液化装置

申请号 CN201380070412.6 申请日 2013-02-25 公开(公告)号 CN104937358B 公开(公告)日 2017-05-10
申请人 三菱重工压缩机有限公司; 发明人 桥爪启;
摘要 本 发明 提供一种二 氧 化 碳 液化 装置,本发明的二氧化碳液化装置具备:二氧化碳液化部,通过将在冷热源生成设备中使用及制造的气体状态的一部分冷热源作为制冷剂进行热交换,使从包含二氧化碳的气体分离回收的二氧化碳液化;及 能量 回收部,通过使在所述二氧化碳液化部中与二氧化碳进行热交换的气体制冷剂膨胀而输出能量,并且使所述气体制冷剂的 温度 下降,所述能量回收部使温度下降的所述气体制冷剂返回到所述冷热源生成设备。
权利要求

1.一种二液化装置,其特征在于,具备:
二氧化碳液化部,通过将在冷热源生成设备中使用及制造的气体状态的一部分冷热源作为制冷剂进行热交换,使从包含二氧化碳的气体分离回收的气体状态的二氧化碳液化;

能量回收部,通过使在所述二氧化碳液化部中与二氧化碳进行热交换而温度比热交换前的所述制冷剂上升的气体制冷剂膨胀而输出能量,并且使所述气体制冷剂的温度下降,所述能量回收部使温度下降的所述气体制冷剂返回到所述冷热源生成设备。
2.根据权利要求1所述的二氧化碳液化装置,其中,
所述能量回收部使所述气体制冷剂的温度下降至在所述冷热源生成设备中使用所需要的温度。
3.根据权利要求1或2所述的二氧化碳液化装置,其中,
所述冷热源生成设备具备能够将原料空气至少分离成氧及氮的空气低温分离单元。
4.根据权利要求3所述的二氧化碳液化装置,其中,
所述空气低温分离单元具备使用通过所述能量回收部使得温度下降的所述气体制冷剂进行热交换的热交换部。
5.根据权利要求4所述的二氧化碳液化装置,其中,
所述二氧化碳液化装置具备多组串联连接的所述能量回收部和所述热交换部的组合。

