滑动结构部件

申请号 CN201180057394.9 申请日 2011-11-17 公开(公告)号 CN103228817A 公开(公告)日 2013-07-31
申请人 本田技研工业株式会社; 发明人 小森健太郎;
摘要 本 发明 提供可得到良好的低摩擦特性的滑动结构部件。该滑动结构部件以下述方式组合而成:在相互滑动的部件中的一方部件(11)上设置含有氢的DLC膜(2),隔着添加了有机钼化合物与含有锌和硫的化合物作为添加剂的 润滑剂 (3),设置在一方部件(11)上的DLC膜(2)与对象部件(12)进行滑动;其中,设定DLC膜(2)的表面的均方根粗糙度为5nm以上25nm以下、且DLC膜(2)中的含氢量为4.5at%( 原子 %)以上30at%以下。
权利要求

1.一种滑动结构部件,该滑动结构部件按下述方式组合而成:
在相互滑动的部件中的一方部件上设置了含有氢的非晶态硬质膜,隔着润滑剂,设置在所述一方部件上的非晶态硬质碳膜与对象部件进行滑动,其中在所述润滑剂中添加了有机钼化合物与含有锌和硫的化合物作为添加剂;该滑动结构部件的特征在于,所述非晶态硬质碳膜的表面的均方根粗糙度为5nm以上25nm以下,并且,所述非晶态硬质碳膜中的含氢量为4.5at%以上30at%以下。

说明书全文

滑动结构部件

技术领域

[0001] 本发明涉及一种滑动结构部件,其为用于原动机或动传递装置等中的滑动结构部件,涉及如下组合而成的滑动结构部件:在相互滑动的部件中的一方部件上设置含有氢的非晶态硬质膜,隔着润滑剂,设置在上述一方部件上的非晶态硬质碳膜与对象部件(相手部材)进行滑动。

背景技术

[0002] 关于原动机或动力传递装置等中所用的滑动结构部件,出于对相互滑动的部件的保护或通过改善油耗来保护地球环境的目的,积极进行了用于降低摩擦的研究,提出了多种方法。
[0003] 作为其中的一个方法,提出了使非晶态硬质碳膜(也被称为类金刚石碳膜(DLC膜)。)或石墨(graphite)与二硫化钼(MoS2)共存的提案。需要说明的是,MoS2为层状结晶结构的物质,在受到高负荷时会向一定方向滑动,因而作为可得到优异润滑效果的物质而为人所知。
[0004] 在作为该方法的一例的专利文献1中,记载了使用非晶态硬质碳膜(在专利文献1中记载为非晶态碳覆膜)与规定量以上的MoS2的情况,该非晶态硬质碳膜中,无定形结构与石墨结构的比例(强度比)被限定在特定范围中。
[0005] 此外,作为其它方法,为了抑制化钼中的化学反应,提出了下述的提案:在非晶态硬质碳膜或润滑剂中添加特定成分、限定对象部件的材质、追加特殊机构。
[0006] 例如,在专利文献2中记载了将硫、镁、成分添加到非晶态硬质碳膜(在专利文献2中记载为非晶态碳覆膜)中的情况。另外,例如在专利文献3中记载了将二硫代磷酸(Cu-DTP)添加到润滑剂中的情况;在专利文献4中记载了对设置在对象部件上的陶瓷被膜进行限定的情况;在专利文献5中记载了追加特殊的冷却机构的情况。
[0007] 进一步地,作为其它方法,提出了使用非晶态硬质碳膜与润滑剂的提案,该非晶态硬质碳膜中,氢的含量被限制得较低。
[0008] 在作为该方法的一例的专利文献6中,记载了使用下述非晶态硬质碳膜(在专利文献6中记载为硬质碳薄膜)的情况,该非晶态硬质碳膜中,设定含氢量为25质量%以下、更优选为5质量%以下、进一步优选为0.5质量%以下、更进一步优选不含氢。
[0009] 现有技术文献
[0010] 专利文献
[0011] 专利文献1:日本特开2007-99947号公报
[0012] 专利文献2:日本特开2008-195903号公报
[0013] 专利文献3:日本特开2008-255160号公报
[0014] 专利文献4:日本特开2009-114311号公报
[0015] 专利文献5:日本特开2009-79138号公报
[0016] 专利文献6:日本特开2005-2888号公报

发明内容

[0017] 发明所要解决的课题
[0018] 但是,在专利文献1中具有下述问题:关于基于化学反应的反应生成物的存在比例或其机理,具体情况不清楚的方面很多;关于得到低摩擦特性,还有进一步改良的余地;此外,关于可能会生成的氧化钼会促进非晶态硬质碳膜的化学磨损、可能会致使摩擦特性变差的方面,没有任何考虑。
