再生增材制造组件

申请号 CN201480022261.1 申请日 2014-04-17 公开(公告)号 CN105142852A 公开(公告)日 2015-12-09
申请人 联合工艺公司; 发明人 J.麦克布里恩; L.K.卡斯特尔; B.W.斯庞勒; J.Q.徐;
摘要 一个实施方案包括一种再生组件(10)的方法。所述方法包括 增材制造 具有大于0%但小于约15%的空隙接近成品形状的组件(10)。将所述组件(10)封装在壳模(22)中。 固化 所述壳模(22)。将所述封装组件(10)放置在熔炉中并且使所述组件(10) 熔化 。使所述组件(10) 凝固 在所述壳模(22)中。从所述凝固组件(10)移除所述壳模(22)。
权利要求

1.一种再生组件的方法,所述方法包括:
增材制造具有大于0体积%但小于约15体积%的空隙接近成品形状的组件;
将所述组件封装在壳模中;
固化所述壳模;
将所述封装组件放置在熔炉中并且使所述组件熔化
使所述组件凝固在所述壳模中;以及
从所述凝固组件移除所述壳模。
2.根据权利要求1所述的方法,其中所述组件被增材制造成具有大于0体积%但小于约1体积%的空隙。
3.根据权利要求1所述的方法,其中所述接近成品形状的所述组件被增材制造成具有比所需的成品配置高达15体积%的额外的材料。
4.根据权利要求3所述的方法,其中所述组件为叶片或轮叶,并且所述高达15体积%的额外的材料位于所述组件的根部或翼面的前端。
5.根据权利要求1所述的方法,其中将所述组件封装在壳模中包括将所述组件的整体封装在所述壳模中,使得所述组件的整个外表面被所述壳模覆盖
6.根据权利要求5所述的方法,其中将所述组件封装在所述壳模中包括以下过程:
(a)将所述组件的所述整体浸渍在浆料中以在所述组件的所述整体上形成一层所述壳模;
(b)使所述壳模的所述层干燥;以及
(c)重复步骤(a)和(b)直到形成可接受的壳模厚度来封装所述组件的所述整体。
7.根据权利要求1所述的方法,其中使用下列各项中的至少一项来增材制造所述组件:选择性激光烧结选择性激光熔化、直接金属沉积、直接金属激光烧结、直接金属激光熔化和电子束熔化。
8.根据权利要求7所述的方法,其中所述组件被增材制造成具有选自由以下组成的组的金属:镍基超合金、钴基超合金、基超合金和其混合物。
9.一种再生具有内部通道的组件的方法,所述方法包括:
增材制造具有大于0体积%但小于约15体积%的空隙具有内部通道接近成品形状的所述组件;
用浆料填充所述内部通道;
固化所述浆料以形成芯;
将所述组件封装在壳模中;
固化所述壳模;
将所述封装组件放置在熔炉中并且使所述组件熔化;
使所述组件凝固在所述壳模中;以及
从所述凝固组件移除所述壳模和芯。
10.根据权利要求9所述的方法,其中所述芯大体上符合所述组件的所述内部通道的形状,并且其中所述壳模大体上符合所述组件的形状。
11.根据权利要求9所述的方法,其中所述组件被增材制造成具有大于0体积%但小于约1体积%的空隙。
12.根据权利要求9所述的方法,其中所述接近成品形状的所述组件被增材制造成具有比所需的成品配置高达15体积%的额外的材料。
13.根据权利要求12所述的方法,其中所述组件为叶片或轮叶,并且所述高达15体积%的额外的材料位于所述组件的根部或翼面的前端。
14.根据权利要求9所述的方法,其中使用下列各项中的至少一项来增材制造所述组件:选择性激光烧结、选择性激光熔化、直接金属沉积、直接金属激光烧结、直接金属激光熔化和电子束熔化。
15.根据权利要求14所述的方法,其中所述组件被增材制造成具有选自由以下组成的组的金属:镍基超合金、钴基超合金、铁基超合金和其混合物。
16.根据权利要求9所述的方法,其中所述浆料是选自由以下组成的组:、氧化、锆石、钴、莫来石高岭土
