车辆的冲撞检测装置及乘员保护装置的起动判断装置

申请号 CN97101100.1 申请日 1997-02-05 公开(公告)号 CN1177549A 公开(公告)日 1998-04-01
申请人 三菱电机株式会社; 发明人 山崎芳昭; 今城昭彦; 古井孝志; 冲本行弘;
摘要 本 发明 涉及车辆的冲撞检测装置及乘员保护装置的起动判断装置,它能对应于各种冲撞形式短时间内可靠地判断出缓冲气袋展开与否,它是以从冲撞 加速 度2计算一次延迟元件 滤波器 5、从推断速度 信号 6计算推断 位置 信号8的一次延迟元件滤波器7、从上述冲撞加速度信号2和推断速度信号6和推断位移信号8计算出车辆冲撞时产生的推断冲撞 力 信号14的冲撞力运算单元13求出的信号为 基础 描绘多元空间上的轨迹,当该轨迹超过多元空间上预先设定的 阈值 时,从多元空间冲撞判断单元15输出的冲撞判断信号17作为缓冲气袋的展开信号,使缓冲气袋展开。
权利要求

1.一种车辆的冲撞检测装置,它是根据从检测车辆的冲撞加速度的加速 度检测单元来的加速度判断车辆冲撞的车辆冲撞检测装置,其特征是,具 有根据上述冲撞加速度计算出冲撞时作用在车辆上的推断冲撞的冲撞力 运算单元和根据此推断冲撞力进行冲撞判断的冲撞判断单元。
2.根据权利要求1所述的车辆的冲撞检测装置,其特征是具有从冲撞加 速度算出推断速度的速度运算单元和、从上述推断速度算出推断位移的位 移运算单元,冲撞力运算单元是根据上述冲撞加速度、上述推断速度及上 述推断位移来算出冲撞时发生在车辆上的推断冲撞力。
3.根据权利要求2所述的车辆的冲撞检测装置,其特征是冲撞判断单元 是根据以推断冲撞力、冲撞加速度、推断速度及推断位移作为变数的多元 坐标上的坐标值,来进行冲撞判断的。
4.根据权利要求1-3中任何一项所述的车辆的冲撞检测装置,其特征 是冲撞力运算单元是在由质量衰减器弹簧组成的1自由度模型中,使 车辆模型化,运算出推断冲撞力。    
5.根据权利要求1~3任何一项所述的车辆的冲撞检测装置,其特征是 冲撞判断单元运算乘车人对于车辆推断的相对位移,根据推断相对位移及 推断冲撞力进行冲撞判断。
6.根据权利要求1~3任何一项所述的车辆的冲撞检测装置,其特征是 具有从冲撞加速度算出推断速度的一次延迟元件滤波器和从推断速度算出 的推断位移的一次延迟元件滤波器。
7.一种乘员保护装置的起动判断装置,其特征是具有根据来自检测车辆 冲撞加速度的加速度检测单元的冲撞加速度,算出冲撞时发生在车辆上的 推断冲撞力的冲撞力运算单元和根据此推断冲撞力进行乘员保护装置的起 动判断的起动判断单元。
8.根据权利要求7所述的乘员保护装置的起动判断装置,其特征是具有 从冲撞加速度算出推断速度的速度运算单元,移动判断单元在推断速度为 阈值以上时起动乘员保护装置,同时上述阈值是根据冲撞力的大小而确定 的。
9.根据权利要求7、8任何一项所述的车辆的冲撞检测装置,其特征是 在车辆上设置多个加速度检测单元,以便从不同的方向检测冲撞加速度, 起动判断单元是根据上述多个加速度检测单元的输出进行乘员保护装置的 起动判断。

说明书全文

发明涉及车辆冲撞时,在短时间内高可靠性地检测出车辆冲撞的车辆 冲撞检测装置以及检测出车辆的冲撞、判断乘员保护装置起动的乘员保护 装置的起动判断装置。

以往,使用从车辆的加速度大小检测出车辆冲撞的冲撞检测装置,使得 缓冲气袋等乘员保护装置进行动作的方法,但为了更迅速且更准确地检测 出车辆的冲撞,已知在如特开平4-135947号公报上公开了的一种车辆检 测装置。

图25是表示以往车辆用乘员保护装置的驱动电路的方框图,图26 (A)是表示冲撞时的加速度传感器的输出时间变化曲线图,图26(B) 表示乘员头部位移的曲线图。

图25中,69是检测出因车辆冲撞等加速度的变化,以模拟信号a(t) 作为输出检测结果的加速度传感器、70是具有时间常数T1,积分从加速 度传感器1输出的模拟信号a(t)的第1不完全积分电路、71是具有与 第1不完全积分电路70相同的功能,对于来自第1不完全积分电路70的 不完全积分输出v(t)再次不完全积分的第2不完全积分电路。此第2 不完全积分电路71的时间常数T2与第1不完全积分电路70的时间常数 T1相同。

72是在加速度传感器69的检测输出上附加第1系数的第1衰减器构成 的第1系数电路、73是由衰减率为K的第2衰减器构成的第2系数电路, 此第2系数电路73是在第1.不完全积分电路70的不完全积分输出v(t) 上附加第2系数。而且上述第1系数电路72的衰减率是第2系数电路73 衰减率K的平方的1/2。此外,上述衰减率K是与后述的缓冲气袋的点火 装置供给点火电流后,缓冲气袋的膨胀完了之前所需时间td相等。

74是加法电路,在此加法电路74中,对来自上述第2不完全积分电路 71的输出X(t)、来自第1系数电路72的输出及来自第2系数电路73 的输出求和。75是比较电路,当来自加法电路74的和输出超过规定的阈 值时,可将输出电平切换到如高电平、76是驱动电路、77是作为乘员保 护装置主体的点火装置,此点火装置76,根据驱动电路76的输出使缓冲 气袋动作。

以下,说明以往装置的动作情况。

首先,车辆以一定的速度V0行进时,由于冲撞,如图26(A)所示, 作用在车辆的前后方向上的加速度a(t)通过加速度传感器69检测出, 此时乘员的头以一定速度V0甩出,另一方面,此时的加速度a(t)也作 用在乘员身上。由此,头对于车辆以一定的相对速度,即以V(t)(a(t) 的时间积分)动作。

另一方面,此时的加速度传感器69的输出a(t)在第1不完全积分电路 70积分。另外,由于头部动作,随着时间的经过,以冲撞前的位置作为初 期位置时,从其位置只是位移x(t)(v(t)的时间积分)。此位移x(t) 是用第2不完全积分电路71对第1不完全积分电路70的输出积分而求出 的,计算出实际时间中乘员头部的位移预测量。

接着,第1不完全积分电路70的输出v(t)由于第2不完全积分电 路71而迭加td,即可以求出v(t)×td,即在td时间内的位移量。进而, 加速度69的输出a(t)由于第1系数电路72只迭加1/2(td×td), 可以求出1/2(td×td)即td时间内的位移量。这些输出用加法电路74 相加,求出x(t)+v(t)td+1/2a(t)×(td×td)。也就是,可以求出从当时到td 时间后乘员头部位置的预测值x(t+td)。

将此预测值供给比较电路75,如图26(B),将缓冲气袋动作的位置设定 成与初期位置只偏离x的位置时,如x(t)所示的那样,比起实际上头部的位 置达到x的时刻t2,只是以快td的时刻t1动作。

