一种滚动转子压缩机

申请号 CN201310194676.4 申请日 2013-05-23 公开(公告)号 CN103410730A 公开(公告)日 2013-11-27
申请人 潮州三环(集团)股份有限公司; 南充三环电子有限公司; 发明人 谢灿生; 杨双节;
摘要 本 发明 公开了一种滚动 转子 ( 活塞 )式 压缩机 ,其包括设置在壳体内的 电机 、 曲轴 和压缩组件,压缩组件包括 气缸 、位于气缸内的滚动转子、 阀 片及阀片 弹簧 ,曲轴的 主轴 与电机转子传动连接,曲轴的偏心轮在滚动转子内与其相接,阀片一端与滚动转子相接,另一端连接于阀 片弹簧 ,滚动转子和阀片采用陶瓷 压制成型 ,在陶瓷粉料中添加改性剂Mg、Ti、Ca和 碳 纤维 中的一种以上,通过高温 烧结 并控制陶瓷晶体尺寸,对烧结后的陶瓷进行机加工形成陶瓷滚动转子和阀片。采用本发明,压缩组件间隙可以很小,组件更耐磨损,压缩效率更高,压缩组件热 变形 小,不会出现工作时高温碳化的问题,可避免组件热变形、碳化层磨损脱落卡机,寿命更长,更加节能。
权利要求

1.一种滚动转子活塞)式压缩机,包括壳体和设置在壳体内的电机曲轴和压缩组件,其特征在于:所述电机包括电机转子和电机定子,所述曲轴包括位于两端的主轴副轴以及位于主轴和副轴之间的偏心轮,所述压缩组件包括气缸、位于气缸内的滚动转子、位于气缸内的片槽内的阀片及阀片弹簧,所述气缸的两端对应所述曲轴两端的主轴和副轴设有用于支撑曲轴的主轴承和副轴承,所述主轴与所述电机转子传动连接,所述偏心轮位于所述滚动转子内并与所述滚动转子相接,所述阀片一端与所述滚动转子相接,另一端连接于所述阀片弹簧,所述阀片弹簧位于阀片槽的里端,所述滚动转子和阀片采用陶瓷压制成型,在陶瓷粉料中添加改性剂Mg、Ti、Ca和纤维中的一种以上,通过高温烧结并控制陶瓷晶体尺寸,对烧结后的陶瓷进行机加工形成陶瓷滚动转子和阀片。
2.如权利要求1所述的滚动转子(活塞)式压缩机,其特征在于:在陶瓷粉料中所添加的改性剂经过球磨进行混合均匀,改性剂的加入量占总的质量百分比为Mg 0.2-0.8%、Ti 0.08-0.3%、Ca 0.5-1.5% 、碳纤维0.05-0.5%或者Mg 0.8-2.0%、Ti 0.08-0.3%、Ca
0.5-1.5% 或者Mg 0.2-0.8%、Ti 0.08-0.3%、碳纤维0.05-0.5%,或者Mg 0.5-1.3%、碳纤维
0.05-0.5%。
3.如权利要求2所述的滚动转子(活塞)式压缩机,其特征在于:在压制成型滚动转子和阀片坯体时,陶瓷阀片和滚动转子坯体经过干压成型,再经过不低于180MPa的压等静压成型。
4.如权利要求3所述的滚动转子(活塞)式压缩机,其特征在于:滚动转子和阀片采用陶瓷。
5.如权利要求4所述的滚动转子(活塞)式压缩机,其特征在于:成型后的陶瓷坯体在空气炉中高温烧结,烧结温度不低于1550℃,晶粒尺寸不超过10μm;对于烧结后的氧化铝陶瓷,所述机加工方式为微磨削加工技术,微磨棒直径ds ≤0.01mm,微磨棒转速ws≥30000rpm。
6.如权利要求3所述的滚动转子(活塞)式压缩机,其特征在于:滚动转子和阀片采用碳化陶瓷。
7.如权利要求6所述的滚动转子(活塞)式压缩机,其特征在于:成型后的陶瓷坯体经高温烧结,采用气氛烧结或真空烧结,温度不低于1400℃,晶粒尺寸不超过8μm;对于烧结后的碳化硅陶瓷,所述机加工方式为超高速磨削加工技术,磨削速度超过300m/s,滚动转子的加工磨削速度达到500m/s。