17.根据权利要求9所述的方法,其中所述壳模是选自由以下组成的组:二氧化硅、氧化铝、锆石、钴、莫来石、高岭土和其混合物。
18.根据权利要求9所述的方法,其中将所述组件封装在壳模中包括将所述组件的整体封装在所述壳模中,使得所述组件的整个外表面被所述壳模覆盖。
19.据权利要求18所述的方法,其中将所述组件封装在所述壳模中包括以下过程:
(a)将所述组件的所述整体浸渍在浆料中以在所述组件的所述整体上形成一层所述壳模;
(b)使所述壳模的所述层干燥;以及
(c)重复步骤(a)和(b)直到形成可接受的壳模厚度来封装所述组件的所述整体。
20.一种具有内部通道的中间组件,所述中间组件包括:
具有内部通道接近成品形状的固体金属增材制造组件,其中所述组件具有大于0体积%但小于约15体积%的空隙,并且所述接近成品形状的所述组件比所需的成品配置高达15体积%的额外的材料;
陶瓷芯,其安置在所述组件的所述内部通道内;以及
外部陶瓷壳模,其封装所述组件的整体,使得所述组件的整个外表面被所述外部陶瓷壳模覆盖。

说明书全文

再生增材制造组件

[0001] 相关申请
[0002] 本申请要求2013年4月19日提交并且标题为“使用增材制造和重熔来形成单晶零件的方法(Method For Forming Single Crystal Parts Using Additive Manufacturing And Remelt)”的美国临时申请系列号61/813,871的优先权,所述申请的公开内容以引用的方式整体并入本文。技术背景
[0003] 本实施方案一般涉及增材制造的领域,更具体来说涉及固化增材制造组件中的缺陷
[0004] 增材制造为可以通过根据零件的三维(3D)计算机模型形成每一层的机器以叠层方式制造零件的工艺。在粉末层增材制造中,一层粉末铺展在平台上,并且通过使用定向能束烧结熔化来接合选择区域。平台被收录下来,涂覆另一层粉末,并且再次接合所选区域。重复这个工艺直到生产成品3D零件。在直接沉积增材制造技术中,少量的熔融或半固体材料根据零件的3D模型通过挤出、注射或送丝涂覆于平台,并且通过能量束激励以粘合材料,从而形成零件。常见的增材制造工艺包括选择性激光烧结、直接激光熔化、直接金属激光烧结(DMLS)、电子束熔化、激光粉末沉积、电子束丝沉积等。
[0005] 因为在增材制造操作中在连续工艺中生产零件,所以可以消除与常规的制造工艺(诸如机械加工锻造焊接铸造等)相关联的特征,从而节省了成本、材料和时间。此外,相比于常规的制造工艺,增材制造允许相对容易地构建具有复杂的几何形状的组件。
[0006] 然而,与增材制造相关联的一个挑战是增材构建的组件的质量控制。一般来说,组件亚表面缺陷在增材制造工艺中是固有的。可能耗费数十小时(或更多)来增材构建组件,但是不可避免的是至少一些成品增材构建组件将具有亚表面缺陷,诸如污染物和空隙。因此,在花费大量资源来构建这些组件之后,这些有缺陷的组件将被拒绝。发明概要
[0007] 一个实施方案包括一种再生组件的方法。方法包括增材制造具有大于0体积%但小于约15体积%的空隙接近成品形状的组件。将组件封装在壳模中。固化壳模。将封装组件放置在熔炉中并且使组件熔化。使组件凝固在壳模中。从凝固组件移除壳模。
[0008] 另一实施方案包括一种再生具有内部通道的组件的方法。方法包括增材制造具有大于0体积%但小于约15体积%的空隙具有内部通道接近成品形状的组件。用浆料填充内部通道。固化浆料以形成芯。将组件封装在壳模中。固化壳模。将封装组件放置在熔炉中并且使组件熔化。使组件凝固在壳模中。从凝固组件移除壳模和芯。
[0009] 另一实施方案包括一种具有内部通道的中间组件。中间组件包括具有内部通道接近成品形状的固体金属增材制造组件。组件具有大于0体积%但小于约15体积%的空隙,并且接近成品形状的组件比所需的成品配置高达15体积%的额外的材料。也包括安置在组件的内部通道内的陶瓷芯和封装组件的整体的外部陶瓷壳模,使得组件的整个外表面被外部陶瓷壳模覆盖
