws以上になると、ステップ100に於いて肯定判別が行われ、ステップ150〜170により前後加速度センサ54が異常であるか否かが判定される。 即ち前後加速度Gxの積算値Vxと車輪速度Viに基づく車速Vwとの偏差の絶対値が異常判定基準値ΔVs以上であるか否かの判別により前後加速度センサ54が異常であるか否かが判定される。

    図7は車両が四輪駆動状態にて走行を開始する際に於ける車輪速度Viに基づく車速Vw(実線)、実際の車速Va(一点鎖線)、車両の前後加速度Gx(破線)、前後加速度Gxの積算値Vx(二点鎖線)の変化の一例を示すグラフである。

    図7に示されている如く、時点t0に於いてイグニッションスイッチが閉成され、図3に示されたフローチャートによる制御が開始されたとする。 また時点t1に於いて全ての車輪速度Viが0であり且つ前後加速度Gxの増加変化率Rgxが増加変化率基準値Rgx0以下である状況が演算開始基準時間Tgcs以上経過し、ステップ20及び60に於いて肯定判別が行われたとする。

    この場合時点t1に於いてステップ80に於ける車両の前後加速度Gxの積算値Vxの演算及びステップ90に於ける車輪速度Viに基づく車速Vwの演算が開始される。 時点t2に於いて車両が動き始めたとすると、実際の車速Va及び車両の前後加速度Gxは時点t2に於いて上昇し始め、前後加速度Gxの積算値Vxは時点t2よりも僅かに遅れた時点に於いて上昇し始める。

    しかし車輪速度センサ52FL〜52RRは実際の車輪速度が非常に低い値であるときには車輪速度を検出することができないため、実際の車輪速度が非常に低い値であるときには車輪速度Viに基づく車速Vwは0になる。 時点t3に於いて実際の車輪速度が車輪速度センサ52FL〜52RRによる車輪速度の検出が可能な値になったとすると、時点t3に於いて車輪速度Viに基づく車速Vwは0より瞬間的にVw0に増大する。 車輪速度Viに基づく車速Vwはその後も上昇し、時点t4に於いて前後加速度センサの異常判定の開始基準値Vws以上になり、時点t5に於いて終了基準値Ve以上になったとする。

    時点t4以前は車両の前後加速度Gxの積算値Vx及び車輪速度Viに基づく車速Vwは演算されるが、前後加速度センサの異常判定は行われない。 前後加速度センサの異常判定は時点t4に於いて開始され、時点t5に於いて終了される。 尚時点t6に於いて車速Vwが制御実行基準値Vdcs以上になるとすると、この時点に於いてばね上制振制御が開始される。

    かくして第一の実施形態によれば、全ての車輪速度Viが0であり且つ前後加速度Gxの増加変化率Rgxが増加変化率基準値Rgx0以下である状況が演算開始基準時間Tgcs以上経過したときに、前後加速度Gxの積算値Vxの演算が開始される。 従って前後加速度センサ54の作動が開始された直後の検出が安定していない状況に於いて検出された値の影響を排除することができる。

    また車輪速度センサ52FL〜52RRによる車輪速度の検出が可能になる時点t3に於いて前後加速度Gxの積算値Vxの演算が開始されると、車両の前後加速度Gxが上昇し始める時点t2より時点t3までの前後加速度Gxが積算されない。 よって前後加速度Gxの積算値Vxが適正に演算されないことに起因して、ステップ150による前後加速度センサ54の異常判定が不適切に行われる場合がある。

    第一の実施形態によれば、全ての車輪速度Viが0である時点t1に於いて前後加速度Gxの積算値Vxの演算が開始されるので、前後加速度Gxが上昇し始める時点t2より時点t3までの前後加速度Gxが確実に積算される。 よって前後加速度Gxの積算値Vxが適正に演算されないことに起因して、ステップ150による前後加速度センサ54の異常判定が不適切に行われることを防止することができる。 尚この作用効果は後述の他の実施形態に於いても同様に得られる。