[0019] 另外,如专利文献2~5所述,在非晶态硬质碳膜或润滑剂中添加特定成分、限定对象部件的材质、或追加特殊机构时,由于制造工序增加、或者制造方法、应用范围被限定,因而具有成本增多的问题。
[0020] 另外,如专利文献6所述,使用含氢量少的非晶态硬质碳膜时,该非晶态硬质碳膜具有优异的耐磨损性,但由于其制法被限定,因而具有进行被覆的部件的材质或形状被限定的问题。此外,这样的非晶态硬质碳膜潜在地具有非常高的硬度,表面倾向于变得过度粗糙。在专利文献6中对这些方面完全没有控制,因而具有下述问题:即使与润滑剂一同使用,对象攻击性(相手攻撃性)也高,作为滑动结构部件不优选。此外,为了解决该问题,需要在成膜后进行研磨工序等,因而具有成本增多的问题。
[0021] 本发明是鉴于上述问题而提出的,其课题主要在于提供一种可得到良好的低摩擦特性的滑动结构部件。
[0022] 解决课题的手段
[0023] 本发明人进行了深入研究,结果发现,由于非晶态硬质碳膜为无定形(非晶态)材料,因而其尽管在宏观上非常光滑,但在微观上存在有微细的凹凸,形状及粗糙度为多样的;并且,为了生成可得到良好润滑性的硫化钼(MoS2),根据摩擦力或压力等,需要一定程度的能量;通过着眼于上述方面将非晶态硬质碳膜的硬度与表面粗糙度控制在特定范围,可以解决上述课题,从而完成了本发明。
[0024] 上述课题得以解决的本发明为按下述方式组合而成的滑动结构部件:在相互滑动的部件中的一方部件上设置含有氢的非晶态硬质碳膜,隔着添加了有机钼化合物与含有锌和硫的化合物作为添加剂的润滑剂,设置在上述一方部件上的非晶态硬质碳膜与对象部件进行滑动;该滑动结构部件的特征在于,上述非晶态硬质碳膜的表面的均方根粗糙度为5nm以上25nm以下、且上述非晶态硬质碳膜中的含氢量为4.5at%以上30at%以下。
[0025] 由此,通过将设置在一方部件上的非晶态硬质碳膜的表面的均方根粗糙度控制在特定范围、同时将非晶态硬质碳膜中的含氢量控制在特定范围,可使设置在一方部件上的非晶态硬质碳膜与对象部件在隔着润滑剂进行滑动时所产生的摩擦热或压力适当。因此,能够形成维持低摩擦、低磨损状态的润滑形态,可得到良好的低摩擦特性。这样的润滑形态可认为是如下达成的:润滑剂中所含有的有机钼化合物与含有锌和硫的化合物受到摩擦热4+ 2-
或压力的作用而发生化学反应,由润滑剂中生成的钼离子(例如,Mo )与硫离子(S )积极地生成MoS2,从而抑制MoO2、MoO3之类的氧化钼的生成,结果成为含有大量MoS2的状态;以及,如通常所知,由于非晶态硬质碳膜与对象部件的摩擦,非晶态硬质碳膜的碳成分发生结构变化而成为石墨(碳石墨)质成分,其附着在对象部件的表面,形成良好的摩擦膜(トライボフィルム)。需要说明的是,摩擦膜可被看做是由于非晶态硬质碳膜或润滑剂的物理化学作用而在滑动面上形成的纳米级的表面膜。若形成摩擦膜,则可防止相互滑动的部件的滑动面的直接接触,可维持低摩擦、低磨损状态。即,摩擦膜或MoS2可被称为用于得到良好的低摩擦特性的摩擦生成物。
[0026] 发明效果
[0027] 根据本发明,通过将非晶态硬质碳膜表面的均方根粗糙度与非晶态硬质碳膜中的含氢量控制在特定范围,可由润滑剂中所含有的有机钼化合物与含有锌和硫的化合物积极地生成MoS2、同时抑制氧化钼的生成,进一步可在对象部件的表面形成摩擦膜,从而可提供得到了良好的低摩擦特性的滑动结构部件。附图说明
[0028] 图1中,图1(a)为作为本发明一个实施方式的滑动结构部件的一例而示出的汽车发动机的要部截面图,图1(b)和图1(c)为图1(a)的要部放大截面图。
[0029] 图2中,图2(a)为用于说明摩擦试验的模式的说明图,图2(b)为用于说明球体材料的磨损面的说明图。
[0030] 图3为由表3所示的内容作图来示出球体材料上的Mo4+的检出量与摩擦系数的关系的图。
[0031] 图4中,图4(a)为由表3所示的内容作图来示出DLC膜的均方根粗糙度与S2-/Mo4+比的关系的图,图4(b)为对试验材16的球体材料的磨损面进行拍摄的照片,图4(c)为对试验材1的球体材料的磨损面进行拍摄的照片。
[0032] 图5为由表3所示的内容对S2-/Mo4+比与摩擦系数的关系进行作图而得到的图。
[0033] 图6中,图6(a)为由表3所示的内容对DLC膜的含氢量与Mo0的检出量的关系进行作图而得到的图,图6(b)为对DLC膜的含氢量为4.5at%的试验材8的球体材料的磨损面进行拍摄的照片。