如上所述的以往例中,由加速度信号,根据上述的式子计算出乘员头部 的位移,当计算的头部位移判断为规定量以上时,使乘员保护装置动作。

由于以往的车辆用乘员保护装置具有以上的结构,所以存在着以下的问 题。

(1)为了缩短判断时间,在位移信号x(t)上,在系数电路中使加速度 和速度常数倍相加的值而运算得到位移预测信号x(t+td)=x(t)+v(t)td+1/2a(t) ×(td×td),但是此位移预测信号x(t+td)与通常判断相比,只不过对于乘员 位移部分进行较早的判断,另外,还不能说此位移预测信号x(t+td)正确地 表示了乘员的位移,所以有时在不需要乘员保护装置动作时,提前使保护 装置动作,这样使判断冲撞的可靠性下降。

(2)不能对应于正面冲撞、斜向冲撞、对柱子等的冲撞、冲向路牙 子、潜入大型车下等各种冲撞状态,根据冲撞状态,有时没有必要地使乘 员保护装置动作或者冲撞的判断太迟。

(3)用于冲撞判断的比较器的阈值不是随时间变化而保持一定,这样 就不能对应各种冲撞状态,根据冲撞状态,有时没有必要地使乘员保护装 置动作或者冲撞的判断过迟。

(4)要求比前后方向的正面冲撞更短的冲撞判断时间的、对应于来自 侧方向的侧缓冲气袋的展开的情况下,往往冲撞判断迟缓。

本发明就是为了解决上述存在的问题,其目的在于对应各种的冲撞状 态,提供一种在更短的时间内进行可靠性高的冲撞判断的车辆的冲撞检测 装置及乘员保护装置的起动判断装置。

本发明涉及的车辆的冲撞检测装置,是根据从检测车辆的冲撞加速度的 加速度检测单元来的加速度判断车辆冲撞的车辆冲撞检测装置,它具有根 据上述冲撞加速度,计算出冲撞时作用在车辆上的推断冲撞的冲撞力运 算单元和根据此推断冲撞力进行冲撞判断的冲撞判断单元。

另外,还具有从冲撞加速度算出推断速度的速度运算单元和从上述推断 速度算出推断位移的位移运算单元,冲撞力运算单元是根据上述加速度、 上述推断速度及上述推断位移来算出冲撞时发生在车辆上的推断冲撞力 的。

冲撞推断单元是根据以推断冲撞力、冲撞加速度、推断速度及推断位移 作为变数的多元坐标上的坐标值,来进行冲撞判断的。

冲撞力运算单元是在由质量、衰减器、弹簧组成的1自由度模型中,使 车辆模型化来运算出推断冲撞力的。

冲撞判断单元运算乘车人对于车辆的推断相对位移,根据推断相对位移 及推断冲撞力进行冲撞判断。

此外,还具有从冲撞加速度算出推断速度的一次延迟元件滤波器和从推 断速度算出的推断位移的一次延迟元件滤波器。

本发明涉及的乘员保护装置的起动判断装置,设有根据从检测车辆的冲 撞加速度的加速度检测单元的冲撞加速度,算出冲撞时发生在车辆上的推 断冲撞力的冲撞力运算单元和根据此推断冲撞力进行乘员保护装置的起动 判断的起动判断单元。

此外,有从冲撞加速度算出推断速度的速度运算单元,移动判断单元在 推断速度为阈值以上时起动乘员保护装置,同时上述阈值是根据冲撞力的 大小而确定的。

在车辆上设置多个加速度检测单元,以便从不同的方向检测冲撞加速 度,起动判断单元根据上述多个加速度检测单元的输出进行乘员保护装置 的起动判断。

附图简单说明

图1是表示本发明实施方案1中车辆的冲撞检测装置的方框图。

图2是表示本发明实施方案1中,用于冲撞力运算单元内运算的1自由 度的质量-衰减器-弹簧模型的概念图

图3是表示本发明实施方案1中,以冲撞检测装置内部的冲撞力运算单 元的1自由度的质量-衰减器-弹簧模型为基础的推断冲撞力运算步骤的 方框图。

图4是表示本发明实施方案1的车辆冲撞检测装置中的1自由度的质量 -衰减器-弹簧模型上加以冲撞力f时,在车辆等价质量上产生的加速度、 速度、位移的时间响应波形的模拟结果说明图。

图5是表示本发明实施方案1的车辆冲撞装置中的一次延迟元件滤波 器的频率响应特性例的说明图。

图6是表示本发明实施方案1的车辆的冲撞检测装置中表示推断冲撞 原理的推断速度、推断位移、冲撞力的模拟结果的说明图。

图7是表示本发明实施方案1的车辆冲撞检测装置中的多元空间冲撞 判断单元的冲撞力作为横轴、速度作为纵轴的平面上表示弹性冲撞时的冲 撞力和速度的轨迹说明图。

图8是表示本发明实施方案1的车辆冲撞检测装置中的多元空间冲撞 判断单元的冲撞力作为横轴、速度作为纵轴的平面上表示弹性冲撞时的冲 撞力和推断速度的轨迹说明图。

图9是表示本发明实施方案1的车辆冲撞检测装置中的多元空间冲撞 判断单元的冲撞力作为横轴、速度作为纵轴的平面上表示弹性冲撞时的冲 撞力和推断位移的轨迹说明图。

图10是表示本发明实施方案1的车辆冲撞检测装置中的多元空间冲撞 判断单元的冲撞力作为横轴、速度作为纵轴的平面上表示弹性冲撞时的冲 撞力和加速度的轨迹说明图。

图11是为了表示本发明实施方案1的车辆冲撞检测装置中的多元空间 冲撞判断的原理,举例表示车辆的关和与其它车辆侧面冲撞时的说明 图。

图12是表示本发明实施方案1的车辆冲撞检测装置中的多元空间冲撞 判断单元的冲撞力作为横轴、速度作为纵轴的平面上表示关门时产生的推 断冲撞力和推断速度的轨迹说明图。

图13表示本发明实施方案1的车辆冲撞检测装置中的多元空间冲撞冲 撞判断单元的冲撞力作为横轴、速度作为纵轴的平面上,设想低速度的侧 面冲撞时产生的推断冲撞力和推断速度轨迹说明图。

图14表示本发明实施方案1的车辆冲撞检测装置中的多元空间冲撞冲 撞判断单元的冲撞力作为横轴、速度作为纵轴的平面上,设想中速度的侧 面冲撞时产生的推断冲撞力和推断速度轨迹说明图。

图15表示本发明实施方案1的车辆冲撞检测装置中的多元空间冲撞冲 撞判断单元的冲撞力作为横轴、速度作为纵轴的平面上,设想高速度的侧 面冲撞时产生的推断冲撞力和推断速度轨迹说明图。

图16是表示本发明实施方案1的车辆冲撞检测装置中的多元空间冲撞 冲撞判断单元的冲撞力作为横轴、速度作为纵轴的平面上设定阈值例的说 明图。

图17是表示本发明实施方案2的冲撞力-乘车人位移运算单元中,模 拟车辆的1自由度模型和模拟乘车人动作的1自由度模型的说明图。

图18是表示本发明实施方案2冲撞力-乘车人位移运算单元例子的方 框图。

图19是表示本发明实施方案3的车辆冲撞检测装置中的多元空间冲撞 判断单元的冲撞力作为横轴、速度作为纵轴的平面上设定判断非破坏冲撞 阈值例的说明图。

图20是表示本发明实施方案4的车辆冲撞检测装置中的多元空间冲撞 判断单元的冲撞力作为横轴、速度作为纵轴的平面上,判断二阶段冲撞阈 值设定例的说明图。

图21是表示本发明实施方案5的车辆冲撞检测装置中,设置了可以检 测前后方向和侧面方向的冲撞加速度的车辆冲撞加速度检测装置的车辆说 明图。

图22是表示本发明实施方案6的车辆冲撞检测装置的方框图。

图23是表示本发明实施方案7的车辆冲撞检测装置的方框图。

图24是表示本发明实施方案7的车辆冲撞检测装置的计算处理的一主 控制例的流程图

图25是表示以往车辆保护装置的驱动方法的方框图。

图26是表示以往的车辆用乘员保护装置的驱动方法中所得到的冲撞时 加速度传感器的检测输出的输出波形图及位移量的说明图。

以下说明本发明的一个实施方案。

实施方案1

图1是表示本发明实施方案1中车辆的冲撞检测装置的方框图、图2是 表示冲撞检测装置内部的冲撞力运算单元原理的1自由度质量-衰减器- 弹簧模型概念图、图3是表示根据冲撞检测装置内部的冲撞力运算单元的1 自由度-衰减器-弹簧模型的推断冲撞力运算步骤的方框图、图4表示车 辆冲撞检测装置中1自由度-衰减器-弹簧模型上加入冲撞力f时,在车 辆等价质量上产生的加速度、速度、位移的对时间响应波形的模拟结果。