8.如权利要求3所述的滚动转子(活塞)式压缩机,其特征在于:滚动转子和阀片采用氮化硅陶瓷。
9.如权利要求8所述的滚动转子(活塞)式压缩机,其特征在于:成型后的陶瓷坯体经高温烧结,采用氮气气氛烧结,烧结温度不低于1600℃,晶粒尺寸不超过8μm;对于烧结后的氮化硅陶瓷,所述机加工方式为超高速磨削加工技术,磨削速度超过300m/s,滚动转子的加工磨削速度达到500m/s。
10.如权利要求5、7或9所述的滚动转子(活塞)式压缩机,其特征在于:机加工过程中,产品采用镇的方式将其固定在机床上。

说明书全文

一种滚动转子压缩机

技术领域

[0001] 本发明涉及一种压缩机,尤其涉及一种滚动转子(活塞)式压缩机。 背景技术
[0002] 目前滚动式压缩机,又称滚动活塞压缩机,其压缩组件基本都是采用金属铸件,由于金属件的机加工性能好,表面光洁度容易做到Rz≤0.8μm,Ra≤0.1μm,为了改善金属件的耐磨性和刚性,基本都是对金属材料进行改性。然而,金属材料的特性,如膨胀系数大,热变形,硬度低、不耐磨,密度大等,很难通过改性得到解决, 一般金属材料维氏硬度为380-450,改性的金属硬度一般450-550, 因此,在设计时压缩组件的间隙都会预留很大,防止出现组件热变形卡机。另外由于压缩机工作时,组件摩擦的热量和压缩制冷剂产生的热量使压缩机压缩区工作温度很高,容易使金属压缩组件磨损、化、产生间隙泄漏、压缩效率低或出现残渣卡机导致压缩机烧毁等问题。
[0003] 另外金属组件的质量都很大,一般不低于7.8 g/cm3 ,组件的重量大,导致在工作过程中自身功耗比较大,不能更好的节能。

发明内容

[0004] 本发明实施例所要解决的技术问题在于,提供一种可以更好的避免磨损间隙泄漏、碳化和变形卡机,且能耗小、效率高的滚动转子(活塞)式压缩机。 [0005] 为了解决上述技术问题,本发明所采取的技术方案是:一种滚动转子(活塞)式压缩机,包括壳体和设置在壳体内的电机曲轴和压缩组件,所述电机包括电机转子和电机定子,所述曲轴包括位于两端的主轴副轴以及位于主轴和副轴之间的偏心轮,所述压缩组件包括气缸、位于气缸内的滚动转子、位于气缸内的片槽内的阀片及阀片弹簧,所述气缸的两端对应所述曲轴两端的主轴和副轴设有用于支撑曲轴的主轴承和副轴承,所述主轴与所述电机转子传动连接,所述偏心轮位于所述滚动转子内并与所述滚动转子相接,所述阀片一端与所述滚动转子相接,另一端连接于所述阀片弹簧,所述阀片弹簧位于阀片槽的里端,所述滚动转子和阀片采用陶瓷压制成型,在陶瓷粉料中添加改性剂Mg、Ti、Ca和碳纤维中的一种以上,通过高温烧结并控制陶瓷晶体尺寸,对烧结后的陶瓷进行机加工形成陶瓷滚动转子和阀片。所形成的陶瓷滚动转子和阀片表面光洁度符合工作要求,陶瓷滚动转子表面光洁度达到Rz≤0.8μm,Ra≤0.1μm;陶瓷阀片的表面光洁度要求不如滚动转子那么严格,陶瓷阀片的表面光洁度达到Rz≤1.6μm,Ra≤0.2μm。
[0006] 作为上述技术方案的改进,在陶瓷粉料中所添加的改性剂经过球磨进行混合均匀,改性剂的加入量占总的质量百分比为Mg 0.2-0.8%、Ti 0.08-0.3%、Ca 0.5-1.5% 、碳纤维0.05-0.5%或者Mg 0.8-2.0%、Ti 0.08-0.3%、Ca 0.5-1.5% 或者Mg 0.2-0.8%、Ti0.08-0.3%、碳纤维0.05-0.5%或者Mg 0.5-1.3%、碳纤维0.05-0.5%。
[0007] 作为上述技术方案的改进,在压制成型滚动转子和阀片坯体时,陶瓷阀片和滚动转子坯体经过干压成型,再经过不低于180MPa的压等静压成型。