说明书全文

液化装置

技术领域

[0001] 本发明涉及一种使二氧化碳液化的二氧化碳液化装置。

背景技术

[0002] 近年来,为了防止全球变暖等,有去除火发电厂等的废气中含有的二氧化碳的各种技术。
[0003] 例如,专利文献1中记载了在火力发电厂等中,使用氧燃烧锅炉系统提高废气中含有的二氧化碳的浓度而进行液化分离的技术。
[0004] 专利文献2中记载了使用煤炭火力发电厂的废气中含有的二氧化碳通过熔融碳酸盐型燃料电池进行发电,同时利用熔融碳酸盐型燃料电池中的二氧化碳浓缩作用来浓缩废气中含有的二氧化碳并进行回收的系统。并且,专利文献2中记载了作为从废气中分离二氧化碳的方法,有化学吸收法、物理吸附法、膜分离法及低温分离法。其中,关于化学吸收法、物理吸附法、膜分离法,为了分离二氧化碳需要昂贵的吸收剂、吸附剂、高分子膜。并且,化学吸收法、物理吸附法、膜分离法的情况下,由于系统的大型化受到限制,因此被处理的废气受到限制。
[0005] 关于上述的化学吸收法、物理吸附法、膜分离法,以气体回收二氧化碳。以该气体回收的二氧化碳在输送和积存时被设为高压状态。作为获得该高压状态的二氧化碳的方法,有将回收的低压气态二氧化碳以气体的状态进行升压的方法,及在气态二氧化碳升压过程中进行液化,然后通过对二氧化碳进行升压的方法。通常,以液体升压的能量比以气体升压的能量小很多,因此通过用泵对液化二氧化碳进行升压,能够降低能量。
[0006] 但是,对上述气态二氧化碳进行液化时,需要用于冷却气态二氧化碳的较大的能量,因此期望能够使该气态二氧化碳的液化相关的能量成为低能量化。
[0007] 因此,上述专利文献2中提出了设置利用燃料电池的废气的排热驱动的吸收式制冷机来实现降低气态二氧化碳的液化相关的能量的技术。
[0008] 另一方面,作为去除煤气化气体内的二氧化碳的二氧化碳回收装置,有使用化学吸收法的装置。但是,化学吸收法中也需要较大的二氧化碳回收动力,因而成为难以提高系统整体效率的状况。因此,专利文献3中记载了使用液态氧及液态氮来冷却煤气化气体并对煤气化气体内的二氧化碳进行液化的技术,所述液态氧及液态氮是通过用于生成气化炉的燃烧中使用的气态氧的低温分离装置而生成的。
[0009] 并且,已知在二氧化碳的液化设备中具备将包含二氧化碳和氢的合成气流分离成氢蒸气流及液态二氧化碳流的装置。这种二氧化碳的液化设备中,要求进一步减少能量消耗。因此,专利文献4中记载了在通过热交换器冷却压力增加过的合成气体并气液分离成高压氢蒸气流和液态二氧化碳的系统中,通过膨胀机使高压氢蒸气流膨胀而获得压缩机等的动力,并且使通过膨胀而温度下降的氢蒸气流和合成气流进行热交换的技术。
[0010] 在先技术文献
[0011] 专利文献
[0012] 专利文献1:日本专利公开2009-270753号公报
[0013] 专利文献2:日本专利公开2011-141967号公报
[0014] 专利文献3:日本专利公开2010-184994号公报
[0015] 专利文献4:日本专利公表2011-529434号公报

发明内容

[0016] 发明要解决的课题
[0017] 然而,具备吹氧气化炉和锅炉的设备中,分离回收二氧化碳之后对气体的二氧化碳进行压缩而得到高压二氧化碳的设备中,使用气体压缩机对二氧化碳进行压缩。由于以气体的状态压缩二氧化碳,因此需要较大的压缩动力。
[0018] 另一方面,当具有为了使二氧化碳液化所需的冷热源时,能够在将所回收的气体的二氧化碳压缩至液化压力之后,使用该冷热源进行冷却液化,通过泵以低动力将液化的二氧化碳压缩至需要的压力。因此,与上述使用气体压缩机的情况相比,能够实现低动力化。
[0019] 但是,由于一般的冷却温度较高而无法利用为使所回收的二氧化碳液化的冷热源。因此,通过泵对液态二氧化碳进行升压时,为了得到低温的冷热源,需要重新准备冷热源设备或利用现有的冷热源设备。但是,重新准备冷热源设备并制造冷热源时,需要较大的制造能量,因此难以低动力化。利用现有的冷热源设备时,通常也需要重新制造冷却二氧化碳所需的冷热源,因此需要较大的能量且难以低动力化。而且,即使能够将现有的冷热源设备中被废弃的冷热源利用为使二氧化碳液化的冷热源时,近年来也进一步要求节能化。
[0020] 本发明是鉴于上述情况而完成的,其目的在于提供一种能够实现低动力化的二氧化碳液化装置。
[0021] 用于解决课题的方法
[0022] 本发明所涉及的二氧化碳液化装置的第1方式具备:二氧化碳液化部,通过将在冷热源生成设备中使用及制造的气体状态的一部分冷热源作为制冷剂进行热交换,使从包含二氧化碳的气体分离回收的二氧化碳液化;及能量回收部,通过使在所述二氧化碳液化部中与二氧化碳进行热交换的气体制冷剂膨胀而输出能量,并且使所述气体制冷剂的温度下降,所述能量回收部使温度下降的所述气体制冷剂返回到所述冷热源生成设备。
[0023] 本发明所涉及的二氧化碳液化装置的第2方式中,上述第1方式的所述能量回收部也可以使所述气体制冷剂的温度下降至在所述冷热源生成设备中使用所需要的温度。
[0024] 本发明所涉及的二氧化碳液化装置的第3方式中,上述第1方式或第2方式的所述冷热源生成设备也可以具备能够将原料空气至少分离成氧及氮的空气低温分离单元。
[0025] 本发明所涉及的二氧化碳液化装置的第4方式中,上述第3方式的所述空气低温分离单元也可以具备使用通过所述能量回收部使得温度下降的所述气体制冷剂进行热交换的热交换部。
[0026] 本发明所涉及的二氧化碳液化装置的第5方式中,在上述第4方式所述的二氧化碳液化装置中,也可以具备多组串联连接的所述能量回收部和所述热交换部的组合。
[0027] 发明效果
[0028] 根据本发明的上述方式所涉及的二氧化碳液化装置,能够实现低动力化。附图说明
[0029] 图1是表示本发明的一实施方式中的二氧化碳液化装置的概要结构的图。
[0030] 图2是表示相同实施方式中的二氧化碳液化装置的结构的图。