图5是表示冲撞检测装置中一次延迟元件滤波器的频率响应特性一例的 特性图、图6是表示冲撞检测装置中推断冲撞力的原理的推断速度、推断 位移、冲撞力的模拟结果的波形图、图7是表示多元空间冲撞判断单元中 弹性冲撞时的冲撞力和速度关系的说明图、图8是表示多元空间冲撞判断 单元中弹性冲撞时的推断冲撞力和推断速度关系的说明图、图9表示多元 空间冲撞判断单元中弹性冲撞时的推断冲撞力和推断位移关系的说明图、 图10是表示多元空间冲撞判断单元弹性冲撞时的推断冲撞力和加速度关系 的说明图。

图11是为了说明多元空间冲撞判断的原理,举例表示车辆的闭门和其 它车辆侧方冲撞的说明图、图12是表示多元空间冲撞判断单元中关门时产 生的推断冲撞力和推断速度关系的说明图、图13是表示多元空间冲撞判断 单元中设想的低速度侧冲撞时产生的推断冲撞力和推断速度关系的说明 图、图14是表示多元空间冲撞判断单元中中速度的侧方冲撞时产生的推断 冲撞力和推断速度关系的说明图、图15是表示多元空间冲撞判断单元中设 想的高速度侧方冲撞时产生的推断冲撞力和推断速度关系的说明图、图16 是表示多元空间冲撞判断单元中,以冲撞力为横轴、速度为纵轴的平面上 设定阈值例子的说明图。

图1中,1是检测车辆的前后方向、左右方向加速度的车辆冲撞加速度 检测装置、2是车辆冲撞加速度装置1的输出信号的冲撞加速度信号、5 是将冲撞加速度信号2变换成推断速度信号的一次延迟元件滤波器、6是 通过一次延迟元件滤波器5输出的推断速度信号、7是将推断速度信号6 变换成推断位移信号的一次延迟元件形滤波器、8是通过一次延迟元件滤 波器7输出的推断位移信号、13是将冲撞加速度信号2和速度推断信号6 和位移推断信号8作为输入后,运算车辆的冲撞力的冲撞力运算单元、14 是从冲撞力运算单元13输出的推断冲撞力信号。

15是多元空间冲撞判断单元,其作用是在将推断冲撞力信号14及冲撞 加速度信号2、推断速度信号6和推断位移信号8组成的多个信号作为变 量的多元空间上描绘出它们的轨迹,判断这个轨迹是否超过预先设定在多 元空间上的阈值,即判断由推断冲撞力信号14及冲撞加速度信号2、推断 速度信号6和推断位移信号8决定的多元空间上的坐标是否处于ON区域 或OFF区域,如果在ON区域,就输出使乘员保护装置动作的冲撞判断信 号,如果在OFF区域,就不输出冲撞判断信号。

16是由一次延迟元件滤波器5、一次延迟元件滤波器7和冲撞力运算单 元13及多元空间冲撞判断单元15组成的控制器、17是从多元空间冲撞判 断单元15输出的冲撞判断信号,通过该冲撞判断信号17的输出,使得设 置在车辆上的缓冲气袋和安全席带预张力装置等的乘员保护装置动作,以 便保护乘员免受车辆冲撞时的冲撞。

在图2中,18是将车辆1个自由度下模型化时的车辆等价质量、19 是加在车辆等价质量18上的车辆等价衰减器、20是支持车辆等价质量18 的车辆等价弹簧、21是冲撞时加在车辆等价质量18上的冲撞力(f)、 22是车辆等价质量18和车辆衰减器19和车辆等价弹簧20构成的1自由度 模型上,加上冲撞力(f)21时,在车辆等价质量18上产生的车辆等价 位移(x1)。

图3中说明在冲撞力运算单元中,使用上述1自由度模型时的冲撞力运 算单元13。9是将车辆等价质量18的常数值乘以作为输入冲撞加速度信 号2运算后,输出其乘算结果的质量系数乘法器、10是将车辆等价衰减19 的常数值乘以作为输入推断速度信号6运算后,输出其乘算结果的质量系 数乘法器、11是将车辆等价弹簧20的常数值乘以作为输入推断位移信号8 运算后,输出其乘算结果的弹簧系数乘法器、12是加算上述的质量系数乘 法器9和质量系数10和弹簧系数乘法器11的输出值的加法器、13是由上 述的质量系数乘法器9和质量系数乘法器10和弹簧系数乘法器11和加法 器12构成的冲撞力运算单元、14是作为加法器的运算结果求出的推断冲 撞力信号。

以下说明动作状况。

一般,车辆冲撞障碍物或车辆相互冲撞时,在车辆上产生冲撞力。在该 二个物体上产生的力是依此二物体的质量、速度、冲突面形状、冲突面弹 性系数等而有所不同。例如,在构成两者材料上不产生塑性变形的弹性冲 突,即速度低的冲撞及锤击或关门等的不展开缓冲气袋的冲撞时,发生的 冲撞力大约是近似正弦半波的波形,这在Hertz的接触理论中是已公知的。

此时,车体及乘车人所受到的伤害程度,不是发生冲撞力的最大值 Fmax,是与发生冲撞力f(t)时间t内的积分值,即冲量F.t(=f(t)dt的时间 积分)的大小有密切的关系。

另外,冲撞的壁面坚硬时,一般,冲撞力的最大值Fmax及随之产生的 加速度的最大值a max变大。可是,当冲撞的地方硬,冲撞速度小时,冲 撞力的最大值F max即使变大,发生的冲量F.t也小。同样,与其相当的、 用手锤敲击车辆或强力地关门时,由于弹性冲撞,虽然也产生冲撞力的最 大值F max及最大加速度a max的大的加振力,但是其冲量小,对车体及 乘车人的冲击的程度极小。

另一方面,对车辆产生塑性破坏,有很大的破损的冲撞时,即必需展开 缓冲气袋那样的冲撞速度激烈的冲撞时,产生的冲撞力与弹性冲突不同, 一般,最大发生力F max和冲量F.t一同变大。另外在特殊冲撞中,例如 小型车潜入大型车内的冲撞等,有时为两者的冲撞面的弹性弱的状态,产 生的冲撞力的最大值F max和最大加速度a max变得比较小。可是,此时 发生冲撞力的持续时间长,所以冲量F.t的值变得极大。

因而,根据冲撞力和冲量而进行冲撞判断时,即使发生的冲撞力的最大 值F max和最大加速度a max比较小,也能正确判断对车辆的破坏和对乘 车人的冲击程度。也就是,与车体上产生的加速度和速度的最大值等直接 用于冲撞判断的方法相比,将加在车体上的冲撞力及换算成其冲量后,用 于冲撞判断的方法更适合于实际上评价冲撞力对于车辆和乘车人的影响程 度。