[0008] 作为本发明一种滚动转子(活塞)式压缩机技术方案的改进,滚动转子和阀片采用陶瓷。
[0009] 作为上述技术方案的改进,成型后的陶瓷坯体在空气炉中高温烧结,烧结温度不低于1550℃,晶粒尺寸不超过10μm。
[0010] 作为上述技术方案的改进,对于烧结后的氧化铝陶瓷,所述机加工方式为微磨削加工技术,微磨棒直径ds ≤0.01mm,微磨棒转速ws≥30000rpm,使加工后的陶瓷滚动转子表面光洁度达到Rz≤0.8μm,Ra≤0.1μm,陶瓷阀片的表面光洁度达到Rz≤1.6μm,Ra≤0.2μm。进一步的,机加工过程中,产品采用镇的方式将其固定在机床上。作为本发明一种滚动转子(活塞)式压缩机技术方案的另一种改进,滚动转子和阀片采用碳化陶瓷。
[0011] 作为上述技术方案的改进,成型后的陶瓷坯体经高温烧结,采用气氛烧结或真空烧结,温度不低于1400℃,晶粒尺寸不超过8μm。
[0012] 作为上述技术方案的改进,对于烧结后的碳化硅陶瓷,所述机加工方式为超高速磨削加工技术,磨削速度超过300m/s,滚动转子的加工磨削速度达到500m/s,加工后的陶瓷滚动转子表面光洁度达到Rz≤0.8μm,Ra≤0.1μm,陶瓷阀片的表面光洁度达到Rz≤1.6μm,Ra≤0.2μm。进一步的,机加工过程中,产品采用冰镇的方式将其固定在机床上。
[0013] 作为本发明一种滚动转子(活塞)式压缩机技术方案的再一种改进,滚动转子和阀片采用氮化硅陶瓷。
[0014] 作为上述技术方案的改进,成型后的陶瓷坯体经高温烧结,采用氮气气氛烧结,烧结温度不低于1600℃,晶粒尺寸不超过8μm。
[0015] 作为上述技术方案的改进,对于烧结后的氮化硅陶瓷,所述机加工方式为超高速磨削加工技术,磨削速度超过300m/s,滚动转子的加工磨削速度达到500m/s,加工后的陶瓷滚动转子表面光洁度达到Rz≤0.8μm,Ra≤0.1μm,陶瓷阀片的表面光洁度达到Rz≤1.6μm,Ra≤0.2μm。进一步的,机加工过程中,产品采用冰镇的方式将其固定在机床上。
[0016] 实施本发明实施例,具有如下有益效果:本发明滚动转子(活塞)式压缩机实施例,其压缩组件阀片和滚动转子采用陶瓷材料,并且通过对陶瓷材料本身使用改性剂进行改性、创新机加工工艺,使得在滚动转子是压缩机上成功运用陶瓷阀片和陶瓷滚动转子,所述采用的陶瓷阀片和陶瓷滚动转子,具有热膨胀系数小,热变形小、硬度高、耐磨损、密度小、自润滑等优异的性能,而且使得其设计时,阀片与阀片槽的间隙、滚动转子与气缸的间隙可以很小,大大提高了压缩效率,而且不容易出现磨损、碳化、热变形卡机的问题;此外,陶瓷材料的密度很小,采用陶瓷制造滚子和阀片,可以大大降低压缩组件的重量,降低其自身功耗,提高效率,能其节能效率更高。附图说明
[0017] 图1是本发明一种滚动转子(活塞)式压缩机实施例的剖视结构示意图; 图2是图1所示实施例中A-A向局部剖视图;图3是本发明一种滚动转子(活塞)式压缩机实施例中滚动转子产品的结构示意图;
图4是本发明一种滚动转子(活塞)式压缩机实施例中阀片产品的结构示意图;
图5是微磨削加工示意图。

具体实施方式

[0018] 下面结合附图进一步说明本发明的具体实施方式。
[0019] 实施例一滚动转子(活塞)式压缩机,又称滚动活塞压缩机或固定滑片压缩机,是回转式压缩机的一种型式。其原理是利用一个偏心圆筒形转子在气缸内的转动来改变气缸的工作容积,从而实现气体的吸气、压缩和排气,因而也属于容积式压缩机