具体实施方式

[0031] 以下,对本发明的一实施方式所涉及的二氧化碳液化装置进行说明。
[0032] 图1表示本实施方式的二氧化碳液化装置。
[0033] 本实施方式中的二氧化碳液化装置1例如设置于具备煤气化炉等的发电设备或气化设备等的设备中。这些设备的生成气体或废气中含有大量的二氧化碳(CO2气体)。本实施方式的设备具有分离生成气体或排出气体中含有的二氧化碳并使其变化成高压状态的设备。
[0034] 如图1所示,二氧化碳液化装置1具备二氧化碳液化部2,所述二氧化碳液化部通过将在冷热源生成设备P中使用及制造的气体状态的一部分冷热源作为制冷剂进行热交换,使二氧化碳液化。供给到上述二氧化碳液化部2的二氧化碳从二氧化碳分离回收装置(未图示)供给。二氧化碳分离回收装置例如从含有二氧化碳的混合气体分离回收二氧化碳。
[0035] 在此,为了得到上述高压状态的二氧化碳,需要将通过二氧化碳分离回收装置回收的低压二氧化碳压缩至高压状态。但是,想要利用气体压缩机将气体状态的二氧化碳压缩成高压状态时,需要较大的动力。因此,本实施方式的二氧化碳液化装置1中,利用气体压缩机(未图示)将通过二氧化碳分离回收装置回收的低压气态二氧化碳升压至二氧化碳液化压力之后,通过上述二氧化碳液化部2使二氧化碳液化,然后通过升压泵(未图示)将该液化的二氧化碳升压至高压状态。由此,与通过气体压缩机升压至高压状态的情况相比,能够以更少的动力使二氧化碳的压力上升。另外,若通过二氧化碳分离回收装置回收的二氧化碳的压力在二氧化碳的液化压力以上,则可以省略上述气体压缩机。
[0036] 冷热源生成设备P具备空气低温分离单元3。空气低温分离单元3从作为原料气体的原料空气低温分离氧。通过空气低温分离单元3低温分离的氧用于原料空气的冷却液化等中之后,被送至例如氧气压缩机(未图示)等中而被供给到气化炉或锅炉等。
[0037] 空气低温分离单元3将用于冷却原料空气的低温分离过的低温的气体氮气供给到二氧化碳液化部2。二氧化碳液化部2将从空气低温分离单元3供给的气体氮气与通过二氧化碳分离回收装置回收的气态二氧化碳进行热交换。
[0038] 二氧化碳液化装置1还具备氮气膨胀机4。该氮气膨胀机4使在二氧化碳液化部2中与二氧化碳进行热交换的气态氮膨胀。并且,氮气膨胀机4在使气态氮膨胀时回收能量。该能量例如可用作使设置在上述分离装置与二氧化碳液化部2之间的气态二氧化碳的压缩用压缩机(未图示)动作的动力等。
[0039] 在此,氮气膨胀机4使作为冷热源而用于二氧化碳液化部2的气态氮急速膨胀,通过二氧化碳液化部2使气态氮的温度下降至进行热交换之前的温度左右。通过氮气膨胀机4使得温度下降的气态氮返回到空气低温分离单元3。该气态氮在通过空气低温分离单元3低温分离原料空气的工序中被用作冷却原料空气的冷热源。
[0040] 如图2所示,空气低温分离单元3具备热交换器11。
[0041] 为了冷却液化原料空气,热交换器11将在空气低温分离单元3的内部分离的氮、氧或通过空气膨胀机膨胀的空气等作为冷热源而进行热交换。
