在侵蚀性介质中使用的基于β-SiC的模制件的生产方法

申请号 CN200580015502.0 申请日 2005-05-10 公开(公告)号 CN100579934C 公开(公告)日 2010-01-13
申请人 SICAT公司; 发明人 C·法姆;
摘要 本 发明 涉及基于β-SiC的 复合材料 的生产方法,该方法包括:(a)制备被称作“前体混合物”的混合物,它包括至少一种β-SiC前体与至少一种含 碳 树脂 ,优选热固性含碳树脂;(b)使所述前体混合物成形,尤其为粒料、板、管或者砖的形式,以形成中间部件;(c)聚合该树脂;(d)将所述中间部件引入到容器中;(e)借助于使气体过压释放的关闭装置来关闭该容器;(f)在1100-1500℃下 热处理 所述中间部件,以除去树脂的有机成分并且在最终的部件中形成β-SiC。
权利要求

1.基于β-SiC的复合材料的生产方法,该方法包括:
(a)制备被称作“前体混合物”的混合物,它包括至少一种β -SiC前体与至少一种含树脂
(b)使所述前体混合物成形,以形成中间部件;
(c)聚合该树脂;
(d)将所述中间部件引入到容器中;
(e)借助于使气体过压释放的关闭装置来关闭该容器;和
(f)在1100-1500℃下热处理所述中间部件,以除去树脂的有机 成分并且在最终的部件中形成β-SiC,
其中在室温至800℃的温度下由待处理部件产生的气体排放量至 少等于由容器内部的气体所占有的体积的二倍。
2.权利要求1的生产方法,其中步骤(a)由步骤(aa)来代替:
(aa)制备被称作“前体混合物”的混合物,该混合物包含其至 少一部分由α-SiC构成的夹杂物、至少一种β-SiC前体和 至少一种含碳树脂。
3.权利要求1或2的方法,其中步骤(f)的热处理是在 1100℃-1500℃的温度下进行的。
4.权利要求1的方法,其中β-SiC前体是
5.权利要求1的方法,其中热固性树脂选自树脂、丙烯酸类 树脂或者糠醛树脂。
6.权利要求1的方法,其中步骤(c)的树脂聚合的温度是 150℃-300℃。
7.权利要求2的方法,其特征在于所述夹杂物和/或前体以粉末 的形式存在。
8.权利要求2的方法,其特征在于所述夹杂物和/或前体以颗粒 的形式存在。
9.权利要求2的方法,其特征在于所述夹杂物和/或前体以纤维 的形式存在。
10.权利要求2的方法,其中所述夹杂物的重量比例为80%-95%, 相对于前体混合物的总质量计。
11.权利要求2的方法,其特征在于所述夹杂物的一部分是二氧化硅、TiN、Si3N4或者这些化合物的混合物。
12.权利要求11的方法,其特征在于至少50%重量的所述夹杂物 是α-SiC。
13.权利要求1的方法,其特征在于未被所述中间部件占有的容 器体积由惰性固体来填充,以使由容器内部的气体所占有的体积不超 过中间部件的外体积50%以上。
14.权利要求12或13的方法,其中由容器内部的气体所占有的 体积不超过中间部件的外体积20%以上。
15.权利要求1的方法,其中在步骤(b)中,所述前体混合物成 形为粒料、板、管或者砖的形式。
16.能够通过权利要求1-15中任一项的方法获得的产品。
17.由权利要求1-15中任一项的生产方法获得的板或砖形式的产 品作为熔盐电解槽的内部覆层或者作为煅烧炉的内部覆层的用途。
18.权利要求17的用途,用于由氧化铝与晶石的混合物生产铝 的电解槽中。

说明书全文

技术领域

发明涉及在侵蚀性介质中使用的基于β-SiC的陶瓷材料,例如 其特别用在化学工程或者电冶金工程中,并且更具体地涉及用在煅烧 炉或者电解槽中的耐火部件或者耐火砖。本发明更特别地涉及这种部 件或者砖的简化的生产方法。