[0020] 如图1、图2所示,本发明一种滚动转子(活塞)式压缩机实施例,其包括壳体1和设置在壳体1内的电机、曲轴4和压缩组件,所述电机1包括电机转子2和电机定子3,所述曲轴4包括位于两端的主轴41和副轴42以及位于主轴和副轴之间的偏心轮43,所述压缩组件包括气缸5、位于气缸5内的滚动转子7(亦称滚动活塞)、位于气缸5内的阀片槽内的阀片8及阀片弹簧81,所述气缸1的两端对应所述曲轴4两端的主轴41和副轴42设有用于支撑曲轴的主轴承61和副轴承62,所述主轴41与所述电机转子2传动连接,所述偏心轮43位于所述滚动转子7内并与所述滚动转子7相接,所述阀片8一端与所述滚动转子7相接,另一端连接于所述阀片弹簧81,所述阀片弹簧81位于阀片槽的里端。如图2所示,滚动转子7沿气缸5内壁滚动,与气缸形成一个月牙形的工作腔,阀片8(亦称滑片或者滑动挡板)靠弹簧的作用力使其端部与转子紧密接触,将月牙形工作腔分隔为压缩腔12a和吸气腔
12b两部分,阀片8随滚动转子7的滚动沿阀片槽道作往复运动。气缸两端还设有端盖,其与气缸5内壁、滚动转子7外壁、切点、阀片8构成封闭的气缸容积,压缩机运行时,电机转子3带动曲轴4转动,曲轴4的转动带动滚动转子7在气缸5内壁面滚动,气缸容积大小随滚动转子转变化,容积内气体的压力则随基元容积的大小而改变,从而完成压缩机的工作过程,实现对进入气缸体内的制冷剂的压缩和排气。
[0021] 所述滚动转子7和阀片8采用陶瓷压制成型,在陶瓷粉料中添加改性剂Mg、Ti、Ca和碳纤维中的一种以上,通过高温烧结并控制陶瓷晶体尺寸,之后对烧结后的陶瓷进行机加工形成陶瓷滚动转子和阀片,并使陶瓷滚动转子表面光洁度达到Rz≤0.8μm,Ra≤0.1μm;陶瓷阀片表面光洁度达到Rz≤1.6μm,Ra≤0.2μm。
[0022] 近些年来,随着冷冻系统和空调系统中使用压缩机的小型化和变频化,压缩机对压缩组件的耐磨性和刚性的要求更加苛刻。特别是随着变频空调的发展,既要求组件在高速旋转,压缩制冷剂气体中各压缩组件能够保持良好的刚性,不出现组件变形(主要是阀片变形),卡死主机;又要求具有良好的耐磨性,不出现阀片和滚动转子磨损,出现间隙泄漏,导致压缩效率低下的问题;同时要求组件质量轻,减少组件自身的功耗,使设备更加节能。因此对压缩机的压缩组件,尤其是阀片和滚动转子提出了更高的要求。陶瓷材料具有热膨胀系数小,热变形小、硬度高、耐磨损、密度小、自润滑等优异的性能,但除氧化锆陶瓷机加工性能好,表面光洁度高外,其他工程陶瓷很难加工到很高的光洁度,然而氧化锆陶瓷容易受热老化,不适合压缩机的使用环境,因此到目前为止市场没有陶瓷组件应用到空调压缩机上,本发明就是针对此缺点,通过改性陶瓷材料,创新机加工工艺,使陶瓷阀片和陶瓷滚动转子成功应用到滚动转子(活塞)式压缩机上。使空调压缩机的效率更高、寿命更长、更加节能。
[0023] 在本实施例一中,滚动转子7和阀片8采用氧化铝陶瓷,氧化铝纯度优选高于95%。在陶瓷粉料中所添加的改性剂经过球磨进行混合均匀,既可将Mg、Ti、Ca、碳纤维四种改性剂全部添加,也可在四种中选择几种添加,如选用Mg、Ti、Ca,或者选用Mg、Ti、碳纤维或者选择其中两种,如Mg、碳纤维等等,当然还可以是其他的选择。当四种改性剂全部添加时,各改性剂的加入量占总的质量百分比为Mg 0.2-0.8%、Ti 0.08-0.3%、Ca 0.5-1.5% 、碳纤维0.05-0.5%;当选择使用Mg、Ti、Ca时,各自加入量占总的质量百分比为:Mg 0.8-2.0%、Ti