[0010] 附图简述
[0011] 图1是具有内部通道的中间组件的截面图,内部通道具有芯和壳模。
[0012] 图2是图示再生增材制造组件的方法的流程图
[0013] 尽管上述识别的附图陈述本发明的一个或多个实施方案,但是其他实施方案也是预期的。在所有情况下,本公开通过表示而不是限制的方式提出了本发明。应理解,本领域技术人员可以设计出属于本发明的原理的范围和精神的许多其他修改和实施方案。附图可能不是按比例绘制,并且本发明的应用和实施方案可以包括在图中未具体示出的特征和组件。

具体实施方式

[0014] 一般来说,本实施方案提供制造或再生具有缺陷(例如,亚表面缺陷)的增材制造组件以固化缺陷,使得组件不需要被拒绝并且可以按预期被使用。通过使用组件作为用于形成壳模(类似于常规的熔模铸造工艺的壳模)的模型,固化增材制造组件中的缺陷。组件可以被完全封装在壳模中、熔化然后凝固以生产具有其相同的潜在复杂的形状的大体上无缺陷组件。鉴于本公开的整体内容(包括附图),将认识到其他特征和益处。
[0015] 图1是增材制造的中间组件10的示意性截面图。中间组件10可以是涡轮叶片,其包括翼面12、平台14、根部16和内部通道18。图1中所示的中间组件10只是通过实例而非限制的方式提供的一个实例。增材制造组件10可以是能够被增材制造的任何组件,其可以包括例如燃料喷嘴或涡轮叶片或轮叶。包括在中间组件10之内,并且如图1中所示的是内部芯20和外部壳模22。在图1中所示的一个实例中,芯20是陶瓷芯并且壳模22是陶瓷壳模。其他芯20和壳模22的材料也是预期的。
[0016] 中间组件10被增材制造成接近成品形状,使得翼面12、平台14、根部16和内部通道18与组件10成为一体。然而,在增材制造工艺期间陶瓷芯20和陶瓷壳模22不形成为组件10的一部分。可以使用利用叠层构造的任何类型的增材制造工艺,包括但不限于选择性激光烧结、选择性激光熔化、直接金属沉积、直接金属激光烧结(DMLS)、直接金属激光熔化、电子束熔化、电子束丝熔化和本领域中已知的其他工艺来增材制造组件10。接近成品形状的组件10(即,图1中所示的中间组件10)被增材制造成具有比组件10(即,在被再生为大体上无亚表面缺陷之后的组件10)的所需的成品配置高达15体积%的额外的材料。组件10的任何额外的材料可以位于多余的材料可以被机械加工的任何位置。在一个实例中,多余的材料可以位于根部16和/或翼面12的前端。此外,组件10可以被增材制造成具有金属,诸如镍基超合金、钴基超合金、基超合金和其混合物。
[0017] 由于增材制造产生的组件10可能具有亚表面缺陷。亚表面缺陷可能包括不需要的缺陷,诸如污染物和/或空隙。空隙可以包括例如孔隙和/或裂缝。例如,组件10可以具有大于0体积%但小于约15体积%的空隙。经常,组件10将具有大于0体积%但小于约1体积%,并且甚至在一些情况下小于约0.1体积%的空隙。在组件10含有不需要的空隙量(其在许多应用中可以是单个体积%的一小部分)时,组件10可以被认为不适合按预期使用。为此,组件10可以被再生为固化亚表面缺陷。
[0018] 作为将组件10再生为大体上无亚表面缺陷的工艺的一部分,在增材制造组件10之后,组件10具有添加到组件10的陶瓷芯20和陶瓷壳模22。在其他实施方案中,组件10可以具有由除陶瓷之外的材料制成的芯20和壳模22。陶瓷芯20形成在内部通道18中,使得陶瓷芯20大体上符合内部通道18的形状。可以通过用陶瓷浆料填充内部通道18,导致内部通道18的体积被陶瓷浆料占用,来形成陶瓷芯20。陶瓷浆料可以是通常用作熔模铸造的芯材料的陶瓷,例如,、氧化、锆石、钴、莫来石高岭土和其混合物。一旦用陶瓷浆料填充或大体上填充内部通道18,就固化陶瓷浆料以形成陶瓷芯20(具有一般固体和刚性的特性)。在组件已被增材制造并且不具有内部通道18的替代实施方案中,组件可以被再生为大体上固化缺陷,而无需使用陶瓷芯20。
