Collision detection apparatus for a vehicle

申请号 JP25033196 申请日 1996-09-20 公开(公告)号 JP4166293B2 公开(公告)日 2008-10-15
申请人 三菱電機株式会社; 发明人 昭彦 今城; 孝志 古井; 芳昭 山崎; 行弘 沖本;
摘要
权利要求
  • 車両の衝突加速度を検出する加速度検出手段からの加速度に基づいて、車両の衝突を判定する車両の衝突検出装置であって、
    上記衝突加速度から推定速度を算出する速度演算手段と、
    上記推定速度から推定変位を算出する変位演算手段と、
    上記衝突加速度に基づいて衝突時に車両に発生する推定衝突力を算出する衝突力演算手段と、
    この推定衝突力に基づいて衝突判定を行う衝突判定手段とを備え、
    上記衝突力演算手段は、 上記車両を予め設定された上記車両に対応する定数により、質量、減衰器、ばねからなる1自由度モデルとしてモデル化し、かつ、上記衝突加速度に上記質量を乗じた値、上記推定速度に上記減衰器の減衰定数を乗じた値及び上記推定変位に上記ばねのばね定数を乗じた値とを加算器により加算させ 、衝突時に車両に発生する推定衝突力を算出し、
    上記衝突判定手段は、 上記推定衝突力を主軸とし、上記衝突加速度、上記推定速度または上記推定変位のうちいずれか一つを他軸とした平面上の軌跡が、予め設定した閾値を超えたかどうかで衝突判定を行うことを特徴とする車両の衝突検出装置。
  • 衝突判定手段は、搭乗者の車両に対する推定相対変位を演算し、この推定相対変位及び推定衝突力に基づいて衝突判定を行うことを特徴とする請求項1記載の車両の衝突検出装置。
  • 衝突加速度から推定速度を算出する一次遅れ要素形フィルタと、推定速度から推定変位を算出する一次遅れ要素形フィルタとを備えたことを特徴とする請求項1記載の車両の衝突検出装置。
  • 说明书全文