[0034] 图7为进行作图来示出DLC膜的含氢量与DLC膜的均方根粗糙度的关系而得到的图。

具体实施方式

[0035] 本发明的主旨在于,为了在设置于一方部件上的非晶态硬质碳膜与对象部件的滑动所产生的摩擦力或压力的作用下,使由添加到润滑剂中的添加剂生成摩擦特性优于MoO2与MoO3的MoS2,而将非晶态硬质碳膜的表面粗糙度与含氢量控制在特定的范围。
[0036] 下面适当参照附图对用于实施本发明的滑动结构部件的方式进行详细说明。
[0037] 图1的(a)为作为本发明一个实施方式的滑动结构部件的一例而示出的汽车用发动机的要部截面图。
[0038] 如图1的(a)所示,本发明的一实施方式的滑动结构部件1是如下组合而成的:在相互滑动的部件中的一方部件11上设置含有氢的非晶态硬质碳膜(下文中称为“DLC膜”。)2,隔着添加了有机钼化合物与含有锌和硫的化合物作为添加剂的润滑剂3,设置在一方部件11上的DLC膜2与对象部件12进行滑动。
[0039] 另外,在本发明中,使设置在滑动结构部件1上的DLC膜2表面的均方根粗糙度为5nm以上25nm以下、且使DLC膜2中的含氢量为4.5at%(原子%)以上30at%以下。
[0040] 作为可以使用本发明的滑动结构部件1的对象,可以举出一方部件11与对象部件12隔着润滑剂(润滑油)3进行滑动的原动机或动力传递装置等。作为原动机,可以举出例如:包含汽车用发动机或燃气轮机内燃机以及蒸气机或蒸气透平等外燃机热机电动机(电气达);包括油压缸或车、车等的流体机械等。此外,作为动力传递装置,可以举出与上述原动机连接的变速机等。
[0041] 若示出具体例进行说明,则例如为图1(a)~图1(c)所示的滑动结构部件1(汽车用发动机)时,上述部件11相当于活塞环11a、对象部件12相当于汽缸12a。此外,部件11相当于曲轴12b与连杆13之间所用的连杆轴承11b、对象部件12相当于曲轴12b。当然,在上述示例中,不消说可以将设有DLC膜2的部件11设为汽缸、将对象部件12设为活塞环;不消说也可将设有DLC膜2的部件11设为曲轴、将对象部件12设为连杆轴承。本发明的滑动结构部件1只要像上述那样为将部件彼此间相互滑动的轴部件、轴承、齿轮等部件组合而成的,则也可包含任意构件。此外,作为设有DLC膜2的部件11,此外还可举出活塞销、活塞环槽和活塞裙部等。
[0042] 对于滑动结构部件1,只要在相互滑动的部件中的一方部件11的与对象部件12进行滑动的部分上设有DLC膜2即可。通过在与对象部件12进行滑动的部分设置DLC膜2,可以提高滑动结构部件1的低磨损特性。需要说明的是,也可以在该部件11的整体上设置DLC膜2。如此,除了可提高低磨损特性外,还可谋求高硬度化、化学稳定性的提高、表面平滑性的提高、防粘性的提高、耐烧结性的提高等。因而,在将活塞环设为部件11的情况下,可以如图1(b)所示在活塞环的外周面设置DLC膜2,也可以在活塞环的整个表面设置DLC膜2。
[0043] 对于部件11和对象部件12,为了可在表面容易地吸附润滑剂3中所添加的添加剂、得到良好的润滑性,优选部件11和对象部件12为包括所谓普通和特殊钢的钢制造的部件,但也可以为非铁金属制造的部件或陶瓷制造的部件等。需要说明的是,关于润滑剂3和添加剂如下文所述。
[0044] 作为普通钢,可以举出:日本工业标准(JIS)中规定的一般结构用轧制钢材(SS材)、焊接结构用轧制钢材(SM材)、锅炉压力容器用钢材(SB材)、高压气体容器用钢板和钢带(SG材)、热轧钢材和钢带(SPH材)、钢管用热轧碳钢钢带(SPHT材)、汽车结构用热轧钢板和钢带(SAPH材)、冷轧钢板和钢带(SPC材)等。
[0045] 此外,作为特殊钢,优选高碳铬轴承钢(SUJ2材)、铬钼钢钢材(SCM材),可以举出机械结构用碳钢(S-C材)、碳工具钢钢材(SK材)、切削工具用合金工具钢钢材(SKS材)、冷作模具用合金工具钢钢材(SKD材)、热作模具用合金工具钢钢材(SKT材)、高速工具钢钢材(SKH材)、碳铬轴承钢钢材(SUJ材)、弹簧钢钢材(SUP材)、不锈钢钢材(SUS材)、耐热钢钢材(SUH材)、恒温压力容器用碳钢钢材(SLA材)、磁心钢或磁石钢、锻钢品(SF材)、铸钢品(SC材)、铸铁品(FC材)等。