用图2所示的1自由度模型,对于弹性速度低的冲撞及用锤敲击和关门 等的非破坏冲撞,即不用展开缓冲气袋的冲撞中,发生在车体上的加速度、 速度、位移进行解析,使本发明的冲撞力的推断原理更加明确了。求出图2 所示的1自由度模型的运动方程式,如以下所示。 m 1 x . . 1 + c 1 x . 1 + k 1 x 1 = f . . . . . ( 1 )

如式(1)所示,(加速度x1)乘以质量m1的值与(速度x1)乘以衰减 常数c1的值及(变位x1)乘以弹簧常数k1的值之和就等于冲撞力f。

图3是用方框图表示上述式(1)的关系图。即将冲撞时的车辆作成近 似1自由度模型,通过给质量m1和衰减c1和弹簧k1设定适当的常数值, 从设置在车辆冲撞加速度检测装置1得到的冲撞加速度信号2及由此判断 的推断速度信号6、推断位移信号8,将这些的相乘结果用加法器14相加 可以运算推断冲撞力信号14。

使用图4、图5、图6说明用图2所示的1自由度模型,根据检测出的 车辆加速度对冲撞力f的推断。图4是对图2所示的1自由度模型给予具 体的常数值,用计算机模拟过渡振动特性的结果。在图4中,30是在1自 由度模型上加上正弦半波时间τ=5ms、最大加振力F max=125tonf的正 弦半波状的冲撞力波形、31是设定车体等价质量m1=100kg、车体等价衰 减c1=64kgf.s/cm、车体等价弹簧k1=100tonf/cm的常数值时的1自由度模 型上加入上述冲撞力波形30时的车辆等价加速度波形、同样32是车辆等 价速度波形、33是车辆等价位移波形。

车辆冲撞时,从冲撞加速度检测装置1得到的信号只是加速度波形31, 而速度波形32和位移波形33是以此加速度波形31为基础推断的。另外, 各常数值不是直接使用车辆的重量等,而是预先从实验和解析求出车辆的 振动特性,求出成为近似1自由度时适当值的常数值的例子。

图5是为了从冲撞加速度信号2推断速度信号和位置信号而使用的、上 述图1所示的一次延迟元件滤波器的频率应答特性的一例。34是一次延迟 元件滤波器5的时间常数T1成为截止频率fc=2Hz时的频率特性,上图表 示增益特性、下图表示相位特性。同样,35是一次延迟元件滤波器5和一 次延迟元件滤波器7串联成两级相接时的频率特性。

此外,在图5中表示了将一次延迟元件滤波器7的时间常数T2置于与 一次延迟元件滤波器7的时间常数T1相等时的频率特性,但是时间常数 T1和时间常数T2相等或不相等都可以,对此没有特殊的限制。使用拉普 拉斯运算子s表示一次延迟元件滤波器5的传输特性G1(S)时,得到下 式(2)。 G 1 ( S ) = T 1 T 1 S + 1 . . . . . ( 2 ) 另外时间常数T1和截止频率fc的关系式用下式(3)表示。 f c = 1 2 π T 1 . . . . . ( 3 )

同样,将一次延迟元件滤波器5和一次延迟元件滤波器7串联成两级相 接时的传输特性G2(S)如下式(4)所示。 G 2 ( S ) = T 1 T 2 ( T 1 S + 1 ) ( T 2 S + 1 ) . . . . . ( 4 )

从图5所示可知,一次延迟元件滤波器5的传输特性G1(S)在fc以 上时具有积分1/s的特性,fc以下时,成为T1的定值。即只是积分冲撞时 产生的高频,而对于通常行走时产生的低频成分和加速度传感器的DC漂 移成分等噪声不进行积分,所以,与进行单纯积分1/s不同,输出结果不是 饱和,不需要每隔一定时间复位积分器的输出。

从图5的相位关系可以看出,加速度在G1(S)积分后得到的推断速 度信号比加速度信号滞后90度、在G2(S)二次积分后得到的推断位移 信号比加速度滞后180度相位。即只是将推断位移信号用于冲撞判断时, 比加速度信号的信息,判断时间只是滞后180度的相位。

其中,推断冲撞力由于是由加速度信号和推断速度信号和推断位移信号 求出的,所以上述的判断时间的延迟,要比只使用推断位移信号得到了改 善。

图6是使用图4所示的模拟得到的车辆等价加速度波形31,将其假定 为冲撞时产生在车辆上的加速度信号2,使用具有上述图5的频率特性 34、35的一次延迟元件滤波器5及7而得到的推断速度和推断位移的模拟 结果。

36是输入车辆等价加速度波形31时的一次延迟元件滤波器5输出的车 辆推断速度波形、37是输入车辆等价加速度波形31时的一次延迟元件滤 波器5、7的二级输出的车辆推断位移波形、38是用加法器12把在上述 车辆等价加速度波形31上乘以图2所示的车辆等价质量(m1)18的值、 推断速度波形36上乘以车辆等价衰减(c1)19的值、推断位移波形37 上乘以车辆等价弹簧(k1)的值相加后的推断冲撞力(f)。  

图6的推断速度波形36和推断位移波形37与图4得到的车辆等价速度 波形32和车辆等价位移波形33基本是相同的波形。同样,图6所表示的 推断冲撞力(f)38与图4得到的冲撞力波形30大约是相同的波形。由 此可以看出,如果正确地给定近似车辆1自由度模型的常数值,则可以从 冲撞加速度运算出正确的冲撞力。

以下,在图7、图8、图9、图10中表示了冲撞检测装置内部的多元 空间冲撞判断单元中的平面上轨迹,说明冲撞判断原理。

图7的39是在图4的1自由度模型上所加的冲撞力波形30作为横轴、 此时在车辆等价质量上产生的车辆等价速度波形32作为纵轴后所描绘的平 面上的轨迹。图8中的40是用图6所示的冲撞力运算单元求出的推断冲撞 力波形(f)38作为横轴、推断速度波形36作为纵轴描绘的平面轨迹。

图7所示的冲撞力-速度的平面轨迹39表示1自由度模型的线性的振 动状态,在冲撞力0处从速度0的原点开始速度和冲撞力同时增加,接着 速度减少,冲撞力达到最大时的时刻,速度大约变为0,不久,速度成为 负方向,冲撞力也减少。正弦半波的冲撞力,如图4所示,在5ms以后成 为0的值,但是对于速度,即使在5ms以后也产生残留振动,在图7的平 面上描绘了冲撞力0上,速度在最大约±0.5m/s的直线上反复衰减状态。

另一方面,图8所示的推断冲撞力-推断速度的平面轨迹40也描绘了 除去冲撞力向负方向的偏移外,与冲撞力-速度的平面轨迹39大约是相同 的轨迹,从冲撞加速度信号4,通过一次延迟元件滤波器5和冲撞力运算 单元13运算的推断冲撞力信号14和推断速度信号6在平面及多元空间上 的轨迹也可以再现完全冲撞时的状态。

一般,冲撞力f和速度x1相乘的值是力学上的功率,将其换算成热力 学的物理量时,相当于单位时间内发生的热量。这适用于评价冲撞力对于 人体冲撞的影响程度。在平面上观察冲撞力和速度的轨迹,比起观察冲撞 力和时间的关系更能特征地判断冲撞现象的动作。

图9的41是用上述图6所示的图3冲撞力运算单元求出的推断冲撞力 波形(f)38作为横轴,推断位移波形37作为纵轴描绘的平面轨迹。同 样,图10的42是以推断冲撞力波形(f)38作为横轴,相当于车辆加速 度信号4的加速度波形31作为纵轴描绘的平面轨迹。上述的冲撞力-速度 的平面上,以加入这些位移和加速度的平面的多元空间上的轨迹表征冲撞 现象特点,进而可详细地判断冲撞。

图11、图12、图13、图14、图15、图16中更具体地表示、说明冲 撞检测装置的冲撞判断原理。这里是以侧面缓冲气袋展开时的冲撞为例进 行说明的。图11A是缓冲气袋没有展开冲撞例的关门情况、图11(B) 是用图表示车辆与其它车辆侧向冲撞例的说明图。