0.08-0.3%、Ca 0.5-1.5%;若选择使用Mg、Ti、碳纤维时,各自加入量占总的质量百分比为:
Mg 0.2-0.8%、Ti 0.08-0.3%、碳纤维0.05-0.5%;而选择使用Mg、碳纤维时,是如下情况:Mg
0.5-1.3%、碳纤维0.05-0.5%。当然,需要说明的是,前述的只是几种改性剂添加的例子而已,还可以视情况在四种改性剂中按其他方式选择添加。在本实施例一中,在陶瓷粉料中添加四种改性剂,各改性剂的加入量占总的质量百分比分别为Mg:0.2%,Ti:0.08%,Ca:1.0%,碳纤维:0.5%。
[0024] 在压制成型滚动转子和阀片坯体时,陶瓷阀片和滚动转子坯体经过干压成型,再经过不低于180MPa的压力等静压成型。
[0025] 成型后的氧化铝陶瓷坯体在空气炉中高温烧结,烧结温度不低于1550℃,晶粒尺寸不超过10μm。
[0026] 对于烧结后的氧化铝陶瓷,优选采用微磨削加工技术对其进行机加工,微磨棒直径ds ≤0.01mm,微磨棒转速ws≥30000rpm。图5为微磨削加工示意图,其中100为微磨棒,101为磨削轨迹,102为被磨削的产品。对于氧化铝陶瓷这样的硬脆材料,更适宜采用微磨削加工技术,当然其也可以采用如实施例十一与实施例十二所采用的超高速磨削加工技术。
[0027] 进一步的,在机加工过程中,产品采用冰镇的方式将其固定在机床上,从而可以防止产品加工发热产生应力,导致形变影响形位尺寸精度
[0028] 实施例二在实施例二中,其与实施例一的区别在于,在陶瓷粉料中添加的四种改性剂的加入量占总的质量百分比为:Mg0.5%,Ti0.3%,Ca0.5%,碳纤维:0.1%。
[0029] 实施例三在实施例三中,其与实施例一的区别在于,在陶瓷粉料中添加的四种改性剂的加入量占总的质量百分比为:Mg0.8%,Ti0.15%,Ca1.5%,碳纤维0.05%。
[0030] 实施例四在实施例四中,其与实施例一的区别在于,在陶瓷粉料中添加三种改性剂,分别为Mg、Ti、Ca,且各自加入量占总的质量百分比为:Mg0.8%、Ti0.1%,Ca1.3%。
[0031] 实施例五在实施例五中,其与实施例四的区别在于,在陶瓷粉料中添加的改性剂,各自加入量占总的质量百分比为:Mg1.0%、Ti0.2%,Ca1.4%。
[0032] 实施例六在实施例六中,其与实施例四的区别在于,在陶瓷粉料中添加的改性剂,各自加入量占总的质量百分比为:Mg2.0%、Ti0.25%,Ca0.8%。
[0033] 实施例七在实施例七中,其与实施例一的区别在于,在陶瓷粉料中添加三种改性剂,分别为Mg、Ti、碳纤维,且各自加入量占总的质量百分比为:Mg0.25%、Ti0.28%、碳纤维0.4%。
[0034] 实施例八在实施例八中,其与实施例七的区别在于,在陶瓷粉料中添加的改性剂加入量占总的质量百分比为:Mg0.7%、Ti0.18%、碳纤维0.08%。
[0035] 实施例九在实施例九中,其与实施例一的区别在于,在陶瓷粉料中添加的改性剂为Mg和碳纤维,且各自加入量占总的质量百分比为:Mg0.5%、碳纤维0.45%。
[0036] 实施例十在实施例十中,其与实施例九的区别在于,在陶瓷粉料中添加的改性剂加入量占总的质量百分比为:Mg1.3%、碳纤维0.06%。
[0037] 在上述十个实施例中,加工后的产品(滚动转子7和阀片8)尺寸公差和形位公差低于0.001mm,滚动转子表面光洁度Rz≤0.8μm,阀片Rz≤1.6μm(见图3、图4,图3为滚动转子产品的结构示意图;图4为阀片产品的结构示意图)达到滚动转子和阀片所需要的表面光洁度要求。