[0046] 作为非铁金属,可以举出、镁、钛或以选自它们中的任意一种作为主成分的合金。
[0047] 作为铝或铝合金,可以举出:JIS中规定的纯Al(1000系);Al-Cu、Al-Cu-Mg系合金(2000系);Al-Mn、Al-Mn-Mg系合金(3000系);Al-Si-Cu-Mg-Ni、Al-Si系合金(4000系);Al-Mg系合金(5000系);Al-Mg-Si系合金(6000系);Al-Zn-Mg-Cu、Al-Zn-Mg系合金(7000系);Al-Cu合金(AC1A);Al-Cu-Mg合金(AC1B);Al-Cu-Mg-Ni合金(AC5A);Al-Si合金(AC3A、ADC1);Al-Cu-Si合金(AC2A、AC2B);Al-Si-Cu合金(AC4B、ADC10、ADC12);Al-Si-Mg合金(AC4C、AC4CH、ADC3);Al-Si-Cu-Mg-Ni合金(AC8A、AC8B、AC8C、AC9A、AC9B、ADC14);Al-Mg合金(AC7A、ADC5、ADC6)等。
[0048] 作为镁或镁合金,可以举出JIS中规定的1~7种。
[0049] 作为钛或钛合金,可以举出JIS中规定的1~4种。
[0050] 部件11和对象部件12只要根据用途从上述材料中适宜选择来形成即可。即,部件11和对象部件12可以由从上述中选出的同种材料来形成,并且也可由不同材料来形成。
[0051] 此处,对象部件12中的与部件11进行滑动的部分的表面粗糙度只要为作为通常的滑动结构部件使用的范围即可。例如,只要进行精加工使算术平均粗糙度(Ra)为1.6μm左右以下、十点平均粗糙度(RzJIS)为6.3μm左右以下即可。若对象部件12的表面粗糙度为上述数值以下,则可得到良好的摩擦力。
[0052] 需要说明的是,算术平均粗糙度(Ra)和十点平均粗糙度(RzJIS)可以按照JIS B0601:2001进行测定,可通过使用依据该标准的测定装置来简便地进行测定。
[0053] 如上所述,本发明中,部件11上所设置的DLC膜2表面的均方根粗糙度(Rq)设定为5nm以上25nm以下。DLC膜2表面的均方根粗糙度为该范围时,可得到良好的摩擦力、同时对象攻击性也不会变得过高,因而是优选的。
[0054] DLC膜2表面的均方根粗糙度若小于5nm,则表面过于光滑,从而无法得到充分的摩擦力。因而难以生成MoS2、无法得到良好的低摩擦特性。另一方面,DLC膜2表面的均方根粗糙度若大于25nm,则表面过于粗糙,因而对象攻击性变高、对象部件12的磨损增大。需要说明的是,DLC膜2表面的均方根粗糙度优选设定为5.2nm以上24nm以下、更优选设定为7.3nm以上19nm以下。
[0055] 此处,均方根粗糙度[nm]可以使用原子力显微镜(AFM)进行测定,由所得到的结果按照JIS B0601:2001进行计算。
[0056] 此外,本发明中,部件11上设置的DLC膜2中的含氢量设定为4.5at%以上30at%以下。DLC膜2中的含氢量为该范围时,DLC膜2不会过硬、并且也不会过软,对本发明来说为恰好的硬度,因而在DLC膜2与对象部件12进行滑动时,容易产生适度的摩擦热与压力。因此,润滑剂3中含有的有机钼化合物与含有锌和硫的化合物容易发生化学反应,可积极地生成MoS2。因而,容易得到维持低摩擦、低磨损状态的润滑形态,可得到良好的低摩擦特性。
[0057] DLC膜2中的含氢量若小于4.5at%,则通常有DLC膜2变硬的倾向、对象攻击性增高,因而对象部件12的磨损增大。
[0058] 另一方面,DLC膜2中的含氢量超过30at%时,尽管DLC膜2的硬度处于较为恰好的范围,但由于含有大量氢,因而易于产生各种化学反应。特别是作为副产物生成的MoO2或MoO3会与富存的氢发生化学反应而生成金属钼(Mo)、或者与来自DLC膜2的碳发生反应而生成碳化钼(Mo2C)。它们的生成意味着氢或碳作为还原剂发挥作用进行了化学反应,即DLC膜2发生了化学磨损,因而不优选。
[0059] 需要说明的是,若DLC膜2中的含氢量为40at%以上,则对本发明来说DLC膜2变得过软,因而即使DLC膜2与对象部件12进行滑动,也无法产生适度的摩擦热与压力。因此,润滑剂3中含有的有机钼化合物与含有锌和硫的化合物不易产生化学反应。其结果,变得无法得到良好的低摩擦特性。需要说明的是,DLC膜2中的含氢量的上限优选设定为28.8at%以下、更优选设定为26.1at%以下、进一步优选设定为18.4at%以下、更进一步优选设定为17.7at%以下。