    【0001】
    【発明の属する技術分野】
    本発明は、車両の衝突時に短時間で、かつ信頼性高く、車両の衝突を検出する車両の衝突検出装置に関するものである。
    【0002】
    【従来の技術】
    従来より、車両の加速度の大きさから車両の衝突を検出する衝突検出装置を用いて、エアバッグ等の乗員保護装置を作動させることが行われているが、より迅速に且つ確実に車両の衝突を検出するために、例えば、特開平4―135947号公報に示されるような衝突検出装置が知られている。
    図25は、従来の車両用乗員保護装置の駆動回路を示すブロック図であり、図26(A)は衝突時の加速度センサの出の時間変化を示す線図であり、図27(B)は乗員の頭部の変位を示す線図である。
    【0003】
    図25において、69は車両の衝突等による加速度の変化を検出し、検出結果をアナログ信号a(t)として出力する加速度センサ、70は時定数T 1を有し、 加速度センサ1から出力されるアナログ信号a(t)を積分する第1不完全積分回路、71は第1不完全積分回路70と同一機能を有し、第1不完全積分回路70からの不完全積分出力v(t)を再度不完全積分する第2不完全積分回路である。 この第2不完全積分回路71の時定数T 2は第1不完全積分回路70の時定数T 1と同一である。
    【0004】
    72は加速度センサ69の検出出力に第1係数を付加する第1減衰器からなる第1係数回路、73は減衰率がKである第2減衰器からなる第2係数回路で、この第2係数回路73は第1不完全積分回路70の不完全積分出力v(t)に第2係数を付加する。 そして、上記第1係数回路72の減衰率は第2係数回路73の減衰率Kの2乗の1/2である。 なお、上記減衰率Kは後述のエアバッグの点火装置に点火電流が供給されてからエアバッグの膨張が完了するまでに必要な時間tdに等しい。
    【0005】
    74は加算回路で、この加算回路74は上記第2不完全積分回路71からの出力x(t)、第1係数回路72からの出力および第2係数回路73からの出力を加算する。 75は加算回路74からの加算出力が所定の閾値値を越えると、出力レベルを例えばハイレベルに切り替える比較回路、76は駆動回路、77は乗員保護装置本体である点火装置で、この点火装置76は駆動回路76の出力に基づいて例えばエアバッグを作動させる。
    【0006】
    次に、この従来装置の動作について説明する。
    まず、車両が一定速度V0で走行しているときに、例えば衝突により、図26(A)に示されるような車両の前後方向に作用する加速度a(t)が加速度センサ69によって検出されると、乗員の頭は一定速度v0で投げ出される一方で、そのときの加速度a(t)は乗員にも作用する。 それによって頭は車両に対してある相対速度、すなわちv(t)(a(t)の時間積分)で動き出す。
    【0007】
    一方、そのときの加速度センサ69の出力a(t)は第1不完全積分回路70で積分される。 また、頭は動き出すことによって衝突直前の位置を初期位置とした場合、その位置から時間経過に伴ってx(t)(v(t)の時間積分)だけ変位する。 この変位x(t)は第2不完全積分回路71によって第1不完全積分回路70の出力が積分され求められ、実時間における乗員の頭の変位予測量が算出される。
    【0008】
    次に、第1不完全積分回路70の出力v(t)は第2不完全積分回路71によってtdが重み付けされ、v(t)×td、すなわちtd時間の間に変位する量が求められる。 さらに、加速度センサ69の出力a(t)は第1係数回路72によって1/2(td×td)だけ重み付けされ、1/2(td×td)、すなわちtd時間の間に変位する量が求められる。 これらの出力は加算回路74によって加算され、x(t)+v(t)td+1/2a(t)×(td×td)が求められる。 すなわち、これは現時点からtd時間後における乗員の頭の位置の予測値x(t+td)が求められる。
    【0009】
    この予測位置は比較回路75に供給され、図26(B)においてエアバッグなどを作動させる位置を初期位置からxだけ離れた位置に設定すると、x(t)で示されるように実際に頭の位置がxに達する時刻t2よりもtdだけ速い時刻t1に作動するようにされている。
    【0010】
    以上のように、この従来例においては、乗員の頭部の変位を加速度信号から上述したような式にしたがって演算し、この演算された乗員の頭部の変位が所定量以上になると判定された際に、乗員保護装置を作動させるものである。
    【0011】
    【発明が解決しようとする課題】
    従来の車両用乗員保護装置は以上のように構成されているので、次のような問題点があった。
    (1)判定時間を短縮するために、変位信号x(t)に加速度と速度を係数回路で定数倍して加算した値より得られる変位予測信号x(t+td)=x(t)+v(t)td+1/2a(t)×(td×td)を演算しているが、この変位予測信号x(t+td)は、通常の判定より乗員の変位分だけ早めに衝突判定することを行っているものに過ぎず、また、この変位予測信号x(t+td)は正確に乗員の変位を示すものとは言えないので、乗員保護装置の動作の必要がない場合においても、早まって乗員保護装置を動作させてしまうことがあり、衝突判定の信頼性が低下していた。
    【0012】
    (2)正面衝突 、斜め衝突、柱などへの衝突、路肩への乗り上げ、大型車への潜り込みなど、さまざまな衝突形態に対して対応しておらず、衝突形態によっては、必要もないのに乗員保護装置を動作させてしまったり、衝突判定が遅れたりしてしまうことがあった。
    【0013】
    (3)衝突判定に用いるコンパレータでの閾値が時間変化に対して一定であり、さまざまな衝突形態に十分対応できず、衝突形態によっては、必要もないのに乗員保護装置を動作させてしまったり、衝突判定が遅れたりしてしまうことがあった。
    (4)前後方向の正面衝突よりさらに短い衝突判定時間を要求される側方方向からの衝突に対応するサイドエアバックの展開の際には、衝突判定が遅れたりしてしまうことがあった。
    【0014】
    本発明は、上記のような問題点を解消するためになされたもので、車両のさまざまな衝突形態に対応でき、より短時間で信頼性も高い衝突判定を行うことができる車両の衝突検出装置を得ることを目的とする。
    【0017】
    【課題を解決するための手段】
    この発明に係る車両の衝突検出装置は、車両の衝突加速度を検出する加速度検出手段からの加速度に基づいて、車両の衝突を判定する車両の衝突検出装置であって、衝突加速度から推定速度を算出する速度演算手段と、推定速度から推定変位を算出する変位演算手段と、衝突加速度に基づいて衝突時に車両に発生する推定衝突力を算出する衝突力演算手段と、この推定衝突力に基づいて衝突判定を行う衝突判定手段とを備え、衝突力演算手段は、 車両を予め設定された車両に対応する定数により、質量、減衰器、ばねからなる1自由度モデルとしてモデル化し、かつ、衝突加速度に質量を乗じた値、推定速度に減衰器の減衰定数を乗じた値及び推定変位にばねのばね定数を乗じた値とを加算器により加算させ 、衝突時に車両に発生する推定衝突力を算出し、衝突判定手段は、 推定衝突力を主軸とし、衝突加速度、推定速度または推定変位のうちいずれか一つを他軸とした平面上の軌跡が、予め設定した閾値を超えたかどうかで衝突判定を行うものである。
    【0019】
    また、衝突判定手段は、搭乗者の車両に対する推定相対変位を演算し、この推定相対変位及び推定衝突力に基づいて衝突判定を行うものである。
    【0020】
    また、衝突加速度から推定速度を算出する一次遅れ要素形フィルタと、推定速度から推定変位を算出する一次遅れ要素形フィルタとを設けたものである。
    【0024】
    【発明の実施の形態】
    以下、この発明の実施の一形態を説明する。
    実施の形態1.
    図1はこの発明の実施の形態1における車両の衝突検出装置を示すブロック図、図2は衝突検出装置内部の衝突力演算手段の原理を示す1自由度の質量−減衰器−ばねモデルを示す概念図、図3は衝突検出装置内部の衝突力演算手段の1自由度の質量−減衰器−ばねモデルに基づいた推定衝突力の演算手順を示すブロック図、図4は車両の衝突検出装置における1自由度の質量−減衰器−ばねモデルに衝突力fを加えたときに車両等価質量に生ずる加速度、速度、変位の時刻歴応答波形のシミュレーション結果を示す波形図である。
    【0025】
    図5は衝突検出装置における一次遅れ要素フィルタの周波数応答特性の一例を示す特性図、図6は衝突検出装置における推定衝突力の原理を示す推定速度、推定変位、衝突力のシミュレーション結果を示した波形図、図7は多次元空間衝突判定手段における弾性的衝突における衝突力と速度との関係を示す説明図、図8は多次元空間衝突判定手段における弾性的衝突での推定衝突力と推定速度との関係を示す説明図、図9は多次元空間衝突判定手段における弾性的衝突での推定衝突力と推定変位との関係を示す説明図、図10は多次元空間衝突判定手段における弾性的衝突での推定衝突力と加速度との関係を示す説明図である。
    【0026】
    図11は、多次元空間衝突判定の原理を示すために例示した車両のドア閉めと他車両側突とを示す説明図、図12は多次元空間衝突判定手段におけるドア閉め時に生じる推定衝突力と推定速度との関係を示す説明図、図13は多次元空間衝突判定手段における低速度の側突を想定したときに生じる推定衝突力と推定速度との関係を示す説明図、図14は多次元空間衝突判定手段における中速度の側突を想定したときに生じる推定衝突力と推定速度との関係を示す説明図、図15は多次元空間衝突判定手段における高速度の側突を想定したときに生じる推定衝突力と推定速度との関係を示す説明図、図16は多次元空間衝突判定手段において、衝突力を横軸に速度を縦軸に取った平面上での閾値の設定の一例を示す説明図である。
    【0027】
    図1において、1は車両の前後方向や、左右方向への加速度を検出する車両衝突加速度検出装置、2は車両衝突加速度装置1の出力信号である衝突加速度信号、5は衝突加速度信号2を推定速度信号に変換する一次遅れ要素形フィルタ、6は一次遅れ要素形フィルタ5により出力される推定速度信号、7は推定速度信号6を推定変位信号に変換する一次遅れ要素形フィルタ、8は一次遅れ要素形フィルタ7により出力される推定変位信号、13は衝突加速度信号2と速度推定信号6と変位推定信号8を入力にして車両の衝突力を演算する衝突力演算手段、14は衝突力演算手段13から出力される推定衝突力信号である。
    【0028】
    15は推定衝突力信号14および衝突加速度信号2と推定速度信号6と推定変位信号8からなる複数の信号を変数とした多次元空間上でこれらの軌跡を描き、この軌跡が予め多次元空間上に設定した閾値を越えたかどうか、すなわち、推定衝突力信号14および衝突加速度信号2と推定速度信号6と推定変位信号8により決定される多次元空間上での座標が、ON領域にあるのかOFF領域にあるのかを判定し、ON領域であれば乗員保護装置を作動させる衝突判定信号を出力し、OFF領域であれば衝突判定信号を出力しない多次元空間衝突判定手段である。
    【0029】
    16は一次遅れ要素形フィルタ5と一次遅れ要素形フィルタ7と衝突力演算手段13および多次元空間衝突判定手段15からなるコントローラ、17は多次元空間衝突判定手段15から出力される衝突判定信号であり、この衝突判定信号17が出力されることで、車両に設置されたエアバッグやシートベルトプリテンション装置などの車両の衝突時の衝撃から乗員を保護する乗員保護装置が作動する。
    【0030】
    次に、図2において、18は車両を1自由度でモデル化したときの車両等価質量、19は車両等価質量18に加わる車両等価減衰、20は車両等価質量18を支持する車両等価ばね、21は衝突の際に車両等価質量18に加わる衝突力(f)、22は車両等価質量18と車両等価減衰19と車両等価ばね20からなる1自由度モデルに衝突力(f)21が加わった際に車両等価質量18に生ずる車両等価変位(x1)である。
    【0031】
    次に、図3において、衝突力演算手段に上述した1自由度モデルを用いたときの衝突力演算手段13について説明する。 9は車両等価質量18の定数値を入力である衝突加速度信号2に乗算演算してその乗算結果を出力する質量係数乗算器、10は車両等価減衰19の定数値を入力である推定速度信号6に乗算演算してその乗算結果を出力する減衰係数乗算器、11は車両等価ばね20の定数値を入力である推定変位信号8に乗算演算してその乗算結果を出力するばね係数乗算器、12は上記の質量係数乗算器9と減衰係数乗算器10とばね係数乗算器11の出力値を加算する加算器、13は上記の質量係数乗算器9と減衰係数乗算器10とばね係数乗算器11と加算器12から構成される衝突力演算手段、14は加算器の演算結果として求まる推定衝突力信号である。
    【0032】
    次に動作について説明する。
    一般に、車両が障害物に衝突したり、車両に他の車両が衝突した際に、車両に衝突力が発生する。 この2物体の両者に発生する衝突力は、これら2物体の質量、速度、衝突面の形状、衝突面の弾性定数などによって異なる。 例えば、両者を構成する材料に塑性変形が生じない弾性衝突、すなわち、衝突速度が低い衝突およびハンマたたきやドア閉めなどのエアバッグを展開しない衝突であれば、発生する衝突力はほぼ正弦半波で近似できる波形となることがHertzの接触理論としてよく知られている。
    【0033】
    このときには、車体および搭乗者である人体に対し被害を与える度合いは、発生した衝突力の最大値Fmaxではなく、発生した衝突力f(t)の時間tに関する積分値、すなわち、力積F・t(=f(t)dtの時間積分)の大きさにより強く影響される。
    【0034】
    また、衝突する壁面が硬い場合、一般に衝突力の最大値Fmaxおよびこれに付随して発生する加速度の最大値amaxは大きくなる。 しかし、衝突する箇所が硬いが衝突速度が
    さい場合、衝突力の最大値Fmaxが大きくなっても発生する力積F・tは小さい。 同じことが、車両を手持ちのハンマなどで叩いた場合やドアを強く閉めた場合にもあてはまり、弾性的衝突により衝突力の最大値Fmaxおよび最大加速度amaxが大きい加振力が発生するが、その力積は小さく車体および搭乗者への衝撃の度合いは極めて小さい。
    【0035】
    一方、車両が塑性破壊を生じて大きく破損する衝突の場合、すなわち、エアバッグを展開しなければならないような衝突速度が速い激しい衝突では、発生する衝突力は弾性衝突の場合と異なり、一般に、最大発生力Fmaxと力積F・tがともに大きくなる。 また、特殊な衝突において、例えば、大型車への小型車の潜り込み衝突などでは、両者の衝突面の弾性が弱い状態となる場合があり、発生する衝突力の最大値Fmaxと最大加速度amaxが比較的小さくなるときがある。 しかしながら、その際に発生する衝突力の持続時間は長いため力積F・tの値は極めて大きくなる。
    【0036】
    よって、衝突力と力積の考えに基づき衝突判定を行えば、発生する衝突力の最大値Fmaxと最大加速度amaxが比較的小さい場合でも車両破壊と搭乗者への衝撃の度合いを正確に判定できる。 すなわち、車体に生じる加速度や速度の最大値などを直接衝突判定に用いるよりも、車体に加わる衝突力およびその力積に換算して衝突判定に利用することが、実際に車両と搭乗者への衝撃力の影響の度合いを評価する上で原理的に適している。
    【0037】
    ここでは、図2に示した1自由度モデルにより、弾性的衝突である衝突速度の低い衝突およびハンマ叩きやドア閉めなどの非破壊衝突現象、すなわちエアバッグを展開しない衝突にいて車体に生ずる加速度、速度、変位を解析により示して、本発明による衝突力推定の原理を明らかにする。 図2に示す1自由度モデルの運動方程式を求めると次のようになる。
    【0038】
    【数1】