[0038] 实施例十一在实施例十一中,滚动转子7和阀片8采用碳化硅陶瓷压制成型。在陶瓷粉料中所添加的改性剂经过球磨进行混合均匀,既可以Mg、Ti、Ca、碳纤维、四种改性剂均添加,且各改性剂的加入量占总的质量百分比为:Mg 0.2-0.8%、Ti 0.08-0.3%、Ca 0.5-1.5% 、碳纤维0.05-0.5%;也可以选择其中三种,如Mg 0.8-2.0%、Ti 0.08-0.3%、Ca 0.5-1.5%或者如Mg 0.2-0.8%、Ti 0.08-0.3%、碳纤维0.05-0.5%,或者添加两种,如Mg 0.5-1.3%、碳纤维
0.05-0.5%。当然也可以按照其他选择添加改性剂。在本实施例十一中,与实施例一相对应,在陶瓷粉料中添加四种改性剂,各改性剂的加入量占总的质量百分比分别为Mg:0.2%,Ti:
0.08%,Ca:1.0%,碳纤维:0.5%。
[0039] 在压制成型滚动转子和阀片坯体时,陶瓷阀片和滚动转子坯体经过干压成型,再经过不低于180MPa的压力等静压成型。
[0040] 成型后的碳化硅陶瓷坯体经高温烧结,采用气氛烧结或真空烧结,温度不低于1400℃,晶粒尺寸不超过8μm。
[0041] 对于烧结后的碳化硅陶瓷,优选采用超高速磨削加工技术进行机加工,磨削速度超过300m/s,滚动转子的加工磨削速度达到500m/s。当然机加工的方式,也可以是如实施例一的微磨削加工技术。机加工过程中,产品采用冰镇的方式将其固定在机床上,从而可以防止产品加工发热产生应力,导致形变影响形位尺寸精度。
[0042] 本发明的实施方式在选用碳化硅陶瓷制作滚动转子和阀片时,还具有其他多个实施例,其与实施例十一的区别在于:在陶瓷粉料中所添加的Mg、Ti、Ca、碳纤维具体添加量有所不同,或者是选择性地添加了Mg、Ti、Ca、碳纤维四种改性剂中的其中几种,具体的选择方式及添加量可分别与实施例二至实施例九所选择使用的改性剂一一对应,即分别按照如实施例二至九所使用的改性剂及加入量加入到碳化硅陶瓷粉料中,当然也可不与实施例二至九的方式一一对应,而采用其他的添加选择及添加量。至于其他技术特征则与实施例十一无异,因此,为节约篇幅,不再赘述这多个实施例。
[0043] 在本实施例十一及如上所述的与其类似的实施例(只是改性剂使用不同)中,加工后的产品(滚动转子7和阀片8)尺寸公差和形位公差低于0.001mm,滚动转子表面光洁度Rz≤0.8μm,阀片Rz≤1.6μm(见图3、图4),达到滚动转子和阀片所需要的表面光洁度要求。
[0044] 实施例十二在实施例十二中,滚动转子7和阀片8采用氮化硅陶瓷压制成型。在陶瓷粉料中所添加的改性剂经过球磨进行混合均匀,既可以Mg、Ti、Ca、碳纤维、四种改性剂均添加,且各改性剂的加入量占总的质量百分比为:Mg 0.2-0.8%、Ti 0.08-0.3%、Ca 0.5-1.5% 、碳纤维0.05-0.5%;也可以选择其中三种,如Mg 0.8-2.0%、Ti 0.08-0.3%、Ca 0.5-1.5%或者如Mg 0.2-0.8%、Ti 0.08-0.3%、碳纤维0.05-0.5%,或者选择两种,如Mg 0.5-1.3%、碳纤维
0.05-0.5%。当然也可以按照其他选择添加改性剂。在本实施例十二中,与实施例一相对应,在陶瓷粉料中添加四种改性剂,各改性剂的加入量占总的质量百分比分别为Mg:0.2%,Ti:
0.08%,Ca:1.0%,碳纤维:0.5%。