[0019] 陶瓷壳模22也被添加到组件10。陶瓷壳模22可以封装组件10的整体,使得组件10的整个外表面被陶瓷壳模22覆盖并且陶瓷壳模22大体上符合组件10的形状。中间组件10充当用于制造陶瓷壳模22的模型,因为组件10具有接近成品形状。陶瓷壳模22可以被形成以通过将组件10的整体浸渍到陶瓷浆料中以在组件10的整体上形成一层绿色(即,未固化的)陶瓷壳模来封装组件10。使这个层干燥,并且组件必要时被反复进行多次浸渍和干燥,以形成具有可接受的厚度的绿色陶瓷壳模。绿色陶瓷壳模的厚度可以从约5mm变化到约32mm。然后固化绿色陶瓷壳模以形成陶瓷壳模22(具有一般固体和刚性的特性)。陶瓷浆料和因此陶瓷壳模22可以是例如二氧化硅、氧化铝、锆石、钴、莫来石、高岭土和其混合物。或者,在一个实例中,可以同时形成陶瓷壳模22和陶瓷芯20,使得陶瓷壳模
22封装组件10的整个外表面并且陶瓷芯20封装内部通道18的整个表面。
[0020] 图2是图示增材制造组件再生方法30的实施方案的流程图。方法30可以用于固化具有亚表面缺陷的组件10,使得组件10可以根据需要被使用并且不需要被拒绝。
[0021] 首先,增材制造具有接近成品形状的中间组件10(其可以可选地包括内部通道18)(步骤32)。可以使用任何类型的增材制造工艺(包括但不限于选择性激光烧结、选择性激光熔化、直接金属沉积、直接金属激光烧结、直接金属激光熔化、电子束熔化、电子束丝熔化和本领域中已知的其他工艺)来增材制造组件10。此外,组件10可以被增材制造成具有金属,诸如镍基超合金、钴基超合金、铁基超合金和其混合物。增材制造组件10具有不需要的缺陷,这些缺陷可以包括大于0体积%但小于约15体积%的空隙(例如,孔隙和/或裂缝)(其他不需要的缺陷可以包括污染)。在一个实施方案中,组件10具有大于0体积%但小于约1体积%,并且甚至小于约0.1体积%的不需要的空隙。此外,接近成品形状的组件10可以被增材制造成具有比所需的成品配置高达15体积%的额外的材料。这意味着增材构建的组件10可以包括超出用于形成所需的成品配置所需要的多余的材料。这种多余的材料可以位于组件10上的多余的材料可以被机械加工的任何位置。在一个实例中,多余的材料可以位于根部16和/或翼面12的前端,诸如位于离散的浇口位置。在一个实施方案中,组件10被有意增材制造成含有中空部分(例如,类似于具有所需的尺寸、形状等的孔隙的中空部分),使得增材制造工艺耗时少。
[0022] 接着,可以用陶瓷浆料或其他合适的型芯材料填充至少一个内部通道18(如果存在)(步骤34)。用浆料填充内部通道18导致内部通道18的体积被浆料占用。可以用浆料填充每个内部通道18。浆料可以是通常用作常规的铸造工艺中的型芯材料的陶瓷材料,包括但不限于二氧化硅、氧化铝、锆石、钴、莫来石和高岭土。
[0023] 一旦用陶瓷浆料填充内部通道18,就可以固化陶瓷浆料以形成内部芯20(步骤36)。通过合适的热过程将浆料在原位置固化在组件10中。芯20占用内部通道18,使得芯
20大体上符合组件10的内部通道18的形状。如果不存在内部通道18,则可以省略步骤34和36。