    また第一の実施形態によれば、車速Vwが前後加速度センサの異常判定の開始基準値Vws(Vw0以上の値である)以上であるときにステップ150〜170により前後加速度センサ54が異常であるか否かの判定が行われる。 よって実際の車輪速度が非常に低く、車輪速度センサ52FL〜52RRによる車輪速度の検出が不可能な状況に於いて、前後加速度センサ54が異常であるか否かの判定が行われることを防止することができる。 換言すれば、車輪速度センサ52FL〜52RRが車輪速度を検出することができないことに起因して前後加速度センサ54が正常であるにも拘らず異常であると判定されることを防止することができる。

    また第一の実施形態によれば、車速Vwが異常判定の開始基準値Vws未満であるときには前後加速度センサの異常判定自体が行われない。 従って後述の第三の実施形態の場合に比して、ステップ150の実行回数、即ち前後加速度センサの異常判定ステップの実行回数を少なくすることができる。

    尚ステップ100の判別、即ち車速Vwが異常判定の開始基準値Vws以上であるか否かの判別がステップ80に先立って行われ、肯定判別が行われたときに制御がステップ80へ進むよう修正されてもよい。

    またステップ100の判別がステップ150に先立って行われるのではなく、ステップ170に先立って行われるよう修正されてもよい。 その場合にはステップ100の判別が肯定判別であるときには制御はステップ170へ進み、判別が否定判別であるときには制御はステップ160へ進む。
    第二の実施形態

    図4は本発明による前後加速度センサの異常判定装置の第二の実施形態に於ける前後加速度センサの異常判定のルーチンを示すフローチャートである。 尚図4に於いて、図3に示されたステップと同一のステップには図3に於いて付されたステップ番号と同一のステップ番号が付されている。 このことは後述の図5及び図6についても同様である。

    この第二の実施形態に於いては、ステップ100は実行されず、ステップ90が完了すると、制御はステップ110へ進む。

    ステップ110に於いては前後加速度Gxの積算値Vxが増大し始めた時点よりの経過時間Tcが判定開始基準値Tcs(正の値)以上であるか否かの判別が行われる。 そして肯定判別が行われたときにはステップ150へ進み、否定判別が行われたときには図4に示されたフローチャートによる制御が一旦終了される。 そしてステップ150〜170が第一の実施形態の場合と同様に実行される。

    尚図7と図8との比較より解る如く、車速の上昇率が高いときには車速の上昇率が低いときに比して、前後加速度Gxの積算値Vxが増大し始めてから車輪速度センサによる車輪速度の検出が可能になるまでの時間が短くなる。 即ち時点t2と時点t3との間隔は前後加速度Gxの大きさが大きいほど小さくなる。

    よって判定開始基準値Tcsは前後加速度Gxの大きさが大きいほど、換言すれば前後加速度Gxの積算値Vxの増大変化率が大きいほど小さくなるよう、前後加速度Gxの大きさ又は積算値Vxの増大変化率に応じて可変設定される。 また図8に示されている如く、前後加速度Gxの積算値Vxが増大し始めた時点よりの経過時間Tcが判定開始基準値Tcsになる時点を時点t4′として、判定開始基準値Tcsは時点t4′が時点t3よりも後になるよう設定される。

    従ってこの第二の実施形態によれば、前後加速度Gxの積算値Vxが増大し始めた時点よりの経過時間Tcが判定開始基準値Tcs以上である状況に於いて前後加速度センサ54が異常であるか否かの判定が行われる。 よって第一の実施形態と同様に、実際の車輪速度が非常に低く、車輪速度センサが車輪速度を検出することができないことに起因して前後加速度センサ54が正常であるにも拘らず異常であると判定されることを防止することができる。

    また第二の実施形態によれば、前後加速度Gxの積算値Vxが増大し始めた時点よりの経過時間Tcが判定開始基準値Tcs未満であるときには前後加速度センサの異常判定自体が行われない。 従って後述の第四の実施形態の場合に比して、ステップ150の実行回数、即ち前後加速度センサの異常判定ステップの実行回数を少なくすることができる。

    尚ステップ110の判別、即ち経過時間Tcが判定開始基準値Tcs以上であるか否かの判別がステップ80に先立って行われ、肯定判別が行われたときに制御がステップ80へ進むよう修正されてもよい。