背景技术

专利EP0313480(Pechiney)描述了通过在真空下和在适度的温 度下加热和/或化硅与含化合物的混合物来制备碳化硅模制 件。在专利EP0543752(Pechiney)中提供了以降低成本为目的的这 种方法的改进方法,该方法是将真空下的加热替换为在中性气体(惰 性气体或者氮气)吹扫下进行加热。
文献EP0356800(Shin-Etsu Chemical Co)描述了一种用于碳化 硅的粘合剂组合物,它包含碳化硅、硅和碳和含碳树脂的细粉末。这 种组合物被压制在两个SiC部件之间,并且整个在1500℃下加热,以 使粘合剂的各个组分反应并获得两个部件之间的固体界面。该热处理 优选在惰性气体或者在真空下进行。在空气中加热部件的实例表明界 面的机械强度要差于在氩气下进行处理时的机械强度。
为了在大约1100-1500℃的温度下形成β-SiC,现有技术的方法 需要在惰性气体(通常是氮气或者氩气)气氛下或者在真空下进行热 处理,因为在空气下获得的部件的化学稳定性并不能令人满意。这会 导致与真空或者惰性气体的管理、惰性气体的消耗和真空的维护有 关的投资与开发的额外成本。因而希望提供可以在空气中和在正常压 下生产这些部件的方法,但不牺牲所获得部件的功能。