[0060] 此处,DLC膜2中的含氢量可通过例如拉塞福背向散射法(Rutherford Backscattering Spectrometry;RBS)进行测定。
[0061] DLC膜2的硬度和杨氏模量可利用依据ISO14577的纳米压痕法(纳米压痕仪,ナノインデンテンター)进行测定,可精度良好地计算出。
[0062] 这样的DLC膜2例如可通过使用甲烷(CH4)、乙炔(C2H2)、苯(C6H6)或甲苯(C7H8)等气体作为原料的等离子体CVD(化学气相沉积,Chemical Vapor Deposition)来提高含氢量进行成膜,此外,例如可通过使用固体碳作为原料的PVD(物理气相沉积,Physical Vapor Deposition)来降低含氢量进行成膜。通过哪种方式来设置DLC膜2可根据所期望的含氢量来适宜选择。此外,可通过对原料、压力、成膜时间、偏压、等离子体强度等成膜条件进行各种变更,将DLC膜2中的含氢量在4.5at%以上30at%以下的范围内任意进行调整。
[0063] DLC膜2表面的均方根粗糙度可通过对所用的原料气体种类、所施加的偏压等装置条件、成膜时间进行组合来控制。例如,若为使用CH4、C2H2、C6H6、C7H8等作为原料气体的等离子体CVD,则通过使压力为0.1Pa~5Pa左右、使部件11的偏压为400V~2000V、使等离子体输出功率为20W~200W、使成膜时间为20min~260min等,可将DLC膜2表面的均方根粗糙度在5nm以上25nm以下的范围内任意进行调整。此外,例如若为使用固体碳的PVD,-3则只要使压力为10 Pa以下、部件11的偏压为100V左右、电弧电压为80V左右、成膜时间为100min程度,就可使DLC膜2表面的均方根粗糙度为5nm以上25nm以下的范围。
[0064] 润滑剂3使用添加了有机钼化合物与含有锌和硫的化合物作为添加剂的润滑剂。在本发明中,通过在润滑剂3中添加这些添加剂,可以在设置于部件11上的DLC膜2与对象部件12进行滑动时的摩擦力或压力的作用下来形成维持低摩擦、低磨损状态的润滑形态。
[0065] 对于有机钼化合物,其通常溶入到润滑剂3中,在DLC膜2与对象部件12进行滑动时的摩擦力或压力的作用下产生化学反应、生成MoS2,由此可作为维持低摩擦、低磨损状态的所谓摩擦改进剂(摩擦调整剂)发挥出功能。此外还具有提高耐磨损性、提高极压性、提高耐氧化性的功能。
[0066] 作为有机钼化合物,可以使用例如二烷基二硫代甲酸钼、二硫代磷酸钼等。对于有机钼化合物,可以将它们单独或混合起来以任意添加量添加到润滑剂3中。
[0067] 含有锌和硫的化合物具有提高低摩擦特性的功能(极压剂),同时还作为抗氧化剂、防腐蚀剂等发挥出功能。
[0068] 作为含有锌和硫的化合物,例如可适当地使用由异丙基、丁基、2-乙基己基、异十三烷基或硬脂基等烷基构成的二烷基二硫代磷酸锌或二烷基二硫代氨基甲酸锌、或者它们的混合物等。含有锌和硫的化合物可以以任意添加量添加到润滑剂3中。
[0069] 此外,作为添加剂,优选添加磺酸Ca类、磺酸Mg类等清洁剂。通过添加清洁剂,可以防止氧化产物或高分子聚合物等不溶解成分的泥渣化。
[0070] 在润滑剂3中,除了上述清洁剂以外,还可以在不阻碍本发明所期望的效果的范围内根据目的添加下述物质作为添加剂:酚类、胺类、硫化物等抗氧化剂;聚甲基丙烯酸酯、乙烯-丙烯聚合物、苯乙烯-丁二烯聚合物、聚烯烃系等粘度指数改进剂;脂肪酸、脂肪酸酯、磷酸酯、二硫化钼等摩擦调整剂;琥珀酰亚胺、琥珀酸酯、胺类等分散剂;聚甲基丙烯酸酯、烷基、酚类等流点降低剂;磷酸酯、硫化合物等极压剂;醇、(二甲基硅氧烷)等消泡剂;土金属的盐、磺酸类(碱)、醇、胺类等防锈剂;二硫代磷酸锌、锌、S-P化合物等防腐蚀剂;酯、醇、油脂、有机酸等油性剂;使用芳香族化合物着色剂等。对于包括上述磺酸Ca类、磺酸Mg类等清洁剂在内的这些添加剂来说,只要为汽车用发动机中所用的机油,就可按常规进行添加。
[0071] 成为润滑剂3的基础基础油(基油)可以举出化学合成油、矿物油、部分合成油、植物油等。