    またステップ110の判別がステップ150に先立って行われるのではなく、ステップ170に先立って行われるよう修正されてもよい。 その場合にはステップ110の判別が肯定判別であるときには制御はステップ170へ進み、判別が否定判別であるときには制御はステップ160へ進む。
    第三の実施形態

    図5は第一の実施形態の修正例として構成された本発明による前後加速度センサの異常判定装置の第三の実施形態に於ける前後加速度センサの異常判定のルーチンを示すフローチャートである。

    この第三の実施形態に於いては、ステップ100に於いて肯定判別が行われたときにはステップ120に於いてステップ150に於ける異常判定基準値ΔVsが標準値ΔVsn(正の定数)に設定される。 これに対しステップ100に於いて否定判別が行われたときにはステップ130に於いて異常判定基準値ΔVsが標準値ΔVsnよりも大きく前後加速度センサ54が異常であると判定されることを阻止する値ΔVsi(正の定数)に設定される。 そしてステップ150〜170が第一の実施形態の場合と同様に実行される。

    従って第三の実施形態によれば、車速Vwが異常判定の開始基準値Vws未満であっても前後加速度センサ54が異常であるか否かの判定自体は行われるが、前後加速度センサが異常であると判定されることが阻止される。 よって第一及び第二の実施形態と同様に実際の車輪速度が非常に低く、車輪速度センサが車輪速度を検出することができないことに起因して前後加速度センサ54が正常であるにも拘らず異常であると判定されることを防止することができる。

    尚ステップ100、120、130はステップ150に先立って実行されればよいので、ステップ100、120、130がステップ80又は90に先立って行われるよう修正されてもよい。
    第四の実施形態

    図6は第二の実施形態の修正例として構成された本発明による前後加速度センサの異常判定装置の第四の実施形態に於ける前後加速度センサの異常判定のルーチンを示すフローチャートである。

    この第四の実施形態に於いては、ステップ90が完了すると、制御はステップ110へ進む。 ステップ110に於いて肯定判別が行われたときには制御はステップ120へ進み、否定判別が行われたときには制御はステップ130へ進む。 そしてステップ150〜170が第一の実施形態の場合と同様に実行される。

    従って第四の実施形態によれば、経過時間Tcが判定開始基準値Tcs未満であっても前後加速度センサ54が異常であるか否かの判定自体は行われるが、前後加速度センサが異常であると判定されることが阻止される。 よって第一乃至第三の実施形態と同様に実際の車輪速度が非常に低く、車輪速度センサが車輪速度を検出することができないことに起因して前後加速度センサ54が正常であるにも拘らず異常であると判定されることを防止することができる。

    尚ステップ110〜130はステップ150に先立って実行されればよいので、ステップ110〜130がステップ80又は90に先立って行われるよう修正されてもよい。

    また上述の各実施形態によれば、ステップ80に於いて車両の前後加速度Gxに対しバンドパスフィルタ処理が行われ、バンドパスフィルタ処理後の車両の前後加速度Gxの積算値Vxが前後加速度Gxに基づく車速として演算される。 従って前後加速度Gxに対しバンドパスフィルタ処理が行われない場合に比して、温度ドリフトや路面勾配に起因する低周波成分及びノイズに起因する高周波成分の影響を低減し、前後加速度Gxの積算値Vxを正確に演算することができる。

    また上述の各実施形態によれば、車速Vが終了基準値Ve以上であるときには前後加速度Gxの積算値Vxの演算及び前後加速度センサ54の異常判定が終了される。 そして終了基準値Veはばね上制振制御の実行基準値Vdcsよりも低い値である。 よってばね上制振制御が開始される前に前後加速度センサ54が異常であるか否かを判定することができるので、前後加速度センサ54が異常であるる状況にてばね上制振制御が開始されることを防止することができる。

    またばね上制振制御が開始される前に前後加速度Gxの積算値Vxの演算及び前後加速度センサ54の異常判定を終了させることができる。 従ってばね上制振制御が開始された後にも前後加速度センサ54が異常であるか否かの判定が継続される場合に比して、電子制御装置50等の負荷を軽減することができる。