[0042] 空气低温分离单元3将通过热交换器11冷却的原料空气分离成液态氧、液态氮及气态氮、气态氧等。氧例如适当地供给于热交换器11、上述煤气化炉、锅炉等。并且,气态氮经由热交换器11供给于二氧化碳液化部2。
[0043] 二氧化碳液化部2具备用于使气态二氧化碳冷却、液化的二氧化碳冷凝器15。该二氧化碳冷凝器15从空气低温分离单元3被供给气态氮作为冷热源。供给于二氧化碳冷凝器15的气态氮的温度例如设为高于二氧化碳不会固化的温度,且低于二氧化碳的液化温度。
通过二氧化碳冷凝器15与液态氮进行热交换而液化的液态二氧化碳供给于上述升压泵(未图示)等升压系统。
[0044] 二氧化碳液化部2的下游的升压系统(未图示)调整液态二氧化碳的温度,以成为其下游的工序(未图示)所需要的状态,并向上述下游的工序送出二氧化碳。
[0045] 通过热交换器11在与原料空气之间进行热交换的气态氮可在空气低温分离工序中进一步经由热交换工序被释放到大气中或被利用于其他工序中。
[0046] 因此,根据上述实施方式的二氧化碳液化装置1,能够将通过空气低温分离单元3得到的气态氮用作用于冷却原料空气的气体制冷剂(冷热源)。另外,通过氮气膨胀机4使通过二氧化碳液化部2与二氧化碳进行热交换之后的气态氮膨胀时,能够回收能量并且通过膨胀使气态氮的温度下降。另外,如果在空气低温分离单元3中有所需要,则能够使氮气膨胀机4出口的气态氮的温度下降至在氮气膨胀机4中与二氧化碳进行热交换之前的温度左右。并且,通过使上述温度下降的气态氮返回到空气低温分离单元3,能够与不和二氧化碳进行热交换的一般的空气低温分离单元同样地,将气态氮用于原料气体等的各种冷却中。
[0047] 结果,能够实现二氧化碳液化装置1的低动力化。更具体而言,例如与通过丙烷制冷系统等专用的制冷系统制作用于二氧化碳的冷却液化的冷热源的情况相比,能够将用于使二氧化碳液化所需的动力低动力化。
[0048] 另外,本发明并不限定于上述实施方式,在不脱离本发明宗旨的范围内对上述实施方式施加各种变更也包含在本发明内。即,通过实施方式举出的具体形状和结构等仅为一例,可进行适当变更。
[0049] 例如,在上述实施方式中,将通过氮气膨胀机4得到的能量用作用于使压缩气态二氧化碳的压缩用压缩机动作的动力的情况作为一例进行了说明。但是,并不限于上述结构,例如,也可以用作空气分离装置内的压缩机或泵(未图示)等的动力。
[0050] 并且,在上述实施方式中,将氮用作二氧化碳的冷却用冷热源的情况作为一例进行了说明。但是,并不限于上述结构,例如,也可以将被分离的氧作为用于冷却二氧化碳的冷热源。例如,利用液态氧冷却二氧化碳时,与将上述液态氮作为冷热源时同样地,首先使液态氧汽化,接着通过二氧化碳冷凝器15使汽化的气态氧与二氧化碳进行热交换。
[0051] 另外,通过氧气膨胀机(相当于氮气膨胀机4)使与二氧化碳进行热交换之后的气态氧膨胀,然后通过热交换器11使该膨胀的气态氧与原料空气进行热交换。最后将通过与原料空气进行热交换使得温度上升的气态氧供给至气化炉等中。另外,当供给于气化炉等中的气态氧的温度过低时,也可以将从用于压缩原料空气的压缩机10或气体压缩机(未图示)吐出的高温气体作为加热源进行加热。