    【0039】


    この式(1)のように、(加速度x1)に質量m1を乗じた値と(速度x1)に減衰定数c1を乗じた値と(変位x1)とばね定数k1を乗じた値を足しあわせたものが衝突力fとなる。


    【0040】


    図3は上記の式(1)の関係をブロック図で示したものである。 すなわち、衝突時の車両を1自由度モデルで近似して質量m1と減衰c1とばねk1に適切な定数値を設定することで、車両に設けた衝突加速度検出装置1から得られる衝突加速度信号2および、これから推定される推定速度信号6、推定変位信号8を与え、これらの乗算結果を加算器14で足しあわせることで、推定衝突力信号14を演算することができる。


    【0041】


    ここで、図4、図5、図6を用いて、図2で示した1自由度モデルにより、検出された車両の加速度に基づいた衝突力fの推定について説明する。 図4は図2で示す1自由度モデルに具体的な定数値を与え、その過渡振動特性を計算機によりシミュレーションした結果である。 この図4において、30は1自由度モデルに加えた正弦半波時間τ=5ms、最大加振力Fmax=125tonfの正弦半波状の衝突力波形、31は車体等価質量m1=100kg、車体等価減衰c1=64kgf・s/cm、車体等価ばねk1=100tonf/cmの定数値を与えた1自由度モデルに上記衝突力波形30を加えたときの車両等価加速度波形、同じく、32は車両等価速度波形、33は車両等価変位波形である。


    【0042】


    車両の衝突時に、衝突加速度検出装置1から得られる信号は、加速度波形31のみであり、速度波形32と変位波形33はこの加速度波形31を基に推定する必要がある。 なお、各定数値は車両の重量などをそのまま用いたものではなく、車両の振動特性を予め実験と解析から求め、1自由度に近似したときに適切な値となるように求めた定数値の一例である。


    【0043】


    図5は衝突加速度信号2から速度信号と位置信号を推定するために用いる前述の図1に示した1次遅れ要素形フィルタの周波数応答特性の一例である。 34は一次遅れ要素フィルタ5の時定数T

    1を遮断周波数f

    c =2Hzとなるように与えたときの周波数特性であり、上段の図はゲイン特性、下段の図は位相特性を示す。 同じく、35は一次遅れ要素形フィルタ5と一次遅れ要素形フィルタ7が直列に二段接続したときの周波数特性である。


    【0044】


    なお、この図5においては、一次遅れ要素形フィルタ7の時定数T

    2を一次遅れ要素形フィルタ5の時定数T

    1と等しく置いたときの周波数特性を示しているが、時定数T

    1と時定数T

    2は等しくしても等しくしなくても良く、特に制約を与えるものではない。 一次遅れ要素形フィルタ5の伝達特性G

    1 (s)をラプラス演算子sを用いて記述すると次式(2)で与えられる。


    【0045】


    【数2】


    【0046】


    また、時定数T

    1と遮断周波数f

    cの関係は次式(3)で与えられる。


    【0047】


    【数3】


    【0048】


    同様に、一次遅れ要素形フィルタ5と一次遅れ要素形フィルタ7が直列に二段接続したときの伝達特性G

    2 (s)は次式(4)で与えられる。


    【0049】


    【数4】


    【0050】


    また、図5に示されるように、一次遅れ要素形フィルタ5の伝達特性G

    1 (s)は遮断周波数f

    c以上では積分1/sの特性を有し、f

    c以下ではT1の一定値になることが分かる。 すなわち、衝突の際に生ずる高周波のみを積分し、通常の走行時に生じる低周波数成分や加速度センサのDCドリフト成分などのノイズは積分しないので、単純積分1/sを行う場合と異なり、出力結果が飽和することがなく、一定時間毎に積分器の出力をリセットする必要がない。


    【0051】


    また、図5の位相関係より加速度をG

    1 (s)で一回積分して得られる推定速度信号は加速度信号に比べ90度、G

    2 (s)で二回積分して得られる推定変位信号は加速度に比べ180度位相が遅れることが分かる。 すなわち、推定変位信号のみを衝突判定に用いると加速度信号の情報より判定時間が位相180度の分だけ遅れることを示している。


    ここで、推定衝突力は、加速度信号と推定速度信号と推定変位信号とより求められるものであるので、上述したような判定時間の遅れは、推定変位信号のみを用いた場合より改善されているものである。


    【0052】


    図6は、図4に示したシミュレーションにより得られる車両等価加速度波形31を用いて、これを衝突の際に車両に生じる衝突加速度信号2と仮定して、前述の図5の周波数特性34、35を有する1次遅れ要素形フィルタ5および7を用いて得られる推定速度と推定変位のシミュレーション結果である。


    【0053】


    36は車両等価加速度波形31を入力したときの1次遅れ要素形フィルタ5の出力である車両推定速度波形、37は車両等価加速度波形31を入力したときの1次遅れ要素形フィルタ5、7の二段の出力である車両推定変位波形、38は上記車両等価加速度波形31に図2で示した車両等価質量(m

    1 )18を乗じた値、推定速度波形36に車両等価減衰(c

    1 )19を乗じた値、推定変位波形37に車両等価ばね(k

    1 )20を乗じた値とを加算器12で足しあわせた推定衝突力(f)である。


    【0054】


    図6の推定速度波形36と推定変位波形37は図4の車両等価速度波形32と車両等価変位波形33とほぼ同じ波形が得られている。 同様に、図6に示した推定衝突力(f)38は、図4に示す衝突力波形30とはほぼ同じ波形が得られている。 このことから、車両を近似する1自由度モデルの定数値が正しく与えられれば、衝突加速度から正確な推定衝突力の演算が可能であることが分かる。