发明内容

根据本发明可以解决该问题,本发明在于把待处理的中间部件限 定在一个箱(通常由陶瓷材料制成)中,从而使得部件与炉气氛隔离。
本发明的方法包括:
(a)制备被称作“前体混合物”的混合物,它包括至少一种β -SiC前体与至少一种含碳树脂,优选热固性含碳树脂;
(b)使所述前体混合物成形,尤其为粒料、板、管或者砖的形式, 以形成中间部件;
(c)聚合该树脂;
(d)将所述中间部件引入到容器(réceptacle)中;
(e)借助于使气体过压释放的关闭装置(moyen)来关闭该容器;
(f)在1100-1500℃下热处理所述中间部件,以除去树脂的有机 成分并且在最终的部件中形成β-SiC。
在此,“β-SiC前体”是指在热处理条件下(步骤(e))与树 脂的成分形成β-SiC的化合物。作为β-SiC前体,优选硅,更优选粉 末形式的硅。这种硅粉末可以是已知粒度和纯度的商用粉末。出于均 匀性的原因,该硅粉末的粒度优选为0.1-20μm,优选2-20μm,更特 别地是5-20μm。所述前体还可以以颗粒或者纤维的形式使用。
在此,“含碳树脂”是指包含碳原子的任何树脂。其包含硅原子 是不必要的也不是有益的。有利地,硅唯一地由β-SiC前体提供。该 树脂有利地选自含碳的热固性树脂,并且尤其选自树脂、丙烯酸 类树脂或者糠醛(résines furfuryliques)树脂。优选酚醛类的树脂。
在前体混合物中,调节树脂和β-SiC前体的相应量,以将β-SiC 前体定量地转化为β-SiC。为此,计算树脂中所含的碳的量。一部分 的碳也可以通过向含碳树脂与β-SiC前体的混合物中直接添加碳粉 末来提供。这种碳粉末可以是粒度和纯度已知的商业碳粉末,例如炭 黑。出于混合物均匀性的原因,优选粒度小于50μm。对混合物组成的 选择是粘度、原料成本和所希望的最终孔隙率之间折衷的结果。为了 确保β-SiC前体完全转化为β-SiC并且因此使得能够获得没有未嵌 入到SiC结构中的Si的最终材料,在前体混合物中优选略微过量的碳。 这种过量的碳随后在空气中被烧除。不过,过量的碳不应当太高,以 便在燃烧剩余碳之后在材料的内部不会产生过大的孔隙率,过大的孔 隙率会使最终部件在机械强度方面脆化。
前体混合物可采用任何已知的方法来成形,例如铸造、挤出、轧 制或者在至少两个表面之间的压制,以获得三维形状,如粒料、管、 砖、板或者方瓷砖(carreaux)。所选的方法要适应前体混合物的粘 度、树脂粘度本身的作用和前体混合物的组成。作为实例,可以获得 例如厚度为1mm且长度和宽度为几分米的板。还可以制造尺寸为几厘 米至几分米或更大的砖。还可以获得具有更复杂形状的部件,尤其是 通过铸造来获得。在制造砖时,优选压制。
随后在空气中,在100℃-300℃,优选150℃-300℃,更优选 150℃-250℃,进一步优选150℃-210℃的温度下加热所述前体混合物。 这种处理(在该处理的过程中进行树脂的聚合和部件的固化)的持续 时间通常是在温度稳定状态下的0.5小时-10小时,优选1-5小时, 更优选2-3小时。在这个步骤的过程中,该材料释放出挥发性有机化 合物,它们根据前体混合物的组成中所存在的碳的比率和在聚合时所 应用的条件而产生可变的剩余孔隙率。可优选地尽可能减小这种孔隙 率,尤其是对于制造厚的板(通常至少2mm的厚度)和砖来说。因而 可以获得具有一定的机械强度并且因此可以容易地被处理的中间部 件。
将如此获得的所述中间部件引入到将在下文中说明的容器中,并 且在1100℃-1500℃的温度下加热1-10小时,优选1-5小时,更优选 1-3小时的时间。温度的最佳范围优选是1200℃-1500℃,更特别地 是1250℃-1450℃。更优选的范围是1250℃-1400℃。由来自树脂的 碳和β-SiC前体所形成的SiC是β-SiC。在这种碳化(carburation) 步骤的过程中,部件的温度逐渐升高并且引起含碳树脂的分解。这种 分解伴随有挥发性有机化合物的形成,这些挥发性有机化合物有效地 赶走最初存在于部件之间的以及在它们可能的孔隙中的空气。在使用 大多数的树脂时,尤其在使用热固性树脂时,含碳树脂分解所伴随的 气体排放在约800℃下完成。碳化硅的形成反应只有从1100℃开始才 变得有效,这基本上是在不存在分子氧的情况下发生的。
这种合成方式可导致在最终的部件中存在含碳残余物,该含碳残 余物很容易通过在700℃下在自由空气中加热3个小时来除去。
本发明的主要步骤是将所述中间部件引入到容器中,随后借助于 使气体过压释放的关闭装置来关闭该容器。
该容器优选由惰性陶瓷材料制成,例如由耐火砖制成。在本发明 有利的实施方案中,通过尽可能减少未被占用体积来足够密实地填充 所述容器。如果装填料太少,则可以通过用惰性固体(优选易于分离 且可回收的惰性固体)填充未被待处理中间部件所占有的容器体积来 补足。该惰性固体例如可以涉及到β-SiC或者α-SiC砖或者α-SiC颗 粒。在本发明方法的优选实施方案中,由容器内部的气体所占有的体 积不超过中间部件的外体积50%以上,优选不超过20%以上,更优选不 超过10%以上。在此,“外体积”是指由待处理中间部件的外尺寸计 算的体积,不考虑与孔隙率有关的其内表面。