[0052] 对分别使用氮和氧作为冷热源的一例进行了说明,但也可以使用氮和氧这两者。另外,作为冷热源,也可以使用混合在空气低温分离单元3制造的氧和氮的混合空气,或适当组合该混合空气与上述氮、氧而使用。使用该混合空气时,也与上述氮及氧的情况同样地,通过混合空气用的气体膨胀机(相当于氮气膨胀机4)使与二氧化碳进行热交换之后的混合空气膨胀。并且,进行能量回收的同时将温度下降的混合空气送入热交换器11中进行热交换即可。
[0053] 另外,在上述实施方式中,对将通过空气低温分离单元3生成的气态氮经由热交换器11向二氧化碳液化部2供给的情况进行了说明,但也可以不经由热交换器11而将气态氮供给至二氧化碳液化部2。
[0054] 并且,在上述实施方式中,对在二氧化碳液化部2与空气低温分离单元3之间仅设有一级氮气膨胀机4的情况作为一例进行了说明。但是,也可以根据通过蒸发器14汽化的气态氮的压力,将氮气膨胀机4的级数设为多级。更具体而言,也可以多组串联连接氮气膨胀机4和二氧化碳冷凝器15的组合。此时,使通过最上游的第一级氮气膨胀机4膨胀的气态氮再次通过二氧化碳冷凝器15与二氧化碳进行热交换,然后通过第二级氮气膨胀机4再次膨胀。并且,将通过该第二级氮气膨胀机4膨胀的气态氮供给至热交换器11。设置有三级以上氮气膨胀机4时,重复进行上述工序。另外,使用上述氧和混合气体作为冷热源时也相同。
[0055] 另外,在上述实施方式中,对将通过氮气膨胀机4膨胀的气态氮通过热交换器11进行热交换之后释放到大气中或用于其它设备的情况进行了说明,但也可以使从低压气体压缩机吐出的高温二氧化碳和从压缩机(未图示)吐出的高温原料空气进行热交换。
[0056] 并且,在上述实施方式中,对冷热源生成设备P具备生成冷热源的空气低温分离单元3的情况进行了说明,但并不限于此。即,也可以用空气分离以外的方法生成冷热源。
[0057] 另外,在上述实施方式中,将设置于具备吹氧煤气化炉的进行复合发电的发电厂等的设备上的二氧化碳液化装置1作为一例进行了说明,但并不限于此。例如,只要是具备冷热源生成设备P且排出二氧化碳的设备,就能够适用本发明的二氧化碳液化装置。
[0058] 并且,在上述实施方式中,将在生成高压状态的二氧化碳的工序的过程中使用的二氧化碳液化装置1作为一例进行了说明。但是,本发明的二氧化碳液化装置并不限于在使二氧化碳成为高压状态的过程中生成液态二氧化碳的装置。也可以适用于以制造液态二氧化碳为最终目的的二氧化碳液化装置等。
[0059] 产业上的可利用性
[0060] 本发明通过使从冷热源生成部送出的气体制冷剂和二氧化碳进行热交换,能够适用于具备使二氧化碳液化的二氧化碳液化部的二氧化碳液化装置。
[0061] 符号说明
[0062] 1-二氧化碳液化装置,2-二氧化碳液化部,3-空气低温分离单元,4-氮气膨胀机,11-热交换器,15-二氧化碳冷凝器。
QQ群二维码
意见反馈