    【0055】


    次に、図7、図8、図9、図10において、衝突検出装置内部の多次元空間衝突判定手段における軌跡の一例を平面上に示し、衝突判定の原理を説明する。


    図7の39は、図4に示した1自由度モデルに加える衝突力波形30を横軸に、このとき車両等価質量に生ずる車両等価速度波形32を縦軸にして描いた平面における軌跡である。 図8の40は、図6に示した衝突力演算手段により求められた推定衝突力波形(f)38を横軸に、推定速度波形36を縦軸にして描いた平面における軌跡である。


    【0056】


    図7に示した衝突力−速度の平面軌跡39は、1自由度モデルの線形的振動の挙動を示す軌跡を描いており、衝突力0で速度0の原点から速度と衝突力がともに増加し、次いで、速度が減少し衝突力が最大となった時点で速度はほぼ0となり、やがて、速度は負方向となり衝突力も減少していく。 正弦半波の衝突力は図4に示したように5ms以降は0の値となるが、速度には5ms以降にも残留振動が生じており、図7の平面上では、衝突力0上で速度が最大約±0.5m/sの直線を繰り返し減衰しながら描いている。


    【0057】


    一方、図8に示した推定衝突力−推定速度の平面軌跡40も、衝突力が若干負方向へずれていることを除けば、衝突力−速度の平面軌跡39とほぼ同一の軌跡を描いており、衝突加速度信号4から一次遅れ要素形フィルタ5や衝突力演算手段13により演算された推定衝突力信号14と推定速度信号6が平面および多次元空間上の軌跡でも十分衝突時の挙動を再現できることが分かる。


    【0058】


    一般に、衝突力fと速度x1を乗じた値は力学における仕事率であり、これは熱力学の物理量に換算すると一定時間当たりに発生する熱量に相当する。 これは人体に対し衝突による衝撃力の影響の度合いを評価する物理的定数に適している。 平面上で衝突力と速度の軌跡を見ることは、衝突力と時間の関係を見るよりも、衝突現象の挙動をより特徴づけて判別することが可能である。


    【0059】


    図9の41は、上記の図6に示した図3の衝突力演算手段によれ求められた推定衝突力波形(f)38を横軸に、推定変位波形37を縦軸にして描いた平面上の軌跡である。 同じく、図10の42は、推定衝突力波形(f)38を横軸に、車両加速度信号4に相当する加速度波形31を縦軸にして描いた平面上の軌跡である。 上記の衝突力−速度の平面に、これらの変位と加速度の平面を加えた多次元空間上の軌跡で衝突現象を特徴づけることにより、さらに詳細な衝突判定が可能である。


    【0060】


    図11、図12、図13、図14、図15、図16において、衝突検出装置の衝突判定の原理をより具体的に明示、説明する。 ここではサイドエアバッグの展開における衝突を例に取り上げ説明する。 図11(A)は、エアバッグを展開しない衝突現象の一例であるドア閉め、図11(B)は車両へ他車両が側方方向から衝突する一例を図示した説明図である。


    【0061】


    この図11において、43は車両、44は車両43のドア、45は車両43に衝突する追突車両である。 側方からの追突車両45の追突速度が小さい場合は、エアバッグを展開しないが、追突速度が大きい場合はエアバッグを展開する。 一般に、衝突判定の基準は、衝突実験の際に車両に搭載したダミー人形に加わる衝撃力の大きさから決まる。 また、エアバッグ展開までに許容される判定時間は、ダミー人形が車内のハンドルやガラスや側面のドアなどへ衝突するまでに要する時間とエアバッグに点火信号が与えられてからエアバッグが膨張して展開完了するのに必要な時間などから決まる。


    【0062】


    図12、13はエアバッグを展開しない、すなわち、OFF要件における推定衝突力と推定速度の平面の一例である。 図12の46は、ドア閉めの際に生ずる衝突加速度信号2を想定して描いた推定衝突力−推定速度の平面軌跡である。 図13の47は、低速度で車両が側方から衝突した際に生ずる衝突加速度信号2を想定して描いた推定衝突力−推定速度の平面軌跡である。


    【0063】


    図14、15はエアバッグを展開する、すなわち、ON要件における推定衝突力と推定速度の平面の一例である。 図14の48は、中速度で車両が側方から衝突した際に生ずる衝突加速度信号2を想定して描いた推定衝突力−推定速度の平面軌跡、図15の49は、高速度で車両が側方から衝突した際に生ずる衝突加速度信号2を想定して描いた推定衝突力−推定速度の平面軌跡である。


    【0064】


    図16は上記の図12のドア閉め時の平面軌跡46と図13の(低速度)側突の平面軌跡47の衝突判定がOFFとなるように、かつ、図14の(中速度)側突の平面軌跡48と図15の(高速度)側突の平面軌跡49が極力短い時間で衝突判定がONとなるように、衝突力−速度の平面に設けた閾値設定の一例である。 この図において、50はON領域とOFF領域を識別する閾値であり、この閾値50は衝突力が小さい場合と衝突力が大きい場合とでON/OFF判定の速度の大きさが異なり、衝突力が小さい場合には少なくともドア閉め時の最大推定速度より大きく、衝突力が大きい場合には少なくとも、乗員保護装置を起動させる必要のない低速度側突の最大推定速度より小さくされている。


    【0065】


    ここで、図16より明らかなように平面上で軌跡を描きこれに閾値50を用いた領域判定を行うことで、OFF要件の平面軌跡46と47が、ON要件の平面軌跡48と49と明瞭に識別できる。


    【0066】


    なお、ここには図示していないが、衝突力−変位、および、衝突力−加速度の平面でも同様な閾値による判別が上記衝突力−速度の平面判定に加えることが可能であり、これらを多次元空間上の閾値判別として用いることによって、より一層詳細に、衝突判定を決定できることは言うまでもない。


    【0067】


    さらに、ここでは、車両を1自由度近似してでモデル化したが、車両のモデル化は2次以上の多自由度モデルでも一向に差し支えない。 これにより演算量は増すが、衝突力の推定精度を向上し、より高度な衝突判定を行うことも可能である。


    【0068】


    実施の形態2.


    実施の形態2は、車両及び搭乗者を1自由度モデルで近似したものである。


    図17は、実施の形態2の衝突力−搭乗者変位演算手段において、車両を模擬する1自由度モデルと搭乗者の動きを模擬する1自由度モデルを示す説明図、図18は、衝突力−搭乗者変位演算手段の一例を示すブロック図である。


    これらの図において、上記実施の形態1と同様の構成を持つものは、同一符号を付して説明を省略する。


    【0069】


    図17において、23は車両に乗っている搭乗者を1自由度モデルで近似したときの搭乗者等価質量m2、同じく、24は搭乗者等価減衰c2、25は搭乗者等価ばねk2、26は搭乗者等価変位である。 なお、車両は図2において示したものと同様に1自由度モデルで与えている。 図18において、27は衝突加速度信号2と推定速度信号6と推定変位信号8を基に搭乗者の変位を演算する搭乗者変位演算手段、28は図1において示した衝突力演算手段と同様な衝突力演算手段と搭乗者変位演算手段27を組み合わせた衝突力−搭乗者変位演算手段、29は衝突力−搭乗者変位演算手段28より出力される搭乗者等価推定変位信号であり、同じく、衝突力−搭乗者変位演算手段28からは推定衝突力14も出力される。


    【0070】


    次に動作について説明する。


    図17に示したように車両と搭乗者をそれぞれ1自由度でモデル化したときの運動方程式は次式(5)で与えられる。


    【0071】


    【数5】


    【0072】


    ここで、車両の加速度x

    1が加速度検出装置1で測定され与えられるので、式(5)の2番目の式より、搭乗者と車両の相対変位(x

    2 −x

    1 )と車両の加速度x

    1の関係を表す伝達関数G

    3 (s)を求めると次式(6)のようになる。


    【0073】


    【数6】


    【0074】


    この式(6)より、車両の加速度x

    1を入力としてG

    3 (s)に加えれば、出力として搭乗者と車両の相対変位(x2−x1)が得られることが分かる。 一方、車両に加わる衝突力fは式(5)の第1式において、搭乗者の質量と減衰とばねの値は車両のそれらの値に比べ十分小さい(m

    2 <<m

    1 、c

    2 <<c

    1 、k

    2 <<k

    1 )と仮定することで、式(1)の場合と同様に、車両の加速度x

    1から求めることができる。


    【0075】


    ここでは、図示していないが、式(6)の関係から求まる搭乗者と車両の相対変位(x

    2 −x

    1 )を多次元空間衝突判定手段15の信号の一つとして加えることにより、衝突判定に利用可能な新たな軌跡を多次元空間に描くことができ、より詳細で緻密な衝突判定が可能である。


    【0076】


    なお、ここでは、搭乗者を1自由度でモデル化したが、搭乗者のモデル化は2次以上の多自由度モデルにより搭乗者をモデル化しても一向に差し支えない。 これにより演算量は増すが、変位量の推定が向上し、より高度な衝突判定を行うことが可能であることはいうまでもない。


    【0077】


    実施の形態3.