[0072] 润滑剂3可以如汽车用发动机的机油那样为液体状,此外也可为添加增稠剂使粘稠性得到提高的脂膏。
[0073] 根据以上说明的滑动结构部件1,通过将DLC膜2表面的均方根粗糙度与DLC膜2中的含氢量控制在特定范围,可以由润滑剂3中含有的有机钼化合物与含有锌和硫的化合物积极地生成MoS2、同时可抑制氧化钼的生成。因此,滑动结构部件1具有良好的低摩擦特性。
[0074] 此外,根据滑动结构部件1,无需进行向DLC膜2或润滑剂3中添加特定成分、限定对象部件12的材质、追加特殊机构等操作,也不需要研磨工序等。因此,滑动结构部件1能够不增加成本且简便地得到良好的低摩擦特性。
[0075] 实施例
[0076] 接下来,对于确认到了本发明的滑动结构部件的效果的实施例进行具体说明。
[0077] [1]本发明的观点的有效性的验证
[0078] 首先,为了验证本发明的观点的有效性,在圆形的圆盘材料和球体材料(直径6mm)的表面适当设置非晶态硬质碳膜(DLC膜),制作试验材1~4,进行摩擦试验来测定摩擦系数。
[0079] 摩擦试验利用图2(a)所示的球盘(ボールオンディスク)摩擦磨损试验来进行。对于试验条件,在下述条件下进行:使用表1所示的润滑剂和添加剂;球体材料211上的负荷:5N(=1.1GPa);滑动速度(圆盘材料212的旋转速度):100毫米/秒;温度:室温(40℃);10000循环(50分钟)。需要说明的是,作为润滑剂使用的基础油和机油的粘度为0W-20。
[0080] 下述表1中示出了试验材1~4的规格、润滑剂、以及利用摩擦试验测定出的10000循环后的摩擦系数的结果。
[0081] 需要说明的是,表1中的“SUJ2材”表示高碳铬轴承钢,“DLC”表示在SUJ2材的表面设置了DLC膜。
[0082] 表1所示的DLC通过等离子体CVD法成膜。等离子体CVD法的条件为:原料气体:乙炔气体(C2H2)、压力:0.4Pa、成膜时间:90min、圆盘材料的偏压:2000V、等离子体输出功率:20W。
[0083] 此外,表1中的机油为市售品,作为添加剂,添加作为有机钼化合物的二硫代氨基甲酸钼、以及作为含有锌和硫的化合物的二烷基二硫代磷酸锌。与此相对,基础油不添加这些添加剂。需要说明的是,在机油和基础油中,含有来自矿物油的硫成分和硫化物成分、以及作为清洁剂的磺酸Ca。
[0084] [表1]
[0085]
[0086] 如表1所示,对于试验材1,在一方部件(圆盘材料)上设有DLC膜、使用了添加有添加剂的机油,因而可知其具有摩擦系数降低的倾向。
[0087] 与此相对,对于试验材2,一方部件(圆盘材料)和对象部件(球体材料)均为SUJ2材;对于试验材3,使用了未添加添加剂的润滑剂;对于试验材4,一方部件(圆盘材料)和对象部件(球体材料)均设有DLC膜,因而可知与试验材1相比,有摩擦系数增高的倾向。此外,对于试验材4,由于在圆盘材料与球体材料这两者的表面形成了添加剂的吸附性劣于SUJ2材的DLC膜,因而磨损量可能会增大。
[0088] 由该验证可知,本发明的下述观点是有效的:在一方部件(例如,圆盘材料212)上设置DLC膜、在对象部件(例如,球体材料211)上不设置该膜,使这些部件在添加了有机钼化合物与含有锌和硫的化合物作为添加剂的机油中进行滑动。
[0089] 接下来,顺着该观点对于本发明效果的有效性和用于发挥出效果的条件进行验证。
[0090] [2]效果的有效性和用于发挥出效果的条件的验证
[0091] 为了验证效果的有效性以及用于发挥出效果的条件,在下述表2所示的条件下在SUJ2材制造的圆盘材料上设置DLC膜,与未设置DLC膜的SUJ2材制造的球体材料组合,作为试验材1、5~16。需要说明的是,表2中一并记载了在[1]的验证中达到了好结果的试验材1。
[0092] [表2]
[0093]
[0094] 对于试验材1、5~16的DLC膜测定了硬度、杨氏模量、含氢量和均方根粗糙度(Rq)。另外进行与[1]同样的摩擦试验来测定摩擦系数,进一步进行摩擦试验来进行摩擦表面的分析。需要说明的是,此处,将摩擦系数为0.08以下记为合格。
[0095] 硬度[GPa]和杨氏模量[GPa]使用依据ISO14577的纳米压痕仪进行测定。