另外优选地,在室温至800℃的温度下由中间部件产生的气体排 放量至少等于由容器内部的气体所占有的体积的二倍,优选至少五倍, 更优选至少十倍。在此,“由容器内部的气体所占有的体积”是指容 器的内部体积与待处理中间部件的外体积和任选的所添加惰性固体的 体积之和之间的差值。
该容器随后应当用适当的关闭装置来关闭,该装置例如是陶瓷材 料的盖子或者塞子。申请人发现,如果这种关闭是密封的话,则不仅 是无用的,而且还是有妨碍的。这是因为,该关闭装置需要使在煅烧 时形成的气体(碳氧化物、挥发性有机化合物等)的过压释放。在大 多数的情况下,尤其是当容器和盖子的边缘是足够平滑的形式时,以 视觉上密封的方式将盖子放在容器的开口上就足够了。还可以使用配 备的密封关闭装置。由此,气体过压可被释放,同时在高温下的 煅烧过程中,环境空气不会大量地进入到产物中,或者无论如何不会 进入到产物中。在冷却时,容器内部的压力下降;申请人已经发现, 空气能够进入到产品中此时不再是有妨碍的,这是因为温度是足够低 的,以致环境空气不再会大量地与产物发生反应。
可以预计将中间部件直接引入到炉中,同时小心地充满炉的空间, 这是通过在需要时添加数量足以占用该体积的惰性部件来实现的,并 且借助于使气体过压释放的关闭装置来关闭所述炉。在这种变化形式 中,正是炉本身担当了容器的作用。不过,这种实施方式存在缺陷: 将炉完全充满可能会妨碍空气的循环并且不可接受地干扰炉内部的热 平衡。另外,这种实施方式在敞开炉或者大尺寸炉的情况下不太实际。 使用容器则同时赋予该方法以相对于环境空气的有效保护和非常简单 灵活的应用。
本发明的方法可以生产无粘合剂的基于β-SiC的耐火砖或板,其 具有大于1.5g/cm3的密度且厚度为至少1mm,优选至少3mm,更优选 至少5mm。所述板的最小截面积有利地为至少15mm2,优选至少50mm2, 长或宽与厚度之比为至少10,优选至少15。在有利的其它方式中,所 生产的是砖。所述砖的最小尺寸有利地是至少10mm,优选至少50mm, 甚至100mm。所述砖的最小截面积有利地是至少20cm2,优选至少75cm2, 更有利地是至少150cm2,长或宽与厚度之比为至少3。
在这两种情况下,合适地是限制碳的过量并缓慢聚合,以避免形 成大的气泡,该气泡能够使该材料在其碳化时脆化。
材料的密度可以达到2.8g/cm3。为了在煅烧炉或者电解槽中应用, 优选密度为至少2.4g/cm3。对于这种应用来说,最优选的密度是 2.45-2.75g/cm3。
在本发明的一个特定实施方式中,向前体混合物中添加夹杂物, 该夹杂物的至少一部分由α-SiC构成。在这种情况下,上面所示的步 骤(a)由步骤(aa)来代替:
(aa)制备前体混合物,该前体混合物包含其至少一部分由α-SiC 构成的夹杂物,和可以为粉末、颗粒、纤维或者各种尺寸 夹杂物的形式的β-SiC前体,以及含碳树脂,优选热固性 含碳树脂。
通常使用粒度可在0.01至几毫米之间变化的α-SiC作为夹杂物。 作为实例,颗粒尺寸为几十微米至3mm是合适的。这种碳化硅可包括 目前已知的几种碳化硅之一。α-SiC的一部分可以由氧化、二氧化 硅、TiN、Si3N4或者其它在最终复合物的合成温度下不分解且不升化 的无机固体来代替。作为实例,所述夹杂物的重量比例可以达到80%, 甚至90%,相对于前体混合物的总质量计。如果这些产物打算用作熔 盐电解槽(例如用于由氧化铝和晶石的熔融混合物生产铝)的内衬, 优选至少50重量%,更优选至少70%的夹杂物由α-SiC构成。对于打 算用作煅烧炉内衬的产物来说也是如此。
构成夹杂物的固体并不限于确切的宏观形式,而是能够以不同的 形式如粉末、颗粒、纤维来使用。作为实例,为了改善最终复合物的 机械性能,优选基于α-SiC的纤维作为夹杂物。这些纤维可以具有大 于100μm的长度。
这些夹杂物(其至少一部分应当由α-SiC构成)与含碳树脂,优 选热固性含碳树脂混合,该树脂含有给定量的β-SiC前体,优选为粒 度为0.1至几微米的粉末的形式。
由此获得α-SiC/β-SiC类型的复合材料,包含在β-SiC基体中的 α-SiC的颗粒,其不需要包含其它的粘合剂或者添加剂。
在本发明的另一种具体实施方式中,补充浸渗处理可以按照所述 的同样的操作程序来进行:在含树脂的模子中所述材料的淬火,聚合, 然后最后地,碳化处理。所述树脂应当含有足够量的β-SiC前体,例 如为硅粉末的形式。这种补充处理使得能够改善机械强度和/或消除存 在不希望的孔隙的固有问题,这导致了更好地耐受腐蚀性介质的侵蚀, 尤其是耐受含氟介质、耐受浓酸或耐受性介质的性质。
不添加夹杂物,则获得纯且多孔的β-SiC,其可以被用作催化剂 载体或者作为催化剂。