图11中,43是车辆、44是车辆43的门、45是冲撞车辆43的追撞车 辆。来自侧方的追撞车辆45的追撞速度小时,缓冲气袋不展开,但是追撞 速度大时缓冲气袋展开。一般,冲撞判断的基准是以加在模型人上的冲撞 力大小来决定的。另外缓冲气袋展开前所允许的判断时间取决于模型人冲 撞车内的手柄或玻璃或侧面门等之前所需的时间和向缓冲气袋给予点火信 号后,缓冲气袋膨胀完成展开所需的时间。

图12、13是缓冲气袋没有展开,即OFF要素中冲撞力和推断速度的 平面上的例子。图12的46是关门时,设想产生的加速度信号2后,所描 绘的推断冲撞力-推断速度的平面轨迹。图13的47是设想在低速度下, 车辆受到侧向冲撞时产生的冲撞加速度信号2后,所描绘的推断冲撞力- 推断速度的平面轨迹。

图14、图15是展开缓冲气袋、即ON要素中的推断冲撞力和推断速度 的平面例。图14的48是设想以中速从侧方冲撞车辆时,所产生的冲撞加 速度信号2后所描绘的推断冲撞力-推断速度的平面轨迹,图15的49是 设想以高速从侧方冲撞车辆时,所产生的冲撞加速度信号2后所描绘的推 断冲撞力-推断速度的平面轨迹。

图16是在冲撞力-速度的平面上设定阈值的例子,以便使上述图12的 门关闭时的平面轨迹46和图13的(低速度)侧冲撞的平面轨迹47的冲撞 判断信号处于OFF,而且使得图14的(中速度)侧冲撞的平面轨迹48和 图15的(高速度)侧冲撞的平面轨迹49在极短的时间内的冲撞判断处于 ON的区域。在此图中,50是识别ON区域和OFF区域的阈值,此阈值 50在冲撞力小时和冲撞力大时,ON/OF判断的速度大小是不同的,冲撞 力小时,至少要比关闭门时的最大推断速度大,而冲撞力大时,至少要比 不需要起动乘员保护装置的低速度侧冲撞的最大推断速度小。

这里,从图16可以看出,在平面上描绘轨迹,其上使用阈值50进行区 域判断,OFF要素的平面轨迹46和47以及ON要素的平面轨迹48和49 可明显的识别。

此外,虽然图中未表示,但是对于冲撞力-位移及冲撞力-加速度的平 面,用同样阈值的判断也可以加在上述冲撞力-速度的平面判断上,通过 使用这些作为多元空间上的阈值判断,可以更详细地决定冲撞判断,这是 勿庸待言的。

进而,这里是将车辆作成近似1自由度的模型化,但对于车辆模型化是 二次以上的多自由度模型化也是无妨的。由此运算量虽然增加,但冲撞力 的推断精度提高,可以进行更高度的冲撞判断。

实施方案2

实施方案2是将车辆及乘车人近似于1自由度模型。

图17是实施方案2的冲撞力-乘车人位移运算单元中,模拟车辆的1 自由度模型和模拟乘车人动作1自由度模型的说明图、图18是表示冲撞力 -乘车人位移运算单元例子的方框图。

这些图中,具有与上述实施方案1具有同样的构成附以相同的符号,省 略其说明。

图17中,23是将乘车人1自由度模型近似时的乘车人等价质量m2, 同样24是乘车人衰减c2、25是乘车人等价弹簧k2、26是乘车人的等价 位移。此外,车辆是与图2相同的1自由度模型。图18中,27是冲撞加 速度信号2和推断速度信号6和推断位移信号8为基准,运算乘车人位移 的运算单元、28是图1中所示的冲撞力运算单元和该冲撞力运算单元和乘 车人位移运算单元27组合的冲撞力-乘车人位移运算单元,29是从冲撞 力-乘车人位移运算单元28输出的乘车人等价推断位移信号,同样地此冲 撞力-乘车人位移运算单元28也输出推断冲撞力14。

以下说明动作状况。

如图17所示,车辆和乘车人分别以1自由度模型化时的运动方程式如 下式(5)所示。

这里,车辆加速度x1是用加速度检测装置1测定的,所以可以从式(5) 的第2式求出表示乘车人和车辆的相对位移(x2-x1)和车辆的加速度x1 的关系的传输函数G3(S),则得到下式(6)。 G 3 ( S ) = ( x 2 - x 1 ) x 1 S 2 = - m 2 m 2 S 2 + c 2 S + k 2 . . . . . ( 6 )

从该式(6)可以看出,将车辆的加速度x1作为输入后,若加在G3 (s)上时,作为输出可以得到乘车人和车辆的位移(x2-x1)。另一方面, 加在车辆上的冲撞力f,在式(5)的第1式中,假设乘车人的质量和衰 减和弹簧的值与车辆的这些值相比很小(m2<<m1、c2<<c1、k2<<k1) 时,与式(1)同样地可以从车辆的加速度x1求出。

这里,虽然图中未表示,将从式(6)的关系求出的乘车人和车辆的相 对位移(x2-x1)作为多元空间冲撞判断单元15的信号之一而加入时, 则可以在多元空间描绘出用于冲撞判断的新轨迹,可进行更详细、致密的 冲撞判断。这里,是将乘车人用1自由度模型化,若将乘车人的模型 通过二元以上的多自由度模型化也是可以的。由此虽然运算量增加,但是 提高了位移量的推断,可以进行高度的冲撞判断,这是勿庸待言的。

实施方案3

此实施方案3是上述实施方案1的图16所示的阈值设定上,在非破坏 冲撞的情况下,使乘员保护装置不动作的方案。

图19是将此实施方案3的车辆的冲撞检测装置中的多元空间冲撞判断 单元的冲撞力作为横轴,速度作为纵轴的平面上,表示判断非破坏冲撞阈 值设定例的说明图。另外,具有与实施方案1、2相同构成的部分,附以 相同的符号,并省略其说明。

图19中,51是为了区别由于关门或锤打而产生的OFF要素的冲撞加 速度信号2和ON要素的冲撞加速度信号2,以从上述多元空间冲撞判断 单元15的多元空间取出的一平面后得到的二元空间之一的冲撞力作为横 轴,速度作为纵轴的平面上,设定非破坏冲撞判断用阈值的例子。此外, 在图19中,省略了与本发明的实施方案没有直接关系的区域部分。

以下,说明动作状况。

如上述实施方案1中图7、图8、图12所示,对于不产生塑性变形的 关门、或锤击等的弹性冲撞,冲撞力虽然没有大到一定值以上,但是由于 硬部件间相撞,有时也产生大的加速度和速度,描绘出图49中46样的、 上面是凸形圆弧轨迹。另一方面,车辆的侧面与其它车辆低速相撞时,例 如构成门铠装的柔软薄板凹陷,虽然瞬间不产生大的加速度和速度,但 是最终产生的冲撞力要比关门时的值大,如图19的47中所描绘的轨迹。

为了将上述2种以上的冲撞都作为OFF要素判断,在上述冲撞力和速 度的平面上,通过提供满足(i)第1冲撞力(f1)和第2冲撞力(f2) 间,速度是一定值(v3)、(ii)上述第2冲撞力(f2)和第3冲撞力 (f3)间,速度是线性地减少、(iii)上述第3冲撞力(f3)和第4冲 撞力(f4)间,速度是一定值(v1)、(iv)对于比上述第4冲撞力(f4) 大的冲撞力,速度是线性增加的阈值,可以在比上述16的阈值50更短的 时间进行ON要素的冲撞判断。