    この実施の形態3は、上述した実施の形態1の図16に示されるような閾値設定に加え、非破壊衝突の場合において、乗員保護装置が作動することがないようにしたものである。


    図19は、この実施の形態3の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、非破壊衝突を判別する閾値の設定の一例を示す説明図である。 また、実施の形態1、2と同様の構成を持つものは同一符号を付して説明を省略する。


    【0078】


    この図19において、51はドア閉めやハンマ叩きによるOFF要件の衝突加速度信号2をON要件の衝突加速度信号2と区別するために、上記多次元空間衝突判定手段15の多次元空間から一平面を取り出して得られる2次元空間の一つである衝突力を横軸に速度を縦軸に取った平面において設定した非破壊衝突判別用閾値の一例である。 なお、図19において、本実施の形態に直接関係しない領域は一部省略している。


    【0079】


    次に動作について説明する。


    前述の実施の形態1における図7、図8、図12に示したように、塑性変形の生じないドア閉めやハンマ叩きなどの弾性衝突では、衝突力はある一定値以上には大きくならないが、硬いもの同志がぶつかるため大きな加速度と速度が生じることがあり、図19の46の軌跡のように上に凸の半円弧上の軌跡を描く。 一方、車両の側面に他車両が低速で衝突した場合、例えばドア部の外装をなす柔らかく薄い鋼板が凹むため、瞬間的に大きな加速度や速度は生じないが、最終的に生じる衝突力はドア閉めの場合の値より大きくなり、例えば、図19の47の軌跡を描く。


    【0080】


    これら2通りの衝突をいずれもOFF要件として判定するためには、上記衝突力と速度の平面上で、(i)第1の衝突力(f

    までは速度は一定値(v

    )であり、(ii)

    上記第1の衝突力(f

    )と第2の衝突力(f

    )との間では速度は線形的に減少し、(iii)

    上記第2の衝突力(f

    )と第3の衝突力(f

    との間では速度は一定値(v

    1 )であり、(iv)上記

    第3の衝突力(f

    よりも大きい衝突力に対しては速度は線形的に増加する閾値を提供することで、上記図16の閾値50よりも短い時間でON用件の衝突判定が可能である。


    【0081】


    実施の形態4.


    この実施の形態4は、二段衝突を判別可能とするように閾値を設定するものである。


    図20は、実施の形態4の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、二段階衝突を判別する閾値設定の一例を示す説明図である。 なお、上述した各実施の形態と同様の構成を持つものは同一符号を付して説明を省略する。


    【0082】


    この図20において、52は車両のドア部薄肉鋼板やバンパなどの剛性が低く柔らかい部分に最初に衝突して衝撃力が緩和された後に車両フレーム部などの剛性が高く硬い部分にさらに衝突が進むような2段階衝突を識別するOFF要件の衝突加速度信号2をON要件の衝突加速度信号2と区別するために、上記多次元空間衝突判定手段15の多次元空間から一平面を取り出して得られる2次元空間の一つである衝突力を横軸に速度を縦軸に取った平面において設定した二段衝突判別用閾値の一例である。 なお、図20において、本実施の形態に直接関係しない領域は一部省略している。


    【0083】


    次に動作について説明する。


    例えば、車両の側面に他車両が低速で衝突した場合、ドア部の外装をなす柔らかく薄い鋼板が凹むため、瞬間的に大きな加速度や速度は生じないが、最終的に生じる衝突力はドア閉めの場合の値より大きくなり、例えば、図20の47の軌跡を描く。 一定の範囲以上に、柔らかい部分の衝突破壊が進むと、やがて塑性破壊が、車両のフレームなどの剛性の硬い部分に達し、実施の形態3におけるドア閉めの平面と似かよった、図20の47の軌跡のように衝突力(f

    4 )を越えた時点で衝突力は大きくないが、発生する加速度と速度が瞬時的に大きくなる平面上の軌跡を描く。


    【0084】


    この衝突をOFF要件として確実に判定するとともに、ON要件の加速度信号を速やかに判定するためには、上記衝突力と速度の平面上で、上記実施の形態3の閾値に加え、(i)

    上記第3(f

    )の衝突力

    第4の衝突力(f

    との間では速度は線形的に増加し、(ii)

    上記第4の衝突力(f

    第5の衝突力(f

    との間では速度は

    第3の衝突力(f

    第4の衝突力(f

    との間の傾きの数倍の急峻な傾きで線形的に増加し、(iii)上記第5の衝突力(f

    5 )よりも大きい衝突力に対しては速度は一定値(v

    4 )である閾値を提供することで、上記二段衝突が生じても、ON要件衝突とOFF要件衝突を明瞭に判定し、二段衝突による誤動作を防ぐことが可能である。


    【0085】


    実施の形態5.


    この実施の形態5においては、加速度検出装置の車両内の取り付け位置及び複数の加速度検出装置を組み合わせて用いることについて説明するものである。


    図21は、実施の形態5を示す車両の衝突検出装置における、前後方向と側方方向の衝突加速度を検知できるように車両衝突加速度検出装置を設置した車両を示す説明図である。 なお、上述した各実施の形態と同様の構成を持つものについては同一符号を付して説明を省略する。


    【0086】


    この図21は、車両の(a)上面図と(b)側面図を示すものであり、図中の53は車両43の中央部前方に取り付け車両の前後方向および側方方向の2軸の加速度を検出するフロント加速度検出装置、54はフロント加速度検出装置53の衝突加速度信号2を基に衝突判定を行い、この衝突判定信号17に基づき展開する車両の運転席に取り付けたフロントエアバッグ、55は同じく助手席に設けた助席フロントエアバッグである。


    【0087】


    56は車両の側方方向の加速度を検出するために車両43の運転席側の側面に取り付けた運席側−側方方向加速度検出装置、56は同じく助手席側に取り付けた助席側−側方方向加速度検出装置、58は運席側−側方方向加速度検出装置56および助席側−側方方向加速度検出装置57の衝突加速度信号2を基に衝突判定を行い、この衝突判定信号17に基づき展開する車両の座席の側方に取り付けたサイドエアバッグである。


    【0088】


    次に動作について説明する。


    図21に示すように、前後方向および側方方向の2軸の加速度を検出するフロント加速度検出装置53、運席側−側方方向加速度検出装置56、助席側−側方方向加速度検出装置57の3つの加速度検出装置を組み合わせて用いることで、側面衝突、斜め衝突、正面衝突、後方衝突などのあらゆる方向からの衝突加速度を正確に測定できるものである。


    【0089】


    また、これら複数の衝突加速度信号を上述した実施の形態1、2、3、4において示されたコントローラに組み合わせて用い、コントローラ内部の一次遅れ要素形フィルタ5および7で推定速度信号6、推定変位信号8に変換し、前後方向衝突力と側方方向衝突力を衝突演算手段13により求め、これらの全ての信号を組み合わせて多次元空間衝突判定手段で衝突判定することにより、側面衝突、斜め衝突、正面衝突、後方衝突などのあらゆる方向からの衝突に適切に対応して、フロントエアバッグ55、助席フロントエアバッグ55およびサイドエアバッグ58の展開判定が可能である。


    【0090】


    また、フロントエアバッグ55、助席フロントエアバッグ55およびサイドエアバッグ58を、組み合わせて展開させて、衝突方向に応じた乗員の保護を行うことができるものである。


    【0091】


    実施の形態6.


