一种基于聚苯胺复合防护层的散热

申请号 CN201710214928.3 申请日 2017-04-01 公开(公告)号 CN106989619A 公开(公告)日 2017-07-28
申请人 深圳万智联合科技有限公司; 发明人 不公告发明人;
摘要 本 申请 涉及一种基于聚苯胺复合防护层的 散热 器,该 散热器 中包括一防 腐蚀 内管,在该防腐蚀内管表面设有聚苯胺复合防护层,该聚苯胺复合防护层基于 氧 化 铜 纳米线 和Mn2O3多孔微球、TiO2 纳米粒子 ,能够有效解决聚苯胺与基底结合 力 弱、聚苯胺中孔隙率的问题,大大提高了聚苯胺的防腐蚀性能。
权利要求

1.一种基于聚苯胺复合防护层的散热器,该散热器包括进管、出水管,该进水管和出水管通过防腐蚀内管相连通,所述的防腐蚀内管形成一通水腔,在所述防腐蚀内管的内侧壁上嵌有翅片,该翅片与通水腔相连通;其特征在于,所述的防腐蚀内管包括管基底、设于碳钢管基底表面的聚苯胺复合防护层;该聚苯胺复合防护层中包括纳米线薄膜和涂覆在氧化铜纳米线薄膜之上的聚苯胺膜;该氧化铜纳米线薄膜为利用电化学法沉积在碳钢管基底上;该聚苯胺膜中添加填料为Mn2O3多孔微球和TiO2纳米粒子的混合物。
2.根据权利要求1所述的散热器,其特征在于,上述的氧化铜纳米线的长度为5~10μm,直径为100nm。
3.根据权利要求2所述的散热器,其特征在于,该聚苯胺膜厚度为10μm。
4.根据权利要求3所述的散热器,其特征在于,聚苯胺膜中,Mn2O3多孔微球和TiO2纳米粒子在聚苯胺膜中质量占比为15%。
5.根据权利要求4所述的散热器,其特征在于,聚苯胺膜中,Mn2O3多孔微球、TiO2纳米粒子的质量比为9:5,TiO2纳米粒子的粒径为20μm。
6.根据权利要求5所述的散热器,其特征在于,该Mn2O3多孔微球直径为1μm,Mn2O3多孔微球的制备过程为:将15mmol的Mn(CH3COO)2·6H2O、45mmol的尿素和2g聚乙二醇-2000置于
40ml乙二醇溶液中,充分搅拌均匀,等待溶解完毕后,将所得的溶液转移至不锈钢反应釜中,然后水热反应30h,水热温度为220℃,自然冷却、离心、洗涤、干燥,得到MnCO3,最后将其在弗炉中650℃下煅烧10h,得到Mn2O3多孔微球。
7.根据权利要求6所述的散热器,其特征在于,该聚苯胺复合防护层的制备过程为:
步骤1,制备氧化铜纳米线
首先,将碳钢管基底表面清洗干净,然后将其作为阳极石墨阴极,2mol/L浓度的KOH溶液为电解液,加入微量的聚乙烯醇,在1.5mA/cm2电流密度下进行氧化,30min后取出碳钢管基底,用去离子水反复冲洗后自然晾干;然后将上述的碳钢管基底放入马弗炉中,首先在
150℃下煅烧2h,然后再在300℃下煅烧3h,自然冷却后,在碳钢管基底上得到氧化铜纳米线;
步骤2,制备聚苯胺粉末
将90ml 1M的HCl和1ml苯胺溶液混合,首先在水浴中搅拌1h,再向其中缓慢加入
100ml HCl和2.5g过硫酸铵溶液,再在冰水浴中搅拌5h;将反应得到的产物抽滤,去离子水、乙醇清洗,干燥,然后将其在80℃烘箱中干燥10h,再用1M的NH3·H2O处理0.5h,最后收集产物干燥,得到聚苯胺粉末;
步骤3,制备聚苯胺膜
取上述的聚苯胺粉末0.1g,适量的Mn2O3多孔微球、TiO2纳米粒子,将其混合均匀,向其中加入氮-甲基吡咯烷溶剂,超声振荡0.5h,再磁搅拌24h,得到浆料状态的混合物,将该混合物涂覆在步骤1得到的碳钢管基底表面,在真空干燥10h,这样在碳钢管基底表面构建了聚苯胺复合防护层。