实施方案4

本实施方案4是设定可以判断二段冲撞的阈值。

图20是将实施方案4的车辆检测装置中的多元空间冲撞判断单元的冲 撞力作为横轴、速度作为纵轴的平面上表示设定判断二段冲撞阈值的例 子。此外,与上述各实施方案具有同样构成的附与相同的符号并省略说明。

图20中,52是对于识别车辆门的薄壁钢板或缓冲器等钢性低的柔软部 分最初受到的冲撞,冲撞力缓和后,对于车辆框架部等硬的部分进而进行 二段冲撞的OFF要素的冲撞加速度信号2和ON要素的冲撞加速度信号 2,为了将上述两者区别,从多元空间冲撞判断单元15的多元空间取出一 平面,得到的二元空间之一的冲撞力作为横轴、速度作为纵轴的平面中设 定二段冲撞判断用阈值的例子。此外,在图20中,省略了与本发明的实施 方案没有直接关系的部分区域。

以下说明动作状况。

例如车辆的侧面与其它车辆以低速度冲撞时,由于构成门的铠装柔软部 分钢板产生凹陷,所以瞬间不产生大的加速度和速度,但是最终产生的冲 撞力要比关门时的值大,例如图20描绘的47轨迹。柔软部分的冲撞破坏 进行到一定范围以上时,就塑性破坏,达到车辆框架等的刚性坚硬部分, 则接近实施方案3中关门的平面状态。图20的47的轨迹超过冲撞力(f4) 时刻,冲撞力不变大但描绘出发生的加速度和速度瞬时变大的平面轨迹。

将此冲撞作为OFF要素确实判断的同时,为了迅速地判断ON要素的 加速度信号,在上述平面上,加入实施方案3的阈值,通过提供满足(i) 上述第4冲撞力(f4)和第5冲撞力(f5)间,速度以线性地增加、(ii) 上述第5冲撞力(f5)和第6冲撞力(f6)间,其速度是以第4冲撞力(f4) 和第5冲撞力(f5)间的斜率倍数急速倾斜地线性增加、(iii)对于比上 述第4冲撞力(f4)大的冲撞力,速度是一定值(v4)的阈值,即使发 生上述二段冲撞,也可以明确地判断ON要素冲撞和OFF冲撞要素冲撞, 可以防止由于二段冲撞的误动作。

实施方案5

在实施方案5中,说明将加速度检测装置的车辆内的安装位置及多个加 速度检测装置组合使用情况。

图21是表示实施方案5的车辆的冲撞检测装置中、为了检测前后方向 和侧方向的冲撞加速度而设置的车辆冲撞检测装置的车辆说明图。此外, 对于具有上述各上述方案相同构成的部件附以相同的符号,并省略其说 明。

图21中,(a)表示车辆的俯视图、(b)表示车辆的侧视图。图中 的53是安装在车辆43中央部前方、用于检测车辆的前后方向及侧方向的 二轴向加速度的前方加速度装置、54是根据前方加速度检测装置53的冲 撞加速度信号2进行冲撞判断,根据此冲撞判断信号17而展开的安装在车 辆驾驶席上的前方缓冲气袋、55是设置在副驾驶席上相同的副驾驶前方缓 冲气袋。

56是安装在车辆43驾驶席的侧面的、用于检测车辆侧方方向加速度的 驾驶席侧-侧方方向加速度检测装置、57是安装在副驾驶席侧面的、相同 的副驾驶侧-侧方方向加速度检测装置、58是根据驾驶侧-侧方方向加速 度检测装置56及副驾驶侧-侧方方向加速度检测装置57的冲撞加速度信 号2进行冲撞判断、根据此冲撞判断信号17而展开安装在车辆坐席侧方的 侧方缓冲气袋。

以下说明其动作状况。

如图21所示,通过将检测前后方向及侧方向的二轴加速度的前方加速 度检测装置53、驾驶侧-侧方方向加速度检测装置56、副驾驶侧-侧方 方向加速度检测装置57三个加速度检测装置组合使用,可以正确地测定侧 面冲撞、斜方冲撞、正面冲撞、后方冲撞等的来自一切方向的冲撞加速度。

将这些多个冲撞加速度信号组合在上述实施方案1、2、3、4中所示 的控制器中,通过控制器内部的一次延迟元件滤波器5及7变换成推断速 度信号6、推断位移信号8,通过冲撞运算单元13求出前后方向冲撞力和 侧方方向冲撞力,组合这些全部信号在多元空间冲撞判断单元进行冲撞判 断,对应于侧面冲撞、斜方冲撞、正面冲撞、后方冲撞等的来自一切方向 的冲撞,可以进行前方缓冲气袋55、副驾驶前方缓冲气袋55及侧方缓冲 气袋58的展开判断。

另外,通过将前方缓冲气袋55、副驾驶前方缓冲气袋55及侧方缓冲气 袋58的组合展开,可以进行相应冲撞的乘员保护。

实施方案6

此实施方案6是使用模拟运算器,构成控制器的一部分。

图22表示实施方案6中车辆冲撞检测装置的方框图,具有与上述各实 施方案具有相同的构成附以相同的符号省略其说明。

图22中,59是构成模拟元件的一次延迟元件、60是输入冲撞加速度 信号2时的、作为一次延迟元件59输出的推断信号、61是用模拟元件构 成的一次延迟元件、62是输入推断速度信号2时的、作为一次延迟元件61 输出的推断位移信号、63是用模拟元件构成的冲撞力运算单元、64是作 为冲撞力运算单元63的输出的推断冲撞信号、65是总括上述模拟元件而 构成的模拟运算器、66是冲撞加速度信号2、推断加速度信号60、推断 位移信号62及推断冲撞信号64的多个模拟信号的多路调制器、67是含有 多路调制器66和A/D变换器3、多元空间判断单元15的数字控制器。

以下说明动作状况。

为了从冲撞加速度信号2得到推断速度信号,具有式(2)特性的一次 延迟元件滤波器59,仅是由组合了操作放大器电阻和电容的模拟元件构 成的。一次延迟元件滤波器61也仅是由同样的模拟元件构成的。同样,冲 撞力运算单元13若也是由图3所示的一自由度模型构成时,由于用操作放 大器、电容、电阻可以构成乘法器和加法器,所以仅用模拟元件可以构成 冲撞力运算单元63。

用这样的模拟元件,从冲撞加速度信号2求出推断速度信号60、推断 位移信号62、推断冲撞力信号64,这些信号通过设置在数字控制器上的 多路调制器66输入到A/D变换器3,通过含在数字控制器67中的多元空 间判断单元15进行冲撞判断,输出冲撞判断信号17。

一般,由数字运算器构成高次滤波器时,特别是含有高频区域内的积分 动作时,有必要将数据的取样周期加快,与此相配合,数字控制器的周期 也需要加快。可是如上所述,由于是由模拟运算器65构成一次延迟元件滤 波器60及61和冲撞力运算单元63,所以是可以提高运算速度,即使不使 用运算速度高的、高价数字CPU也可以构成速答性优良的冲撞检测装置。

实施方案7

上述实施方案6中,使用模拟运算器构成控制器的一部分,但是在此实 施方案7中是用数字元件构成控制器。    

图23中,表示了实施方案7中的车辆冲撞检测装置的方框图、图24是 表示冲撞检测装置中计算处理的主控制的一例的流程图。上述各实施的状 态附以相同的符号,在此省略其说明。

在这些图中,68是由包括上述一次延迟元件滤波器5及7和冲撞运算 单元13及一个数字运算器(CPU)构成的、含有A/D变换器3的数字控 制器。这里,由运算器构成控制器时,要求高速取样周期,但是由于近年 来数字运算元件的显著的发展,每年都高速化,成本也急速下降。这样, 通过低成本地利用高速数字运算子进行运算,所以使用数字运算子也可以 构成控制器。