    また上述の各実施形態によれば、異常判定ブロック64により前後加速度センサ54が異常であると判定されているときには、制御停止判定ブロック66により目標トルク補正量ΔTeを示す信号の出力が阻止される。 よって後加速度センサ54が異常であるときには、駆動輪が駆動スリップ状態にあるか否かに関係なく、ばね上制振制御が中止される。 従って前後加速度センサ54が異常であることにより駆動輪が駆動スリップ状態にあるか否かを正確に判定することができない状況に於いて、ばね上制振制御が実行されることを防止することができる。

    また上述の各実施形態によれば、車両が二輪駆動状態にあるときには、ステップ60に於いて肯定判別が行われることによりステップ70に於いて前後加速度Gxの積算値Vxの演算及び前後加速度センサ54の異常判定が終了される。 従って車両が二輪駆動状態にあり、駆動輪が駆動スリップ状態にあるか否かの判定に前後加速度Gxの情報を必要としない状況に於いて、前後加速度センサ54の異常判定が不必要に実行されることを確実に防止することができる。

    また上述の各実施形態によれば、車両が二輪駆動状態にあるときには、スリップ判定ブロック60ではなく、スリップ判定ブロック62により何れかの駆動輪に駆動スリップが発生しているか否かが判定される。 即ち従動輪の車輪速度Viに基づいて演算される推定車体速度Vb及び駆動輪の車輪速度Viに基づいて、何れかの駆動輪に駆動スリップが生じているか否かが判定される。 そしてスリップ判定ブロック62により駆動スリップが発生していると判定されているときには、制御停止判定ブロック66により目標トルク補正量ΔTeを示す信号の出力が阻止される。 よって車両が二輪駆動状態にある状況に於いて、何れかの駆動輪に駆動スリップが発生していることに起因してばね上制振制御が不適切に実行されることを防止することができる。

    更に上述の各実施形態によれば、車両が四輪駆動状態にあるときの車輪速度Viに基づく車速Vwは、四輪の車輪速度Viのうち最大値Vmax及び最小値Vminを除く車輪速度Vmedh及びVmedlの平均値として演算される。 よって車速Vwが四輪の車輪速度Viの平均値として演算される場合に比して、例えば路面の突起や段差等に起因して特異な値になった車輪速度の影響を低減して車速Vwを正確に演算することができる。

    以上に於いては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。

    例えば上述の各実施形態に於いては、車両の駆動モードは運転者により操作される選択スイッチ(SW)26に応答して4WD制御装置28により制御される。 しかし本発明の前後加速度センサの異常判定装置や走行制御装置が適用される車両は、例えば駆動モードが自動的に切替えられる車両であってもよく、また駆動モードが運転者により操作される切替えレバーにより切替えられる車両であってもよい。

    また上述の各実施形態に於いては、車両が四輪駆動状態にあるときの車輪速度Viに基づく車速Vwは、四輪の車輪速度Viのうち最大値Vmax及び最小値Vminを除く車輪速度Vmedh及びVmedlの平均値として演算される。 しかし車輪速度Viに基づく車速Vwは四輪の車輪速度Viの平均値又は四輪の車輪速度Viのうち最大値Vmaxを除く三つの車輪速度Viの平均値として演算されてもよい。

    また上述の各実施形態に於いては、ステップ50に於ける終了条件の成立判定の終了基準値Veはばね上制振制御の実行基準値Vdcsよりも低い正の定数である。 しかし終了基準値Veがばね上制振制御の実行基準値Vdcs以上の値に設定され、ばね上制振制御が開始さた後にも前後加速度センサの異常判定が継続されるよう修正されてもよい。

    また上述の各実施形態に於いては、車両の走行制御はばね上制振制御であるが、ばね上制振制御以外の走行制御であってもよい。 即ち本発明の異常判定装置は、検出値がばね上制振制御以外の走行制御に使用される前後加速度センサの異常判定に適用されてもよい。

    QQ群二维码
    意见反馈