[0096] 含 氢 量[at%]利 用 拉 塞 福 背 向 散 射 法 (Rutherford Backscattering Spectrometry;RBS)进行测定。在RBS中,对试样照射氦(He)离子,特别是对于含氢量,对发生反冲而散射于前方的氢进行检测,由该检测结果进行计算。
[0097] 对于均方根粗糙度[nm],使用原子力显微镜(AFM),对于一边为20μm以上50μm以下的区域进行测定,依据JIS B0601:2001,由所得到的结果进行计算。
[0098] 在摩擦表面的分析中,对于进行了图2(a)所示的球盘摩擦磨损试验后的球体材料,利用有机溶剂慎重地清洗去除表面所附着的润滑剂,对于图2(b)所示球体材料的磨损面利用X射线电子分光法(X-ray Photoelectron Spectroscopy;XPS)进行摩擦生成物的分析。其结果,在基于XPS的分析中,检测出了C、O、Mo、S、Zn、P等来自DLC膜、润滑剂、添加剂的各种元素。其中,对于被认为是来自作为添加剂的二硫代氨基甲酸钼的Mo,确认到4+ 5+ 6+ 0
了以Mo 、Mo 、Mo 之类的离子种和Mo 等各种形态存在。
[0099] 将试验材1、5~16的DLC膜的杨氏模量、含氢量、均方根粗糙度、摩擦系数、基于XPS的分析结果一并列于下表3。需要说明的是,在表3中,作为基于XPS的分析结果,记载4+ 0 2- 4+ 2- 4+ 0
了Mo 、Mo 和S 。这是由于期待Mo 与S 结合形成MoS2。在表3中,Mo 为钼离子,Mo
2-
为金属钼(Mo)或碳化钼(Mo2C),S 为硫离子。
[0100] [表3]
[0101]
[0102] 为了对效果的有效性和用于发挥出效果的条件进行验证,基于表3所示的内容进行各种研究。
[0103] 图3为由表3所示的内容进行作图来示出球体材料上的Mo4+的检出量与摩擦系数4+
的关系的图。需要说明的是,横轴表示球体材料上的Mo 的检出量[at%]、纵轴表示摩擦系数。
[0104] 如图3所示,可知随着Mo4+量的增加,摩擦系数降低。需要说明的是,在[1]中验证了使用未添加添加剂的基础油的试验材3的摩擦系数为0.082,因而将其作为参考示于图3中。
[0105] 图4(a)为由表3所示的内容进行作图来示出DLC膜的均方根粗糙度与S2-/Mo4+比的关系的图,图4(b)为对试验材16的球体材料的磨损面进行拍摄的照片,图4(c)为对试验材1的球体材料的磨损面进行拍摄的照片。需要说明的是,图4(a)的横轴表示DLC膜的2- 4+
均方根粗糙度[nm]、纵轴表示S /Mo 比。此外,在图4中,“◇”的图示表示DLC膜的含氢量为30at%以下,“□”的图示表示DLC膜的含氢量大于30at%且为40at%以下,“△”的图示表示该含氢量大于40at%。此外,图4(b)和(c)中的比例条分别表示200μm。
[0106] 可以说,S2-/Mo4+比越接近2.0,形成MoS2的这些离子的存在比例越处于优选的状况。
[0107] 由图4(a)可知,在DLC膜的含氢量为40at%以下(即为“◇”和“□”)的情况下,随着DLC膜的均方根粗糙度变粗糙,易于良好地生成MoS2。另一方面,DLC膜的含氢量超过2- 4+
40at%时,即使DLC膜的均方根粗糙度变粗糙,也观察不到S /Mo 比接近于2.0这样的变化,从而暗示出,难以良好地生成MoS2。
[0108] 此处,在图4(a)中,对于DLC膜的含氢量为30at%以下、DLC膜的均方根粗糙度为2- 4+
28nm、S /Mo 比为2.94的图示◇(具体地说为试验材16),与试验材1相比,作为对象部件的球体材料的磨损显著(参照图4(b)、(c))。据认为,这是由于DLC膜的表面粗糙度过于粗糙、且DLC膜的含氢量少、硬度过高(如表3所示,硬度为61.4GPa、杨氏模量为582GPa),从而对象攻击性增高。由此暗示出,为了发挥出本发明的效果,需要对DLC膜的含氢量以及均方根粗糙度进行一些控制。
[0109] 图5为由表3所示的内容对S2-/Mo4+比与摩擦系数的关系进行作图而得到的图。2- 4+
另外,横轴表示S /Mo 比、纵轴表示摩擦系数。需要说明的是,将在[1]中验证的试验材3的摩擦系数(0.082)作为参考示于图5中。
[0110] 由图5可知,S2-/Mo4+比接近于2.0、且随着其变小,摩擦系数也减小,具有良好的2- 4+