以下按照图24所示的流程图说明根据图23所示的数字控制器68处理 上述实施方案7的动作过程。

首先,处理F100开始动作,在F101根据预先设定的取样时间T,通 过A/D变换器3将车辆冲撞加速度检测装置1来的加速度信号2变换成数 值的加速度信号4输入到数字控制器68的内部、通过作为处理F102的数 字滤波器构成的推断速度运算程序将加速度信号4变换成推断速度信号 6。

同样,通过处理F103的以数字滤波器构成的推断速度运算程序将推断 速度信号6变换成推断位移信号8,通过处理F104的推断冲撞力运算程 序,将加速度信号4和推断速度信号6及推断位移信号8与预先模型化设 定车体的1自由度模型的各常数值进行乘法运算和加法运算后,变换成推 断冲撞力信号14。用处理F105判断,通过以上的运算处理程序得到的加 速度信号4和推断速度信号6及推断位移信号8及推断冲撞力信号14为基 础,而描绘出的多元空间上的轨迹是否超过预先在多元空间冲撞判断单元 15的阈值,处理F105的判断是yes时,进入F106,则冲撞判断信号17 成为on状态,处理F107中缓冲气袋展开,在处理F108动作停止。

另一方面,处理F105的判断是no时,则再次回到处理F101的加速度 数据输入端,重复同样的处理。在图24的流程图中,如图所示F102、 F103、F104的各运算处理程序虽是串联的,但是,构成数字控制器的CPU 中有定时中断等的多重中断功能时,这些处理程序也可以并联处理。

以上所述,由于控制器的全部是由数字元件和上述软件构成的,所以可 以提高模拟元件中成为问题的耐噪音性,另外零件个数也可以大幅度地减 少,所以可以减少由于元件的故障而带来的误操作的频度,这样可以提高 冲撞判断的可靠性。

上述各实施方案中,根据冲撞判断信号向点火装置供给点火电流后,可 以使缓冲气袋点火,另外也可以使安全带拉紧装置动作。

如上所述,上述各实施方案中,可以对应于车辆的各种冲撞方案,用物 理的模型考虑车辆,明确了与设定常数值的对应值,进而采用了多元空间 的概念,给予精确的阈值,所以能在更短的时间内进行可靠性高的判断, 不仅正面冲撞和斜方冲撞能进行缓冲气袋展开的判断,也适用于来自侧方 的冲撞而进行的侧方缓冲气袋动作的车辆冲撞检测装置。

上述各实施方案中,是将来自检测车辆冲撞加速度装置1的冲撞加速度 信号2输入到控制器16,从加速度信号2计算出推断速度信号6的一次延 迟元件滤波器5、从推断速度信号6计算推断位置信号8的一次延迟元件 滤波器7、设置从上述冲撞加速度信号2和推断加速度信号6和推断位移 信号8计算车辆冲撞时发生的推断冲撞力信号14的冲撞力运算单元13 和、从上述求得的信号(冲撞加速度信号2、推断速度信号6、推断位移 信号8、推断冲撞力信号14)为基础描绘多元空间的轨迹,判断此轨迹超 过多元空间上预先设定的阈值的多元空间判断单元15,以从多元空间冲撞 判断单元15输出的冲撞判断信号17作为缓冲气袋展开信号,展开缓冲气 袋来达到车辆受到冲撞时乘车人的安全。

特别是车辆受到冲撞或者与其它车辆冲撞时,能够在更短的时间内,而 且可靠性高地判断缓冲气袋是否展开,能够展开缓冲气袋,所以能在冲撞 事故中保护乘车人的安全。

另外在上述实施方案中,也记载如下的发明。

车辆冲撞装置设置有检测车辆冲撞加速度的装置、计算出推断速度信号 的一次延迟元件滤波器、从推断速度信号计算推断位置信号的一次延迟元 件滤波器、从冲撞加速度信号和推断加速度信号和推断位移信号计算车辆 冲撞时发生的推断冲撞力信号的冲撞力运算单元,从上述求得的冲撞力信 号、加速度信号、推断速度信号、推断位移信号为基础描绘多元空间的轨 迹,判断此轨迹超过多元空间上预先设定的阈值的多元空间判断单元,从 而以车辆冲撞加速度检测装置检测车辆的冲撞加速度,使用一次延迟滤波 器从车辆冲撞加速度计算出推断速度信号、使用一次延迟滤波器从推断速 度信号计算出推断位移信号、使用冲撞力运算单元从冲撞加速度信号和推 断速度信号和推断位移信号计算出车辆冲撞时发生的推断冲撞力信号,根 据此推断冲撞力信号进行冲撞判断,所以可以对加在人体上冲撞力进行物 理对应的高可靠性的冲撞判断。进而,以冲撞力信号、加速度信号、推断 速度信号、推断位移信号构成的多个信号为基础,描绘出多元空间上的轨 迹,所以更能详细地表现车辆的运动,通过在多元空间上预先设定的阈值 而进行的极细致的冲撞判断,对于各种冲撞状态都可以在短时间内进行高 可靠性的冲撞判断。另外,通过一次延迟元件滤波器,从车辆的加速度推 断出推断速度信号和推断位置信号,进而将这些信号给予冲撞力运算单 元,推断冲撞时的冲撞力,以这些信号(推断冲撞力、加速度信号、推断 速度信号、推断位移信号)为基础在多元空间冲撞判断单元内部描绘轨迹, 超过预先设定的阈值则构成冲撞判断,所以具有可靠性高,可以在短的判 断时间内产生判断信号的效果。

车辆的冲撞检测装置中,在多元空间冲撞判断单元的内部模型,模拟车 辆动作后使用运算冲撞力的、由质量、衰减器、弹簧组成的1自由度模型, 设置将加速度信号、速度信号、位置信号作为输入,输出推断冲撞力信号 的冲撞力运算单元,所以在输出推断冲撞信号的冲撞力运算单元内部模型 中,使用1次近似车辆物理模型的质量、衰减器、弹簧的1自由度模型, 运算是通过(加速度×车辆等价质量)和(推断速度×车辆等价衰减)和 (推断位移×车辆等价位移)的三次乘算,相加这些值的二次加算的运算 量的少量计算就可以推断出冲撞力,所以计算能力低的运算器也能充分的 计算。进而,运算的推断冲撞力是比位移信号位相前进时间滞后少的信号, 可在更短的时间判断冲撞的同时,可以对加在人体上冲撞力进行物理对应 的高可靠性的冲撞判断。另外冲撞力运算单元的内部模型中,模拟车辆的 动作,使用运算冲撞力的质量、衰减器、弹簧组成的1自由度模型的结构, 所以可以运算实际影响乘车人的冲撞力,具有提高冲撞力可靠性的效果。 使用1自由度的简单模型就可推断冲撞力,所以冲撞力推断运算所要求的 运算附加可以小,进而,用模拟运算元件构成也可达到同样效果。

另外,在车辆的冲撞装置中,多元空间冲撞判断单元的内部模型的模拟 车辆1自由度模型上加入模拟乘车人动作的多自由度模型,设置以加速度 信号、速度信号、位置信号作为输入,输出推断冲撞力信号和乘车人和缓 冲气袋间位移信号的冲撞力-乘车人位移运算单元,所以在冲撞力运算单 元的内部模型中,在模拟车辆1自由度模型的基础上加入模拟乘车人动作 的多自由度模型,运算出乘车人和缓冲气袋间的相对位移,所以在乘车人 上所施加的冲撞力后,可以将乘车人与缓冲气袋冲撞前的时间和位移的关 系加在冲撞判断信息中,进行更高精度的判断。再者,由于是在冲撞力运 算的内部模型内模拟车辆的1自由度模型上,加入模拟乘车人动作的多自 由度模型的结构,所以可以运算乘车人和缓冲气袋间的推断相对位置,此 相对位置也可以加在信号之一上,用多元空间冲撞判断单元进行冲撞判断 时,具有更高精度、高可靠性地进行缩短判断时间的冲撞判断的效果。