说明书全文

一种基于聚苯胺复合防护层的散热

技术领域

[0001] 本申请涉及散热器领域,尤其涉及一种基于聚苯胺复合防护层的散热器。

背景技术

[0002] 在现有技术中,散热器主要为式散热器和式散热器,铸铁式散热器存在重量重,传热系数小,制造过程中污染环境等问题,而铝式散热器使用一段时间后,容易因为腐蚀而引发渗漏,使得使用寿命大打折扣。发明内容
[0003] 本发明旨在提供一种基于聚苯胺复合防护层的散热器,以解决上述提出问题。
[0004] 本发明的实施例中提供了一种基于聚苯胺复合防护层的散热器,该散热器包括进管、出水管,该进水管和出水管通过防腐蚀内管相连通,所述的防腐蚀内管形成一通水腔,在所述防腐蚀内管的内侧壁上嵌有翅片,该翅片与通水腔相连通;所述的防腐蚀内管包括管基底、设于碳钢管基底表面的聚苯胺复合防护层;该聚苯胺复合防护层中包括纳米线薄膜和涂覆在氧化铜纳米线薄膜之上的聚苯胺膜;该氧化铜纳米线薄膜为利用电化学法沉积在碳钢管基底上;该聚苯胺膜中添加填料为Mn2O3多孔微球和TiO2纳米粒子的混合物。
[0005] 本发明的实施例提供的技术方案可以包括以下有益效果:
[0006] 本发明的散热器中包括一防腐蚀内管,在该防腐蚀内管表面设有聚苯胺复合防护层,该聚苯胺复合防护层基于氧化铜纳米线和Mn2O3多孔微球、TiO2纳米粒子,能够有效解决聚苯胺与基底结合弱、聚苯胺中孔隙率的问题,大大提高了聚苯胺的防腐蚀性能。
[0007] 本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。附图说明
[0008] 利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
[0009] 图1是本发明散热器的结构示意图。
[0010] 图2是本发明聚苯胺复合防护层的结构示意图。
[0011] 其中,01-进水管,02-出水管,03-防腐蚀内管,04-通水腔,05-翅片,31-氧化铜纳米线薄膜,32-聚苯胺膜。

