注入氮气的整合的提高石油采收率的方法

申请号 CN201080057086.1 申请日 2010-12-16 公开(公告)号 CN102652205A 公开(公告)日 2012-08-29
申请人 格雷特波因特能源公司; 发明人 A.珀尔曼;
摘要 本 发明 涉及提高石油采收率的方法,其与诸如 气化 或重整的 合成气 产生方法和用于产生(i)供例如在合成气方法或燃烧方法中使用的 氧 气流和(ii)供EOR使用的氮气流的空气分离方法整合。
权利要求

1. 整合方法以(i) 生成贫酸性气体产物气流、(ii) 生成富气流、(iii) 自地下储层经由烃生产井生成含烃流体和(iv)促进所述含烃流体自所述地下烃储层的生产,所述方法包括以下步骤:
(1) 将加压的氮气流注入所述地下烃储层中以促进所述含烃流体自所述地下烃储层经由所述烃生产井的生产;
(2) 回收自所述烃生产井生成的所述含烃流体;
(3) 将所述含烃流体分离成(a) 液态烃产物流和(b) 气态烃产物流;
(4) 由质原料生成合成气流,所述合成气流包含(a) 二氧化碳和(b) 氢气和甲烷中的至少一种;
(5) 在酸性气体去除单元中处理所述合成气流以生成贫酸性气体合成气流和富二氧化碳流;
(6) 任选在所述酸性气体去除单元中处理所述气态烃产物流以生成贫酸性气体气态烃产物流;
(7) 任选使所述贫酸性气体合成气流、所述气态烃产物流和所述贫酸性气体气态烃产物流中一种或多种的至少一部分燃烧;
(8) 将空气流分离成所述富氧气流和富氮气流;和
(9)对所述富氮气流加压以产生所述加压的氮气流,
其中将所述富氧气流的至少一部分用于步骤(4)和(7)中的一个或两个中。
2. 权利要求1的方法,其特征在于所述贫酸性气体合成气流、所述气态烃产物流和所述贫酸性气体气态烃产物流中一种或多种的至少一部分燃烧,且所述富氧气流的至少一部分用于所述燃烧。
3. 权利要求1或2的方法,其特征在于所述富氧气流的至少一部分用以生成所述合成气流。
4. 权利要求1-3中任一项的方法,其特征在于所述合成气流通过催化蒸汽甲烷重整方法利用含甲烷的物流作为所述碳质原料生成,或所述合成气流通过非催化气态部分氧化方法利用含甲烷的物流作为所述碳质原料生成,或所述合成气流通过催化自热重整方法利用含甲烷的物流作为所述碳质原料生成。
5. 权利要求1-3中任一项的方法,其特征在于所述合成气流通过非催化热气化方法利用非气态碳质材料作为所述碳质原料生成。
6. 权利要求1-5中任一项的方法,其特征在于所述合成气流包含氢气及一氧化碳和二氧化碳中的一种或两种。
7. 权利要求1-3中任一项的方法,其特征在于所述合成气流通过催化加氢甲烷化方法利用非气态碳质材料作为所述碳质原料生成。
8. 权利要求1-3或7中任一项的方法,其特征在于所述合成气流包含甲烷、氢气和二氧化碳和任选的一氧化碳。
9. 权利要求1-8中任一项的方法,其特征在于对由酸性气体去除产生的所述富二氧化碳流加压以产生加压的二氧化碳流,将其至少一部分注入所述地下烃储层中。
10. 权利要求1-9中任一项的方法,其特征在于所述气态烃产物流在酸性气体去除单元中处理,且所述贫酸性气体产物气流包含贫酸性气体气态烃产物流和贫酸性气体合成气流。
11. 用于生成含烃流体、贫酸性气体产物气流和富氧气流的装置,所述装置包括:
(A) 适合由碳质原料生成合成气的合成气生产系统,所述合成气包含(i) 二氧化碳和(ii) 氢气和甲烷中的至少一种;
(B) 与包含含烃流体的地下烃储层流体连通的注入井,所述注入井适合将加压的氮气流注入所述地下烃储层中以便提高石油采收率;
(C) 与所述地下烃储层流体连通的烃生产井,所述烃生产井适合自所述地下烃储层中除去含烃流体;
(D) 与所述烃生产井流体连通的分离设备,所述分离装置适合(i) 自所述烃生产井接收所述烃流体,和(ii) 将所述烃流体分离成液态烃产物流和气态烃产物流;
(E) 与所述合成气产生系统流体连通的酸性气体去除单元,所述酸性气体去除单元适合(i) 自所述合成气产生系统接收所述合成气,和(ii) 处理所述合成气以除去酸性气体且生成贫酸性气体产物气流和富二氧化碳流;
(F) 空气分离单元,其适合(i) 接收空气流和(ii) 将所述空气流分离成富氧气流和富氮再循环流;和
(G) 与所述空气分离单元和所述注入井流体连通的压缩机单元,所述压缩机单元适合(i) 接收所述富氮再循环流,和(ii) 将所述富氮再循环流压缩以产生加压的氮气流,和(iii) 将所述加压的氮气流提供到所述注入井中。