[0045] 在压制成型滚动转子和阀片坯体时,陶瓷阀片和滚动转子坯体经过干压成型,再经过不低于180MPa的压力等静压成型。
[0046] 成型后的氮化硅陶瓷坯体经高温烧结,采用氮气气氛烧结,烧结温度不低于1600℃,晶粒尺寸不超过8μm。
[0047] 对于烧结后的氮化硅陶瓷,优选采用超高速磨削加工技术进行机加工,磨削速度超过300m/s,滚动转子的加工磨削速度达到500m/s,当然机加工的方式,也可以是如实施例一中的微磨削加工技术。机加工过程中,产品采用冰镇的方式将其固定在机床上,从而可以防止产品加工发热产生应力,导致形变影响形位尺寸精度。
[0048] 本发明的实施方式在选用氮化硅陶瓷制作滚动转子和阀片时,还具有其他多个实施例,其与实施例十二的区别在于:在陶瓷粉料中所添加的Mg、Ti、Ca、碳纤维具体添加量有所不同,或者是选择性地添加了Mg、Ti、Ca、碳纤维四种改性剂中的其中几种,具体的选择方式及添加量可分别与实施例二至实施例九所选择使用的改性剂一一对应,即分别按照如实施例二至九所使用的改性剂及加入量加入到氮化硅陶瓷粉料中,当然也可不与实施例二至九的方式一一对应,而采用其他的添加选择及添加量。至于其他技术特征则与实施例十二无异,因此,为节约篇幅,不再赘述这多个实施例。
[0049] 在本实施例十二及如上所述的与其类似的实施例(只是改性剂使用不同)中,加工后的产品(滚动转子7和阀片8)尺寸公差和形位公差低于0.001mm,滚动转子表面光洁度Rz≤0.8μm,阀片Rz≤1.6μm(见图3、图4),达到滚动转子和阀片所需要的表面光洁度要求。
[0050] 本发明滚动转子(活塞)式压缩机实施例,其压缩组件阀片和滚动转子采用陶瓷材料,并且通过对陶瓷材料本身使用改性剂进行改性、创新机加工工艺,使得在滚动转子是压缩机上成功运用陶瓷阀片和陶瓷滚动转子,所述采用的陶瓷阀片和陶瓷滚动转子,具有热膨胀系数小,热变形小、硬度高、耐磨损、密度小、自润滑等优异的性能,而且使得其设计时,阀片与阀片槽的间隙、滚动转子与气缸的间隙较使用金属件的间隙可以大大缩小,甚至缩小一半,大大提高了压缩效率,而且不容易出现磨损、碳化、热变形卡机的问题。就现有的金属材料制成的滚动转子(活塞)式压缩机而言,其滚动转子与气缸之间的间隙,以及阀片与阀片槽之间的间隙,如果设计的过小,则容易出现磨损、碳化或者金属阀片由于热变形卡死阀片槽造成卡机故障等问题,因此其滚动转子与气缸壁面的间隙一般设计为0.06∽0.03mm,阀片与阀片槽的间隙一般设计为0.1∽0.05mm;而在本发明中,滚动转子7与与其贴合的气缸5的壁面的间隙可以设计为小于0.02mm,阀片8与阀片槽的间隙可以设计为小于0.03mm,大大小于现有的设计,并且,在缩小间隙的同时,并不会产生容易出现磨损、碳化、热变形卡机等问题。
[0051] 另外,陶瓷材料的超强硬度使得阀片和滚动转子不容易磨损,如氧化铝陶瓷的维氏硬度能够到1800,而金属材料的硬度一般就380-550。以及陶瓷材料优异的热温度性,使转子和阀片在工作中不会因为温度高而出现碳化的问题,而金属材料却很容易出现磨损、碳化的问题,导致滚子与汽缸卡死,出现压缩机失效;3 3
再次,陶瓷材料的密度很小,如氧化铝陶瓷才3.8g/cm、氮化硅陶瓷3.2g/cm,而金属
3
铸件的密度一般都在大于7.8g/cm,采用陶瓷制造滚子和阀片,可以大大降低压缩组件的重量,降低其自身功耗,提高效率,使其节能效率更高。
[0052] 以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
QQ群二维码
意见反馈