    この実施の形態6は、コントローラの一部をアナログ演算器を用いて構成するものである。


    図22は、実施の形態6における車両の衝突検出装置を示すブロック図である。 なお、上述した各実施の形態と同様の構成を持つものは、同一符号を付して説明を省略する。


    【0092】


    この図22において、59はアナログ素子で構成された一次遅れ要素、60は衝突加速度信号2を入力としたときの一次遅れ要素59の出力である推定速度信号、61はアナログ素子で構成された一次遅れ要素、62は推定速度信号60を入力としたときの一次遅れ要素61の出力である推定変位信号、63はアナログ素子で構成された衝突力演算手段、64は衝突力演算手段63の出力である推定衝突力信号、65は上記したアナログ素子をまとめて構成したアナログ演算器、66は衝突加速度信号2、推定速度信号60、推定変位信号62および推定衝突力信号64の複数のアナログ信号を入力するマルチプクサ、67はマルチプレクサ66とA/Dコンバータ3、多次元空間衝突判定手段15を含むディジタルコントローラである。


    【0093】


    次に動作について説明する。


    衝突加速度信号2から推定速度信号を得るのに式(2)の特性を有する一次遅れ要素形フィルタ59を、オペアンプ一つと抵抗とコンデンサを組み合わせたアナログ素子のみで構成している。 1次遅れ要素形フィルタ61も同様にアナログ素子のみで構成できる。 同様に、衝突力演算手段13も図3に示されるような1自由度モデルで構成すれば、上述のオペアンプ、コンデンサ、抵抗で乗算器と加算器が構成できるため、アナログ素子のみで衝突力演算手段63として構成できる。


    【0094】


    このようにアナログ素子で衝突加速度信号2から推定速度信号60、推定変位信号62、推定衝突力信号64を求め、これらの信号をディジタルコントローラに設けたマルチプレクサ66を介してA/Dコンバータ3に入力し、ディジタルコントローラ67に含まれる多次元空間衝突判定手段15により衝突判定を行い衝突判定信号17を出力する。


    【0095】


    一般に、高次のフィルタをディジタル演算器で構成する場合、特に高周波数領域における積分動作を含むような場合、データのサンプリング周期を速くする必要があり、これに応じてディジタルコントローラの制御演算周期も速くする必要がある。 しかし、上述したように1次遅れ要素形フィルタ60および61と衝突力演算手段63をアナログ演算器65で構成することにより、演算速度を上げることが可能であり、演算速度の速い高価なディジタルCPUを用いなくても速答性に優れた衝突検出装置の構成が可能である。


    【0096】


    実施の形態7.


    上述した実施の形態6においては、コントローラの一部にアナログ演算器を用いていたが、この実施の形態7はコントローラをディジタル素子によって構成するものである。


    図23は、この実施の形態7における車両の衝突検出装置を示すブロック図、図24は、衝突検出装置における計算処理の主制御の一例を示すフローチャートである。 なお、上述した各実施の形態には同一符号を付して説明を省略する。


    【0097】


    これらの図において、68は前述した一次遅れ要素形フィルタ5および7と衝突力演算手段13およびをまとめ1つのディジタル演算器(CPU)で構成した、A/Dコンバータ3含むディジタルコントローラである。 ここで、コントローラをディジタル演算器により構成する際には、高速なサンプリング周期が要求されるが、近年のディジタル演算素子の発達は目覚ましいものがあり、演算速度は年を追う毎に高速化され、コストも急速に低下している。 このように、コストが低く演算が高速なディジタル演算素子を利用することにより、コントローラをディジタル演算素子で構成可能である。


    【0098】


    次に、上記実施の形態7の動作を図23に示されるディジタルコントローラ68により処理する過程を図24に示されるフローチャートに従い説明する。


    まず、処理F100で動作が開始し、処理F101で予め設定されたサンプリング時間Tに従って、A/Dコンバータ3を介して車両衝突加速度検出装置1からの加速度信号2をディジタル値に変換した加速度信号4としてディジタルコントローラ68内部に取り込む、処理F102のディジタルフィルタとして構成される推定速度演算ルーチンにより加速度信号4を推定速度信号6に変換する。


    【0099】


    同様にして、処理F103のディジタルフィルタとして構成される推定変位演算ルーチンにより推定速度信号6を推定変位信号8に変換し、処理F104の推定衝突力演算ルーチンにより加速度信号4と推定速度信号6および推定変位信号8に予め設定した車体をモデル化した1自由度モデルの各定数値を乗算演算と加算演算して推定衝突力信号14に変換する。 以上の演算処理ルーチンにより得られた加速度信号4と推定速度信号6と推定変位信号8および推定衝突力信号14をもとにこれらにより描かれる多次元空間上の軌跡が予め多次元空間衝突判定手段15の閾値を越えたかを処理F105により判定し、処理F105の判定がYESならば、処理F106に進み、衝突判定信号17をONとして、処理F107においてエアバッグが展開し、処理F108で動作は停止する。


    【0100】


    一方、処理F105の判定がNOならば、繰り返し処理F101の加速度データの入力に戻り、同様の処理を繰り返す。 なお、図24のフローチャートではF102、F103、F104の各演算処理ルーチンは直列に接続されて図示されているが、ディジタルコントローラを構成するCPUにタイマー割り込みなどの多重割り込み処理機能がある場合は、これらの処理ルーチンを並列に処理することも可能である。


    【0101】


    以上のようにコントローラ全てをディジタル素子と上述のソフトウェアで構成できるので、アナログ素子において問題となる耐ノイズ性が向上し、また、部品点数も大幅に低減できるので素子の故障による誤動作の頻度を低減し、衝突判定の信頼性を向上することができる。


    【0102】


    なお、上記各実施の形態において、衝突判定信号によって、点火装置に点火電流が供給されてエアバッグを点火させることとしてもよく、また、シートベルト緊張装置を作動させる構成であってもよい。


    【0103】


    上述したように、上記各実施の形態は、車両のさまざまな衝突形態に対応でき、車両を物理的なモデルで考慮することで設定定数値との対応を明確にし、さらに、多次元空間の概念を採り入れたよりきめ細かな閾値を与えることで、より短時間で信頼性も高い衝突判定を行うことができ、正面衝突や斜め衝突のエアバッグの展開判定のみならず側方からの衝突におけるサイドエアバックにも適用可能な車両の衝突検出装置を得ることができるものである。


    【0104】


    また、上述した各実施の形態においては、車両の衝突加速度を検出する装置1からの衝突加速度信号2がコントローラ16に入力され、加速度信号2から推定速度信号6を算出する一次遅れ要素形フィルタ5、推定速度信号6から推定位置信号8を算出する一次遅れ要素形フィルタ7、上記衝突加速度信号2と推定速度信号6と推定変位信号8から車両の衝突時に発生する推定衝突力信号14を算出する衝突力演算手段13と、以上より求まる信号(衝突加速度信号2、推定速度信号6、推定変位信号8、推定衝突力信号14)をもとに多次元空間上での軌跡を描き、この軌跡が多次元空間上に予め設定した閾値を越えたことを判定する多次元空間衝突判定手段15とを設けるものであり、この多次元空間衝突判定手段15から出力される衝突判定信号17をエアバッグ展開信号とすることでエアバックを展開し,搭乗者を車両の衝突時の衝撃から安全に保護するものである。