在本发明方法的一个优选变化形式中,碳和硅以下面的方式紧密 混合:硅粉末(平均颗粒尺寸约10μm)与酚醛树脂混合,该树脂在聚 合后提供β-SiC形成反应所需的碳源。随后将夹杂物与树脂混合,然 后整个浇注到具有所希望的最终复合物形状的模子中。在聚合之后, 所形成的固体被转移到容器中,该容器置于可以进行基体的最终碳化 的炉中。如果该容器不是装满的,则可以添加惰性材料,例如已经煅 烧的相同类型的耐火砖。通过关闭装置(例如陶瓷材料的盖子或者塞 子)来关闭该容器。
在温度升高的过程中,聚合的树脂分解释放出挥发性有机化合物, 该挥发性有机化合物在容器中产生过压。这种过压应当被释放,这或 者是通过在容器中配置的特定阀门或者盖子来实现,或者是简单地由 于该容器与盖子之间的连接未密封来实现。
所有成分紧密混合显著地提高了SiC的最终收率,在气相中硅的 损失非常少。
本发明的方法可以获得具有基于β-SiC的基体的材料或者复合 物,在其内部可包含基于碳化硅的夹杂物或者其它在强酸性或碱性侵 蚀性介质中以及在强温度应力下具有耐受性的材料。
本发明相对于现有技术方法具有很多优点,并且尤其包括以下这 些优点:
(i)本发明的材料可以以与已知方法相比明显要低的成本来制 造。这归因于三个因素:首先,低成本及有限数目的原料(构成碳源 的树脂,硅粉末)。第二,在能源方面不可忽视的经济性,这是因为, 相对于在现在技术中使用的方法,本发明的方法可以在较低的温度下 实施,即≤1400℃。并且尤其是第三点,本发明的方法避免了与真空 或者惰性气体的管理、惰性气体的消耗和真空泵的维护有关的投资与 开发的额外成本。
(ii)混合物的成形可以优选在聚合之前通过挤出、压制或者铸 造来实施。这是容易的,可归因于可含有分散的α-SiC粉末的起始材 料的性质,即基于树脂和硅粉末的粘性基体。这能够使得该材料以相 对复杂的形状预成形,而这种复杂的形状通常是不容易利用已知方法 获得的。另外可选地,通过在树脂聚合之后,优选在热处理之前(步 骤(d)),可以通过机械加工成形该部件。
(iii)该复合物的不同成分之间的物理和化学强亲合性使得可以 通过基于β-SiC的基体更好地润湿α-SiC的颗粒或者夹杂物。这归因 于它们接近的物理和化学性质,虽然它们的晶体学结构是不同的,即 α-SiC(六方晶系)和β-SiC(立方晶系)。这些相似性主要来源于 Si-C化学键的特殊性,该化学键很大程度上决定了机械和热性能以及 强的耐腐蚀剂的性质。其同样还能够使得实现两相(β-SiC基体和夹 杂物)之间强的结合,从而避免了在应力下应用时析出或者剥落的问 题。而且,如果使用α-SiC夹杂物,则其具有的热膨胀系数非常接近 于β-SiC基体的热膨胀系数,从而使得能够避免形成在热处理或者在 冷却时可能出现在复合物内部的残余应力;这避免了形成裂纹,该裂 纹会使成品部件在应用时产生损伤。
(iv)由于不含有不太耐受腐蚀性介质的粘合剂,因此本发明的 材料或者复合物具有极高的耐受腐蚀性介质,尤其是耐受含氟介质, 耐受浓酸或者碱性介质的性能。由本发明的这种新材料或者复合物制 成的部件因而可以更经济地应用。更具体地,在给定的侵蚀性介质中, 本发明部件的使用寿命显著地大于基于已知SiC的部件的使用寿命。 这还改善了SiC部件的使用安全性,尤其是其密封性,并且开辟了使 用现有技术的基于SiC的材料(其粘合剂不是化学惰性的)所预期不 可能的其它应用。
(v)通过改变夹杂物的物理和化学性质,根据本发明的方法还可 以制备其它类型的复合物,该复合物不仅包含碳化硅,而且还含有其 它材料如氧化铝、二氧化硅或者其它任何化合物,只要其能够分散在 树脂中并且在合成时其不会被变化。以可变化的比例添加除α-SiC之 外的这些夹杂物使得能够随意地改变最终复合物的机械和热性能,即 改变传热、耐氧化性或耐孔填塞性。
(vi)根据所针对的应用,通过改变夹杂物的比例,尤其是α-SiC 的质量百分比,则可以改变材料的耐热强度和机械强度。
本发明方法使得能够获得基于β-SiC的产品或者部件,该产品或 者部件明显地具有与在真空或者惰性气体中制备的产品或者部件相同 的使用性能。尤其对于高温下的耐含氟或含氯介质的性质来说,情况 即是如此,该性能在下述情况下可能是关键的:当使用所述产品来作 为用于由氧化铝-冰晶石熔融混合物生产铝的电解槽的内衬时或者作 为煅烧炉的炉衬时。实际上,这种陶瓷材料具有非常广泛的应用。它 尤其能够以耐火板或砖的形式在各种应用中用作覆层材料,这些应用 属于应当响应强的机械和热应力和/或存在腐蚀性液体或者气体的热 工程、化学工程或者电冶金工程。其尤其可以用在构成换热器、燃烧 器、炉、反应器或者加热电阻的元件中,该元件尤其处于中或高温下 的氧化介质中,或者其用在与腐蚀性化学剂接触的设备中。本发明的 材料可以被用作炉的(如铝熔化炉)内部覆层,和用作熔盐电解槽的 内衬,该电解槽例如用于由铝与冰晶石的混合物电解生产铝。
本发明的方法还可以生产复杂形状的部件(尤其通过铸造生产) 和管(尤其通过挤出生产),以及粒料。