另外,多元空间判断单元的阈值是从多元空间冲撞判断单元的多元空间 取出一平面后得到的二元空间之一的冲撞力作为横轴、速度作为纵轴的平 面中,可以识别关门和锤击等非破坏冲撞功能的阈值,所以提供了从多元 空间冲撞判断单元的多元空间取出一平面后得到的二元空间之一的冲撞力 作为横轴、速度作为纵轴的平面中,可以识别关门和锤击等非破坏冲撞功 能的阈值,可以防止由于关门等的非破坏冲撞作出错误冲撞判断而展开缓 冲气袋的等的误动作。此外,从多元空间冲撞判断单元的多元空间取出一 平面后得到的二元空间之一的冲撞力作为横轴、速度作为纵轴的平面上, 加入可以识别关门和锤击等非破坏冲撞功能的阈值的结构,所以这些在 OFF的要素冲撞中可防止不留心时缓冲气袋展开的误动作,同时在ON的 要素冲撞中可以短时间内展开缓冲气袋。

由于车辆的冲撞检测装置设有冲撞加速度检测装置以便检测车辆的前 后方向和侧面方向的加速度,因此在前后方向的车辆冲撞加速度检测装置 基础上,设置车辆冲撞加速度检测装置以便检测车辆的侧面方向的加速 度,这样对于前后方向的正面冲撞和斜向冲撞和由于其它车辆的侧面冲 撞,能在短时间内进行可靠性高的冲撞判断,前方的缓冲气袋和侧方的缓 冲气袋能安全且迅速地展开。另外由于是可以检测车辆的前后方向和侧方 的冲撞加速度地设置了车辆冲撞加速度检测装置,所以对于来自侧面冲 撞、斜向冲撞、正面冲撞、后方冲撞等一切方向的冲撞均能进行相应的判 断,具有可靠性高、能在短时间内展开前方缓冲气袋和副驾驶缓冲气袋及 侧方缓冲气袋的效果。

车辆的冲撞检测装置是中,用模拟滤波器等的模拟运算器构成了从冲撞 加速度计算出推断速度信号的一次延迟元件滤波器和从推断速度信号计算 出推断位置信号的一次延迟元件滤波器和计算出推断冲撞力信号的冲撞力 运算单元、用含有多路调制器和A/D转变器的数字控制器构成了多元空间 判断单元。因为用模拟滤波器等的模拟运算器构成了从冲撞加速度计算出 推断速度信号的一次延迟元件滤波器和从推断速度信号计算出推断位置信 号的一次延迟元件滤波器和计算出推断冲撞力信号的冲撞力运算单元,所 以不使用高性能的数字控制器也可以构成冲撞检测装置。此外,是用模拟 运算器构成控制器内部的一次延迟元件和冲撞力运算单元,所以在控制器 内即使不使用运算速度快的高价CPU也可以构成车辆的冲撞检测装置。

车辆的冲撞检测装置是由从冲撞加速度计算出推断速度信号的一次延 迟元件滤波器、从推断速度信号计算出推断位置信号的一次延迟元件滤波 器、计算出推断冲撞力信号的冲撞力运算单元和多元空间冲撞判断单元的 一切是由含有A/D转变器的数字控制器构成的,所以由从冲撞加速度计算 出推断速度信号的一次延迟元件滤波器、从推断速度信号计算出推断位置 信号的一次延迟元件滤波器、计算出推断冲撞力信号的冲撞力运算单元和 多元空间冲撞判断单元的一切运算器是由含有A/D转变器的数字控制器构 成的,因此能做到提高耐噪音性能、减少电子设备的元件数、减少由于元 件故障引起误动作的频度,这样可以提高冲撞判断的可靠性。此外,由于 是用数字运算器构成了控制器,因此可以提高模拟元件中成为问题的耐噪 音性,元件的数目大幅度地减少,所以可减少由于元件的故障而引起的误 操作,提高了冲撞判断的可靠性。

如上所述,本发明的车辆冲撞检测装置是,根据来自检测车辆冲撞加速 度的加速度检测单元的加速度,进行判断车辆冲撞的车辆冲撞检测装置, 设置有基于冲撞加速度计算出冲撞时发生在车辆上的推断冲撞力的冲撞力 运算单元和基于此推断冲撞力进行冲撞判断的冲撞判断单元,所以能进行 可靠性高、短时间内的冲撞判断。

此外,具有从冲撞加速度计算出推断速度的速度运算单元和从推断速 度计算出推断位移的位移运算单元,由于冲撞力运算单元是根据冲撞加速 度、推断速度及推断位移计算出车辆冲撞时发生的推断冲撞力,所以相位 滞后小,可以正确地计算出推断冲撞力。

由于冲撞判断单元是根据推断冲撞力、冲撞加速度、推断速度及推断位 移作为变数的多元坐标上的坐标值进行冲撞判断的,所以可以适应各种冲 撞方式进行冲撞判断。

由于冲撞力运算单元是在质量、衰减器、弹簧组成的1自由度的模型中 使车辆模型化计算出推断冲撞力的,所以可以定量地进行推断冲撞力的运 算,另外根据各种冲撞形式可以容易地确定其阈值。

另外,冲撞判断单元可以运算乘车人相对于车辆的推断相对位移,根据 此推断相对位移及推断冲撞力进行冲撞判断,所以可确实防止乘车人撞在 车辆上。

由于设置了从冲撞加速度计算推断速度的一次延迟元件滤波器和、从推 断速度计算推断位移的一次延迟元件滤波器,所以用简单的结构就可以计 算推断速度及推断位移。

本发明涉及的乘员保护装置的起动判断装置,设有冲撞力运算单元和起 动判断单元,冲撞力运算单元是根据来自检测车辆加速度的加速度检测单 元来的冲撞加速度计算出冲撞时发生在车辆上的推断冲撞力;起动判断单 元是根据此推断冲撞力进行乘员保护装置的起动判断,所以乘员保护装置 能迅速且确实地进行起动。

此外,具有从冲撞加速度计算推断速度的速度运算单元,当推断速度是 阈值以上时,移动判断单元起动乘员保护装置,同时根据冲撞力大小来决 定阈值,所以可根据冲撞状态可以设定适当的阈值。

在车辆上设置可以检测各个不同方向的冲撞加速度的多个加速度检测 单元,根据多个加速度检测单元的输出,起动判断单进行乘员保护装置的 起动判断,所以不受车辆的冲撞方向限制,都可以进行适当的乘员保护装 置的起动。

符号的说明

1车辆冲撞加速度运算装置、2冲撞加速度信号、3A/D变换器、4加 速度信号、5一次延迟元件滤波器、6推断速度信号、7一次延迟元件 滤波器、8推断位移信号、9质量系数乘法器、10衰减系数乘法器、11 弹簧系数乘法器、12加法器、13冲撞力运算单元。14推断冲撞力信 号、15多元空间冲撞判断单元、16控制器、17冲撞判断信号、27乘 车人位移运算单元、28冲撞力-乘车人位移运算单元、29乘车人等价推 断位移信号、43车辆、44车辆门、45追撞车辆、53前方加速度检测 装置、54前方缓冲气袋、55副驾驶前方缓冲气袋、56驾驶侧-侧方方 向加速度检测装置、57副驾驶侧-侧方方向加速度检测装置、58侧方缓 冲气袋、59一次延迟元件滤波器、61一次延迟元件滤波器、63冲撞力 运算单元、65模拟运算器、66多路调制器、67数字控制器、68数字 控制器。

QQ群二维码
意见反馈