[0024] 然后,将组件10封装在绿色(即,未固化的)壳模中(步骤38)。绿色壳模可以封装组件10的整体(即,大体上密封组件10),使得组件10的整个外表面被绿色壳模覆盖并且绿色壳模大体上符合组件10的形状。可能存在这些情况,即,芯20处于或接近组件10的外表面,芯20然后形成壳模22的一部分,导致壳模22中的间隙越过芯20的部分。绿色壳模可以被形成以通过将组件10的整体浸渍到陶瓷浆料中以在组件10的整体上形成一层绿色陶瓷壳模来封装组件10。使这个层干燥,并且组件必要时被反复进行多次浸渍和干燥,以形成具有可接受的厚度的绿色壳模。作为将组件10浸渍到陶瓷浆料中的一个替代方案,可以将陶瓷浆料倒在组件10上并使其干燥。绿色壳模的可接受的厚度可以从约5mm变化到约32mm。可以在中间温度下加热绿色壳模以部分地烧结陶瓷并且烧掉绿色壳模中的任何粘合材料。
[0025] 然后固化绿色壳模以形成外部壳模22(步骤40)。壳模22可以是例如二氧化硅、氧化铝、锆石、钴、莫来石、高岭土和其混合物。可以在约649℃(1200°F)与约982℃(1800°F)之间变化的温度下固化陶瓷壳模22达在约10分钟与约120分钟之间变化的时间,以固化陶瓷壳模22至全密度。因为绿色陶瓷壳模封装组件10的整体并且大体上符合组件10的形状,所以组件10充当陶瓷壳模22中的模型(代替用于传统的熔模铸造工艺中的蜡模)。
[0026] 接着,使具有不需要的缺陷的组件10熔化在陶瓷壳模22中,陶瓷壳模22现在具有组件10的模型(步骤42)。使组件10熔化在陶瓷壳模22中的一个方法是将组件10的至少部分放置在熔炉中。然而,可以使用施加热量使得组件10被熔化在陶瓷壳模22中的其他装置。例如,可以使用双冷和熔炉总成。制成组件10的材料的熔点一般低于形成芯20和壳模22的材料的熔点。这可能允许组件10在陶瓷壳模20内熔化,而不会污染组件10的材料与陶瓷芯20和/或陶瓷壳模22的材料。使组件10熔化在陶瓷壳模22中允许在重或其他手段的帮助下使组件10的材料硬化,并且大体上消除最初出现在组件10中的不需要的空隙。如果组件10被增材制造成具有高达15体积%的额外的材料,则这种额外的材料也熔化并且填充到组件10中的孔隙和/或裂缝中(使得填充到组件10中的孔隙和/或裂缝中的额外的材料不再出现在原来的位置)。使组件10熔化在壳模22中也可以帮助组件10除去污染物,这些污染物一般比组件10的固相更可溶于组件10的液相。
[0027] 在使组件10熔化在陶瓷壳模22内之后,使组件10凝固在陶瓷壳模22中(步骤44)。可以使用冷块或冷却组件10的任何其他装置使组件10凝固到组件10可以凝固的温度。使组件10凝固在陶瓷壳模22中将形成具有与组件10最初被增材制造的相同的形状的组件10,但现在使组件10硬化并且减少或甚至大体上消除空隙或其他缺陷(即,达到所需的成品配置)。如果使用启动器种子或晶粒选择器来使组件10定向凝固,则组件10中的污染物将通过凝固界面推动或收集到组件10的公用区中,这些污染物然后可以被移除和废弃。
[0028] 最后,从凝固组件10移除陶瓷芯20和陶瓷壳模22(步骤46)。例如,陶瓷芯20可以通过苛性浸提被蚀刻出或移除,并且陶瓷壳模22可以被淘汰。也可以检查成品组件10以确保减少或大体上消除不需要的缺陷(诸如空隙),并且成品组件10具有与增材制造组件10相同的形状。可以根据需要重复方法30。
[0029] 在组件被增材制造并且不具有内部通道18的情况下,组件可以被再生为大体上固化类似于方法30中所述的亚表面缺陷。然而,因为没有内部通道18,所以不需要执行步骤34和36。
[0030] 可能的实施方案的讨论
[0031] 以下是本发明的可能的实施方案的非排他性描述。
[0032] 一种再生组件的方法,所述方法包括:增材制造具有大于0体积%但小于约15体积%的空隙接近成品形状的组件;将组件封装在壳模中;固化壳模;将封装组件放置在熔炉中并且使组件熔化;使组件凝固在壳模中;以及从凝固组件移除壳模。
[0033] 前述段落的方法可以可选地包括,另外和/或替代地,以下技术、步骤、特征和/或配置中的任何一个或多个:
[0034] 组件被增材制造成具有大于0体积%但小于约1体积%的空隙。
[0035] 接近成品形状的组件被增材制造成具有比所需的成品配置高达15体积%的额外的材料。
[0036] 组件为叶片或轮叶,并且高达15体积%的额外的材料位于组件的根部或翼面的前端。
[0037] 将组件封装在壳模中包括将组件的整体封装在壳模中,使得组件的整个外表面被壳模覆盖。
[0038] 将组件封装在壳模中包括以下过程:(a)将组件的整体浸渍在浆料中以在组件的整体上形成一层壳模;(b)使壳模的层干燥;以及(c)重复步骤(a)和(b)直到形成可接受的壳模厚度来封装组件的整体。
[0039] 使用下列各项中的至少一个来增材制造组件:选择性激光烧结、选择性激光熔化、直接金属沉积、直接金属激光烧结、直接金属激光熔化和电子束熔化。
[0040] 组件被增材制造成具有选自由以下组成的组的金属:镍基超合金、钴基超合金、铁基超合金和其混合物。
[0041] 一种再生具有内部通道的组件的方法,所述方法包括:增材制造具有大于0体积%但小于约15体积%的空隙具有内部通道接近成品形状的组件;用浆料填充内部通道;固化浆料以形成芯;将组件封装在壳模中;固化壳模;将封装组件放置在熔炉中并且使组件熔化;使组件凝固在壳模中;以及从凝固组件移除壳模和芯。
[0042] 前述段落的方法可以可选地包括,另外和/或替代地,以下技术、步骤、特征和/或配置中的任何一个或多个:
[0043] 芯大体上符合组件的内部通道的形状,并且壳模大体上符合组件的形状。
[0044] 组件被增材制造成具有大于0体积%但小于约1体积%的空隙。
[0045] 接近成品形状的组件被增材制造成具有比所需的成品配置高达15体积%的额外的材料。
[0046] 组件为叶片或轮叶,并且高达15体积%的额外的材料位于组件的根部或翼面的前端。
[0047] 使用下列各项中的至少一个来增材制造组件:选择性激光烧结、选择性激光熔化、直接金属沉积、直接金属激光烧结、直接金属激光熔化和电子束熔化。
[0048] 组件被增材制造成具有选自由以下组成的组的金属:镍基超合金、钴基超合金、铁基超合金和其混合物。
[0049] 浆料是选自由以下组成的组:二氧化硅、氧化铝、锆石、钴、莫来石和高岭土。
[0050] 壳模是选自由以下组成的组:二氧化硅、氧化铝、锆石、钴、莫来石、高岭土和其混合物。
[0051] 将组件封装在壳模中包括将组件的整体封装在壳模中,使得组件的整个外表面被壳模覆盖。
[0052] 将组件封装在壳模中包括以下过程:(a)将组件的整体浸渍在浆料中以在组件的整体上形成一层壳模;(b)使壳模的层干燥;以及(c)重复步骤(a)和(b)直到形成可接受的壳模厚度来封装组件的整体。
[0053] 一种具有内部通道的中间组件,所述中间组件包括:具有内部通道接近成品形状的固体金属增材制造组件,其中组件具有大于0体积%但小于约15体积%的空隙,并且接近成品形状的组件比所需的成品配置高达15体积%的额外的材料;陶瓷芯,其安置在组件的内部通道内;以及外部陶瓷壳模,其封装组件的整体,使得组件的整个外表面被外部陶瓷壳模覆盖。
[0054] 本文所使用的任何相对术语或程度术语,诸如“一般地”、“大体上”、“大约”等,应根据本文明确规定的任何适用的定义或限制来解释并遵守这些定义或限制。在所有情况下,本文所使用的任何相对术语或程度术语应解释为广泛包括任何相关的公开的实施方案,以及本领域普通技术人员鉴于本公开的整体内容将理解的这些范围或变化,诸如包括普通制造公差变化、附带的对齐变化、由操作条件引起的临时对齐或形状变化等。
[0055] 尽管已参照优选实施方案描述本发明,但是本领域技术人员将认识到,在不脱离本发明的精神和范围的情况下,可以在形式和细节上进行变化。
QQ群二维码
意见反馈