具体实施方式

下面的实施例用于说明本发明的不同实施方案并且揭示其优点; 但这些实施例并不限制本发明。
实施例
实施例n°1:
通过混合49%的金属硅细粉末、18%的炭黑和33%的酚醛树脂来生 产均匀的糊料。通过挤出使这种糊料成形为3mm的粒料,然后在空气 中在200℃下加热3小时,以固化该树脂。
由此获得前体粒料,该粒料在适当的条件下通过加热可以转化为 SiC。
实施例n°2
将15cm3(16.3g)的按照实施例n°1制备的前体挤出物装入到23cm3 的氧化铝药包(cartouche)中。在其中添加16g的粒度小于200μm 的α-SiC,然后整个进行振动,以使粉末填满挤出物之间还未填充的 空间。然后用下陷1cm厚的陶瓷毡封闭该药包。然后在管式炉中在 1400℃下加热该药包1小时,使连续地氩气流在该管式炉中经过。在 处理之后,清空该药包并且通过过滤将挤出物与α-SiC粉末分离。X 射线衍射分析表明,该前体粒料已经转化为β-SiC。
将这种β-SiC粒料浸于HF溶液(40%体积)中24小时,然后用 冲洗并干燥。使用HF的粒料处理导致质量损失大约6%,而对晶粒 形态没有任何影响。
实施例n°3
重复实施例n°2的试验,不同之处在于在1400℃下加热该药包1 小时是在包含空气来代替氩气的炉中进行的。在卸料和过滤挤出物之 后,将该挤出物浸于HF溶液(40%体积)中24小时,然后用水冲洗并 干燥。使用HF的粒料处理导致质量损失大约5%,而对晶粒形态没有 任何影响。
对比例n°1
将15cm3的按照实施例n°1制备的前体挤出物置于炉中,然后在 1400℃下在自由空气中处理1小时。在炉中处理之后,将粒料浸于HF 溶液(40%体积)中24小时。这种使用HF的处理导致粒料的形态发生 剧烈的变化,其几乎全部溶在了HF溶液中,在HF槽的底部观察到粉 末形式的无法计量的固体残余物。
实施例n°4
通过混合55%酚醛树脂和45%金属硅细粉末来制备粘合剂。
这种粘合剂随后被用于与α-SiC颗粒以12%和88%的相应比例混 合。如此形成的混合物随后被压制,以形成砖,通过在空气中在150℃ 下加热3小时使所述砖固化。在这个阶段,所述砖是由封闭在前体基 体中的α-SiC颗粒构成,其通过在适当条件下加热可以转化为β -SiC。
实施例n°5
在通过连续吹扫氩气而惰性化的炉中在1360℃下将按照实施例 n°4制备的砖处理1小时。在离开所述炉时,所述砖具有良好的机械强 度,该机械强度在所述砖在40%体积的氢氟酸浴中停留24小时后还得 以保持。在这种HF处理时损失的质量小于1%。除了在开始时引入的 α-SiC之外,X射线衍射分析还表明存在β-SiC,它是由该粘合剂形 成的,并且可以保持α-SiC颗粒之间的内聚力。
实施例n°6
将按照实施例n°4制备的砖置于用盖子盖着的陶瓷盒中,并且适 合于部件的尺寸。然后整个在用氧化气氛吹扫的炉中在1380℃下处理 5小时。在离开所述炉时,所述砖具有良好的机械强度,该机械强度 在所述砖在40%体积的氢氟酸浴中停留24小时后还得以保持。在这种 HF处理时损失的质量大约为1.5%。
对比例n°2
在通过氧化气氛吹扫的炉中在1380℃下将按照实施例n°4制备的 砖处理5小时,所述砖不装在陶瓷盒中。在离开所述炉时,所述砖具 有良好的机械强度,但所述砖在40%体积的氢氟酸浴中仅仅停留2小 时之后其颗粒则完全变小。与实施例5和6相反,在HF介质中处理之 后,α-SiC颗粒之间的内聚力不再能够得到保证,这是因为在高温下 煅烧的过程中β-SiC前体不能够合适地转化为β-SiC粘合剂。
QQ群二维码
意见反馈