具体实施方式

[0012] 这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
[0013] 本申请的实施例涉及一种基于聚苯胺复合防护层的散热器,参照图1,该散热器包括进水管01、出水管02,该进水管01和出水管02通过防腐蚀内管03相连通,所述的防腐蚀内管03形成一通水腔04,在所述防腐蚀内管03的内侧壁上嵌有翅片05,该翅片05与通水腔04相连通;所述的防腐蚀内管03包括碳钢管基底、设于碳钢管基底表面的聚苯胺复合防护层,该防腐蚀内管抗腐蚀性能佳,提高了散热器的使用寿命。
[0014] 该散热器工作过程为,热水通过进水管流入通水腔,将热量通过翅片传导出去,最后通过出水管流出,水流全程与防腐蚀内管相接触,而本申请的散热器中,该防腐蚀内管表面设有聚苯胺复合防护层,耐腐蚀性能佳,牢固可靠,提高了散热器的使用寿命。
[0015] 聚苯胺是一种常用的防腐涂料,然而由于聚苯胺涂层固有的孔隙率和涂层破损后导致局部的腐蚀速度加快的问题存在,其并不能作为完美的物理屏障阻隔腐蚀性介质的侵入。
[0016] 在本申请的技术方案中,该聚苯胺复合防护层中包括氧化铜纳米线薄膜31和涂覆在氧化铜纳米线薄膜31之上的聚苯胺膜32,氧化铜纳米线薄膜31为利用电化学法沉积在碳钢管基底上。
[0017] 聚苯胺虽然是一种常用的防腐材料,但是其与基底的结合力较弱,经常出现脱落现象,此外,聚苯胺中存在一定的孔隙率,其并不能表现良好的物理屏障来实现阻隔,在本申请的聚苯胺复合防护层中,
[0018] 针对聚苯胺与基底结合力较弱的情况,将聚苯胺膜与氧化铜纳米线结合,该氧化铜纳米线具有较大的比表面积,其均匀分散地生长在碳钢管基底上,使得该聚苯胺膜能够分散在氧化铜纳米线之间、之上,从而得到了均匀致密、结合力强的聚苯胺/氧化铜纳米线复合膜,该氧化铜纳米线的存在使聚苯胺与其良好的镶嵌在一起,相互穿插,能够有效提高聚苯胺与碳钢板基底的结合力,而且氧化铜纳米线能够填充一部分膜层孔道,从而减小了聚苯胺膜的孔隙率,增强了其耐腐蚀性能;氧化铜纳米线表现优良的半导体性能,具有较大的激子束缚能,其具有高机械强度、热稳定性和化学稳定性,在防腐蚀方面应用较少,而本申请中,在聚苯胺母体中添加氧化铜纳米线制备成复合膜,使聚苯胺与基底结合力增强,有效减小了聚苯胺膜的孔隙率,显著提高了聚苯胺膜的防腐蚀性能。
[0019] 针对聚苯胺中的孔隙率问题,在该聚苯胺膜中添加有无机填料,注意到,在聚苯胺中添加无机粒子,其与聚苯胺复合在一起能够有效提高材料的耐腐蚀性能,通常添加的无机粒子为固体颗粒,比如ZnO、SiO2、Al2O3、纳米粘土粒子等;而本申请的不同之处在于,所添加填料为Mn2O3多孔微球和TiO2纳米粒子的混合物,由于Mn2O3多孔微球、TiO2纳米粒子均具有较高的比表面积,其能通过聚苯胺孔隙之间的铰链作用于聚苯胺膜很好的结合在一起,有效降低聚苯胺膜的孔隙率;
[0020] 此外,在聚苯胺中添加Mn2O3多孔微球和TiO2纳米粒子,由于Mn2O3多孔微球、TiO2纳米粒子均为微纳尺度粒子,其容易由于纳米团聚现象而团聚在一起,影响其在聚苯胺中的分散性,进而导致防腐性能的下降,在本申请中,氧化铜纳米线对上述粒子的分散性能够起到积极作用。
[0021] 优选地,上述的氧化铜纳米线的长度为5~10μm,直径为100nm,该聚苯胺膜32厚度为10μm。
[0022] 优选地,Mn2O3多孔微球和TiO2纳米粒子在聚苯胺膜中质量占比为15%,Mn2O3多孔微球、TiO2纳米粒子的质量比为9:5。
[0023] 对于TiO2纳米粒子,其选取市售商用TiO2纳米粒子,粒径为20μm;
[0024] 对于Mn2O3多孔微球,其制备过程为:
[0025] 将15mmol的Mn(CH3COO)2·6H2O、45mmol的尿素和2g聚乙二醇-2000置于40ml乙二醇溶液中,充分搅拌均匀,等待溶解完毕后,将所得的溶液转移至不锈钢反应釜中,然后水热反应30h,水热温度为220℃,自然冷却、离心、洗涤、干燥,得到MnCO3,最后将其在弗炉中650℃下煅烧10h,得到Mn2O3多孔微球,该Mn2O3多孔微球直径为1μm。
[0026] 实施例1
[0027] 在碳钢管基底上该聚苯胺复合防护层的制备过程为:
[0028] 步骤1,制备氧化铜纳米线
[0029] 首先,将碳钢管基底表面清洗干净,然后将其作为阳极石墨阴极,2mol/L浓度的KOH溶液为电解液,加入微量的聚乙烯醇,在1.5mA/cm2电流密度下进行氧化,30min后取出碳钢管基底,用去离子水反复冲洗后自然晾干;然后将上述的碳钢管基底放入马弗炉中,首先在150℃下煅烧2h,然后再在300℃下煅烧3h,自然冷却后,在碳钢管基底上得到氧化铜纳米线;
[0030] 步骤2,制备聚苯胺粉末
[0031] 将90ml 1M的HCl和1ml苯胺溶液混合,首先在水浴中搅拌1h,再向其中缓慢加入100ml HCl和2.5g过硫酸铵溶液,再在冰水浴中搅拌5h;将反应得到的产物抽滤,去离子水、乙醇清洗,干燥,然后将其在80℃烘箱中干燥10h,再用1M的NH3·H2O处理0.5h,最后收集产物干燥,得到聚苯胺粉末;
[0032] 步骤3,制备聚苯胺膜
[0033] 取上述的聚苯胺粉末0.1g,适量的Mn2O3多孔微球、TiO2纳米粒子,将其混合均匀,向其中加入氮-甲基吡咯烷溶剂,超声振荡0.5h,再磁力搅拌24h,得到浆料状态的混合物,将该混合物涂覆在步骤1得到的碳钢管基底表面,在真空干燥10h,这样在碳钢管基底表面构建了聚苯胺复合防护层。
[0034] 对该防腐蚀内管进行耐腐蚀测试,测试介质采用3.5%的NaCl溶液,将样品用环氧树脂封样,裸露面积为3cm2,采用传统的三电极体系进行耐腐蚀测试,表明,本申请的防腐蚀保护结构防腐蚀性能良好。
[0035] 以上所述仅为本发明的较佳方式,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
QQ群二维码
意见反馈