    【0105】


    特に、車両が衝突したり車両に他の車両が衝突した場合に、より短時間で、しかも信頼性良くエアバッグ展開の有無を判定してエアバックを展開できるため、搭乗者を衝突事故から安全に守ることが可能になるものである。


    【0106】


    また、上記各実施の形態には次のような発明も記載されている。


    車両の衝突検出装置が、車両の衝突加速度を検出する衝突加速度検出装置、推定速度信号を算出する一次遅れ要素形フィルタ、推定速度信号から推定位置信号を算出する一次遅れ要素形フィルタ、衝突加速度信号と推定速度信号と推定位置信号から衝突時に車両に発生する推定衝突力信号を算出する衝突力演算手段、以上より求まる推定衝突力信号、加速度信号、推定速度信号、推定変位信号からなる複数の信号を基に多次元空間上での軌跡を描き、予め多次元空間上に設定した閾値をこの軌跡が越えたことを判定して衝突判定信号を出力する多次元空間衝突判定手段を設けたことによって、車両の衝突加速度を車両衝突加速度検出装置で検出し、車両の衝突加速度から推定速度信号を一次遅れ要素形フィルタで算出し、推定速度信号から一次遅れ要素形フィルタで推定位置信号を算出し、衝突加速度信号と推定速度信号と推定位置信号から衝突時に車両に発生する推定衝突力信号を衝突力演算手段で算出し、この推定衝突力信号に基づき衝突判定を行うので、人体へ加わる衝撃力との物理的な対応が良く取れた信頼性の高い衝突判定が可能である。 さらに、衝突力信号、加速度信号、推定速度信号、推定変位信号からなる複数の信号を基に多次元空間上の軌跡を描くので、車両の運動をより詳細に特徴づけて表現でき、多次元空間上に予め設定した閾値によるきめ細かい衝突判定を用いることで、さまざまな衝突形態においても短時間で信頼性の高い衝突判定が可能である。 また、車両の衝突加速度から一次遅れ要素形フィルタにより推定速度信号と推定位置信号推定し、さらに、これらの信号を衝突力演算手段に与えて衝突時の衝突力を推定し、これらの信号(推定衝突力、加速度信号、推定速度信号、推定変位信号)をもとに多次元空間衝突判定手段内部で軌跡を描いて、予め設定した閾値を越えたことで衝突判定するように構成したので、信頼性が高く判定時間の短い衝突判定信号を生成できる効果がある。


    【0107】


    また、車両の衝突検出装置に、多次元空間衝突判定手段の内部モデルに車両の動きを模擬して衝突力を演算する質量、減衰器、ばねからなる1自由度モデルを用い、加速度信号、速度信号、位置信号を入力にして、推定衝突力信号を出力する衝突力演算手段が設けられているので、推定衝突信号を出力する衝突力演算手段にの内部モデルに、車両の物理モデルを1次近似した質量、減衰器、ばねによる1自由度モデルを用いているので、演算は(加速度×車両等価質量)と(推定速度×車両等価減衰)と(推定変位×車両等価変位)の掛け算3回、これらの値を足し合わせる足し算2回の演算量の少ない計算で衝突力を推定できるので、計算能力の低い演算器で十分計算可能である。 さらに、演算される推定衝突力は変位信号よりも位相情報が進んだ時間遅れの少ない信号であり、より短時間で衝突判定が可能であるとともに、人体へ加わる衝撃力との物理的な対応が良く取れるので信頼性の高い衝突判定が可能である。 また、衝突力演算手段の内部モデルに車両の動きを模擬して衝突力を演算する質量、減衰器、ばねからなる1自由度モデルを用いた構成としたので、実際に搭乗者に影響する衝突力を演算でき、衝突判定の信頼性を向上できる効果がある。 また、1自由度の簡易モデルで衝突力の推定が可能なため、衝突力推定演算に要する演算付加が小さくできる効果があり、さらに、アナログ演算素子でも構成できる効果がある。


    【0108】


    また、車両の衝突検出装置に、多次元空間衝突判定手段の内部モデルに車両を模擬する1自由度モデルに加え、搭乗者の動きを模擬する多自由度モデルを加えることで、加速度信号、速度信号、位置信号を入力にして、推定衝突力信号と搭乗者とエアバック間の変位信号を出力する衝突力−搭乗者変位演算手段が設けられているので、衝突力演算手段の内部モデルにおいて、車両を模擬する1自由度モデルに加え、搭乗者の動きを模擬する多自由度モデルを加えることで搭乗者とエアバック間の相対変位を演算するので、搭乗者に加わる衝撃力に加え、搭乗者がエアバッグに衝突するまでの時間と変位の関係を衝突判定の情報に加えることができるため、より高精度の衝突判定が可能である。 また、衝突力演算の内部モデルに車両を模擬する1自由度モデルに加え、搭乗者の動きを模擬する多自由度モデルを加えた構成としたので、搭乗者とエアバック間の推定相対変位を演算することができ、この相対変位も信号の一つに加えて、多次元空間衝突判定手段で衝突判定を行えば、より高精度で信頼性が高く、判定時間を短縮した衝突判定ができる効果がある。


    【0109】


    また、多次元空間判定手段の閾値は、多次元空間衝突判定手段の多次元空間から一平面を取り出して得られる2次元空間の一つである衝突力を横軸に速度を縦軸に取った平面において、ドア閉めやハンマ加振などの非破壊衝突を識別する機能を有する閾値であるので、多次元空間衝突判定手段の多次元空間から一平面を取り出して得られる2次元空間の一つである衝突力を横軸に速度を縦軸に取った平面において、ドア閉めやハンマ加振などの非破壊衝突を識別する機能を有する閾値を提供するので、ドア閉めなどの非破壊衝突で衝突判定を誤りエアバッグを展開させるなどの誤動作を防ぐことが可能である。 また、多次元空間衝突判定手段の多次元空間から一平面を取り出して得られる2次元空間の一つである衝突力を横軸に速度を縦軸に取った平面において、ドア閉めやハンマ加振などの非破壊衝突を識別する機能を閾値に加えた構成としたので、これらのOFF要件衝突で不用意にエアバッグ展開する誤動作を防ぐとともにON要件衝突では短時間にエアバッグを展開できる効果がある。


    【0110】


    また、多次元空間判定手段の閾値は、多次元空間衝突判定手段の多次元空間から一平面を取り出して得られる2次元空間の一つである衝突力を横軸に速度を縦軸に取った平面において、車両のドア部薄肉鋼板やバンパなどの剛性が低く柔らかい部分に最初に衝突して衝撃力が緩和された後に車両フレーム部などの剛性が高く硬い部分にさらに衝突が進むような2段階衝突を識別する機能を有す閾値であるので、車両のドア部鋼板やバンパなどの剛性が低く柔らかい部分に最初に衝突して衝撃力が緩和された後に車両フレーム部などの剛性が高く硬い部分にさらに衝突が進むような2段階衝突を識別する機能を有する閾値を提供するので、2段階衝突において衝突判定を誤りエアバッグを展開させるなどの誤動作を防ぐことが可能である。 また、多次元空間衝突判定手段の多次元空間から一平面を取り出して得られる2次元空間の一つである衝突力を横軸に速度を縦軸に取った平面において、車両のドア部薄肉鋼板やバンパなどの剛性が低く柔らかい部分に最初に衝突して衝撃力が緩和された後に車両フレーム部などの剛性が高く硬い部分にさらに衝突が進むような2段階衝突を識別する機能を閾値に加えた構成としたので、これらのOFF要件衝突で不用意にエアバッグ展開する誤動作を防ぐとともにON要件衝突では短時間にエアバッグを展開できる効果がある。