相关性。但是,如图5所示,即使S /Mo 比位于2.0附近,在DLC膜的含氢量大于30at%且为40at%以下(图示□)的情况下,仍处于该相关性之外,摩擦系数增高(具体地说为试验
0
材11、12)。据认为,这是由于,MoS2以外的例如氧化钼、金属钼或碳化钼(Mo)之类的阻碍MoS2的摩擦效果的副产物以及DLC膜的浸蚀参与其中。因而进行了如下研究。
[0111] 图6(a)为由表3所示的内容对DLC膜的含氢量与Mo0的检出量的关系进行作图而得到的图,图6(b)为对DLC膜的含氢量为4.5at%的试验材8的球体材料的磨损面进行0
拍摄的照片。需要说明的是,图6(a)的横轴为DLC膜的含氢量[at%]、纵轴为Mo 的检出量[at%]。图6(b)中的比例条表示200μm。
[0112] 如图6所示,在DLC膜的含氢量为30at%以下的范围(图6(a)中的“I”和“IV”0
的范围),Mo 的检出量少(具体地为试验材1、5~8、16)。如表3所示,这些试验材的摩擦系数小。
[0113] 与此相对,在DLC膜的含氢量大于30at%且为40at%以下的范围时,Mo0的检出量增多(具体地为试验材9~13)。尽管认为这也依赖于与DLC膜的均方根粗糙度的关系,但在DLC膜的含氢量为该范围的情况下,由于DLC膜的硬度具有一定程度的硬度,因而可认为,在摩擦热、压力的作用下,不仅会生成较多的MoS2,还会生成较多的氧化钼(MoO2、MoO3)等副产物。而且认为,所生成的氧化钼被来自DLC膜的氢还原而生成金属钼,并且与来自DLC膜的碳发生反应,生成碳化钼。由于金属钼、碳化钼的生成意味着DLC膜的化学磨损,因而暗示出,DLC膜的含氢量大于30at%且为40at%以下的范围(图6(a)中的“II”的范围)为不优选的。
[0114] 在DLC膜的含氢量大于40at%的范围(图6(a)中的“III”的范围)时,尽管Mo0的检出量反而减少至与DLC膜的含氢量为30at%以下的范围为同等程度,但如表3所示,摩擦系数并未充分降低(具体为试验材14、15)。据认为,其原因在于,由于DLC膜的含氢量增高,即DLC膜的硬度(杨氏模量)低、柔软,因而未充分产生摩擦热和压力,未能充分生成MoS2。
[0115] 需要说明的是,在DLC膜的含氢量小于4.5at%(参照图6(a)中的“IV”的范围)的试验材(具体为试验材16)中,由于含氢量过少、即DLC膜的硬度过高,且DLC膜的均方根粗糙度过于粗糙,因而对象攻击性高,作为对象部件的球体材料的磨损显著(参照图4(b))。对于试验材16,在本次摩擦试验中,其摩擦系数并未特别变大,但暗示出,在比本次摩擦试验更长时间和/或更大负荷下进行滑动的情况下是具有问题的。
[0116] 根据参照表3和图3~6进行研究的结果,可知效果的有效性和用于发挥出效果的条件如下。
[0117] (1)进行了下述组合:在相互滑动的部件中的一方部件上设置含有氢的DLC膜,隔着添加了有机钼化合物与含有锌和硫的化合物作为添加剂的润滑剂,设置在一方部件上的DLC膜与对象部件进行滑动。
[0118] (2)如表3和图4、图5所显示,为了生成MoS2、且使得对象攻击性不会变得过高,设定DLC膜表面的均方根粗糙度为5nm以上25nm以下。
[0119] (3)如表3和图6所显示,为了使得DLC膜的对象攻击性不会变得过高,设定DLC膜的含氢量为4.5at%以上;并且为了抑制DLC膜的化学磨损或防止润滑剂各种特性的恶化,设定DLC膜的含氢量为30at%以下。
[0120] 将上述(2)和(3)进行易于明了地图示的为图7。图7为进行作图来示出DLC膜的含氢量与DLC膜的均方根粗糙度的关系的图。需要说明的是,横轴表示DLC膜的含氢量[at%]、纵轴表示DLC膜的均方根粗糙度[nm]。
[0121] 图7中的虚线所示范围内的黑点“●”为满足上述(1)~(3)的要件、即满足本发明的要件、摩擦系数低的试验材1、5~8(实施例)。图7中的虚线所示范围外的白点“○”不满足上述(2)和(3)的要件、即不满足本发明的要件,因而摩擦系数增高或对象攻击性增高、或者金属钼或碳化钼的生成量增加,因此是判断为不适当的试验材9~16(比较例)。
[0122] 符号说明
[0123] 1 滑动结构部件
[0124] 11 部件
[0125] 12 对象部件
[0126] 2 非晶态硬质碳膜(DLC膜)
[0127] 3 润滑剂
QQ群二维码
意见反馈