    【0111】


    また、車両の衝突検出装置は、車両の前後方向と側面方向の加速度を検知するように衝突加速度検出装置を設けたものであるので、前後方向の車両衝突加速度検出装置に加えて、車両の側面方向の加速度を検知するように車両衝突加速度検出装置を設置するので、前後方向の正面衝突や斜め衝突や他の車両などによる側面方向の衝突においても、短時間で信頼性の高い衝突判定が可能であり、フロントエアバッグやサイドエアバッグの展開を安全に迅速に行うことができる。 また、車両の前後方向と側方方向の衝突加速度を検知できるように車両衝突加速度検出装置を設置する構成としたので、側面衝突、斜め衝突、正面衝突、後方衝突などのあらゆる方向からの衝突に適切に対応して衝突判定を行うことができ、信頼性高く、短時間でフロントエアバッグや助席フロントエアバッグおよびサイドエアバッグを展開できる効果がある。


    【0112】


    また、車両の衝突検出装置は、衝突加速度から推定速度信号を算出する一次遅れ要素形フィルタと推定速度信号から推定位置信号を算出する一次遅れ要素形フィルタと推定衝突力信号を算出する衝突力演算手段をアナログフィルタなどのアナログ演算器で構成し、多次元空間衝突判定手段をマルチプレクサとA/Dコンバータを含むディジタルコントローラにより構成されているので、衝突加速度から推定速度信号を算出する一次遅れ要素形フィルタと、推定速度信号から推定位置信号を算出する一次遅れ要素形フィルタと、推定衝突力信号を算出する衝突力演算手段をアナログフィルタなどのアナログ演算器で構成できるので、高性能なディジタルコントローラを用いなくても衝突検出装置の構成が可能である。 また、コントローラ内部の一次遅れ要素と衝突力演算手段をアナログ演算器で構成したので、ディジタルコントローラに演算速度の速い高価なCPUを用いなくても衝突衝突検出装置の構成を可能とする効果がある。


    【0113】


    また、車両の衝突検出装置は、衝突加速度から推定速度信号を算出する一次遅れ要素形フィルタと推定速度信号から推定位置信号を算出する一次遅れ要素形フィルタと推定衝突力信号を算出する衝突力演算手段と多次元空間衝突判定手段のすべてをA/Dコンバータを含む1つのディジタルコントローラで構成されたものであるので、衝突加速度から推定速度信号を算出する一次遅れ要素形フィルタと、推定速度信号から推定位置信号を算出する一次遅れ要素形フィルタと、推定衝突力信号を算出する衝突力演算手段と多次元空間衝突判定手段のすべての演算器をA/Dコンバータを含むディジタルコントローラで構成できるので、耐ノイズ性の向上、電子機器の素子数の低減、素子の故障による誤動作の頻度の低減が可能であり、衝突判定の信頼性を高めることができる。 また、コントローラ全てをディジタル演算器で構成したので、アナログ素子において問題となる耐ノイズ性が向上し、部品点数も大幅に低減できるので素子の故障による誤動作の頻度を低減し、衝突判定の信頼性を向上する効果がある。


    【0114】


    【発明の効果】


    以上説明したように、この発明に係る車両の衝突検出装置は、信頼性が高く、判定時間の短い衝突判定を行うことができる。


    【図面の簡単な説明】


    【図1】 この発明の実施の形態1における車両の衝突検出装置を示すブロック図である。


    【図2】 この発明の実施の形態1における衝突力演算手段内の演算に用いられる1自由度の質量−減衰器−ばねモデルを示す概念図である。


    【図3】 この発明の実施の形態1の衝突検出装置内部の衝突力演算手段の1自由度の質量−減衰器−ばねモデルをもとに推定衝突力の演算手順を示すブロック図である。


    【図4】 この発明の実施の形態1の車両の衝突検出装置における1自由度の質量−減衰器−ばねモデルに衝突力fを加えたときに車両等価質量に生ずる加速度、速度、変位の時刻歴応答波形のシミュレーション結果を示す説明図である。


    【図5】 この発明の実施の形態1の車両の衝突検出装置における一次遅れ要素フィルタの周波数応答特性の一例を示す説明図である。


    【図6】 この発明の実施の形態1の車両の衝突検出装置における推定衝突力の原理を示す推定速度、推定変位、衝突力のシミュレーション結果を示した説明図である。


    【図7】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定手段の横軸に速度を縦軸に取った平面において、弾性的衝突における衝突力と速度の軌跡を示す説明図である。


    【図8】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、弾性的衝突での推定衝突力と推定速度の軌跡を示す説明図である。


    【図9】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に変位を縦軸に取った平面において、弾性的衝突での推定衝突力と推定変位の軌跡を示す説明図である。


    【図10】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に加速度を縦軸に取った平面において、弾性的衝突での推定衝突力と加速度の軌跡を示す説明図である。


    【図11】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定の原理を示すために例示した車両のドア閉めと他車両側突を示す説明図である。


    【図12】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、ドア閉め時に生じる推定衝突力と推定速度の軌跡を示す説明図である。


    【図13】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、低速度の側突を想定したときに生じる推定衝突力と推定速度の軌跡を示す説明図である。


    【図14】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、中速度の側突を想定したときに生じる推定衝突力と推定速度の軌跡を示す説明図である。


    【図15】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、高速度の側突速を想定したときに生じる推定衝突力と推定速度の軌跡を示す説明図である。


    【図16】 この発明の実施の形態1の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、閾値の設定の一例を示す説明図である。


    【図17】 この発明の実施の形態2の衝突力−搭乗者変位演算手段において、車両を模擬する1自由度モデルと搭乗者の動きを模擬する1自由度モデルを示す説明図である。


    【図18】 この発明の実施の形態2の衝突力−搭乗者変位演算手段の一例を示すブロック図である。


    【図19】 この発明の実施の形態3の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、非破壊衝突を判別する閾値の設定の一例を示す説明図である。


    【図20】 この発明の実施の形態4の車両の衝突検出装置における多次元空間衝突判定手段の衝突力を横軸に速度を縦軸に取った平面において、二段階衝突を判別する閾値設定の一例を示す説明図である。


    【図21】 この発明の実施の形態5を示す車両の衝突検出装置における、前後方向と側方方向の衝突加速度を検知できるように車両衝突加速度検出装置を設置した車両を示す説明図である。


    【図22】 この発明の実施の形態6を示す車両の衝突検出装置におけるブロック図である。


    【図23】 この発明の実施の形態7を示す車両の衝突検出装置におけるブロック図である。


    【図24】 この発明の実施の形態7を示す車両の衝突検出装置における計算処理の主制御の一例を示すフローチャートである。


    【図25】 従来の車両用乗員保護装置の駆動方法を示すブロック図である。


    【図26】 従来の車両用乗員保護装置の駆動方法において得られる衝突時の加速度センサの検出出力を示す出力波形図および変位量を示す説明図である。


    【符号の説明】


    1 車両衝突加速度検出装置、2 衝突加速度信号、3 A/Dコンバータ、4 加速度信号、5 一次遅れ要素形フィルタ、6 推定速度信号、7 一次遅れ要素形フィルタ、8 推定変位信号、9 質量係数乗算器、10 減衰係数乗算器、11 ばね係数乗算器、12 加算器、13 衝突力演算手段、14 推定衝突力信号、15 多次元空間衝突判定手段、16 コントローラ、17 衝突判定信号、27 搭乗者変位演算手段、28 衝突力−搭乗者変位演算手段、29 搭乗者等価推定変位信号、43 車両、44 車両ドア、45 追突車両、53 フロント加速度検出装置、54 フロントエアバッグ、55 助席フロントエアバッグ、56 運席側−側方方向加速度検出装置、57 助席側−側方方向加速度検出装置、58 サイドエアバッグ、59 一次遅れ要素形フィルタ、61 一次遅れ要素形フィルタ、63 衝突力演算手段、65 アナログ演算器、66 マルチプレクサ、67 ディジタルコントローラ、68 ディジタルコントローラ

    QQ群二维码
    意见反馈