说明书全文

注入氮气的整合的提高石油采收率的方法

发明领域

[0001] 本发明涉及提高石油采收率的方法,其与诸如气化或重整的合成气产生方法和用于产生(i) 供例如在合成气方法或燃烧方法中使用的气流和(ii) 供EOR使用的氮气流的空气分离方法整合。
[0002] 发明背景鉴于原油供应的减少,提高原油采收率(EOR)的技术受到了加倍重视。
[0003] 通常,使用储油层的天然压驱使原油进入井眼,用常规使其从井眼到达地面来生产石油。在一定的生产周期之后,储油层的天然压力降低且产量减少。在二十世纪四十年代,生产者通过利用注入的蒸汽和/或天然气以在将原油泵送到地面之前驱使其进入井眼而结合了二次采油。
[0004] 一旦已经采收了易于提取的石油,生产者就着手三次采油或提高石油采收率(EOR)的技术。一种已知的这类EOR技术为高压氮气注入,其帮助对储油层再加压。
[0005] 基于高压氮气注入的EOR还可包括其他技术,诸如CO2注入/涌入,其可与氮气注入同时或连续地进行。
[0006] CO2注入也帮助对储油层再加压。高压CO2还充当溶解残油的溶剂,由此降低其粘度且改善其流动特性,允许其从老化储层中泵送出。
[0007] 使用氮气和任选的CO2来增加采油量的一个困难在于需要大量的这两种气体且该大量的利用率有限。
[0008] 氮气通常自空气分离方法得到,但认为仅仅为了产生用于EOR的氮气而利用空气分离方法并不经济。
[0009] 可利用来自天然来源的CO2,但其通常需要该天然来源在储油层附近以避免管线的构造和使用,管线的构造和使用可使得这种使用不经济。
[0010] 也已经考虑了使用来自燃烧来源(诸如发电站)的CO2(参见,例如US7299868和在其中提到的公开案),但从燃烧气体中分离CO2是困难的且通常认为不经济。
[0011] 近年来,已经考虑将来自合成气生产操作的CO2用于EOR中。参见,例如US7481275。合成气生产操作例如包括催化气化和加氢甲烷化方法、非催化气化方法和甲烷重整方法。这些方法通常生成作为粗气体产物的甲烷、氢气和/或合成气(氢气与一氧化的混合物)中的一种或多种,可将它们加工并最终用于发电和/或其他工业应用。这些方法还生成了CO2,如相关技术的普通技术人员通常已知,其经由酸性气体去除方法除去。历史上,该CO2简单地排放到大气中,但鉴于环境问题,该CO2的捕集和截存/使用变成必需做的事。EOR因此是来自合成气生产操作的CO2流的合理出路。
[0012] 利用CO2副产物流用于EOR的至少一种这样的合成气生产操作目前存在于Great Plains Synfuels Plant(靠近Beulah, North Dakota USA)。在该设施中,使炭/褐煤化成含有二氧化碳的合成气流,该合成气流经由基于溶剂的酸性气体去除技术分离。将所得CO2流(其纯度大于95%)压缩并经由205-英里超临界CO2管线传输到在加拿大的油田以用于EOR操作。该操作更详细地描述在Perry和Eliason, “CO2 Recovery and Sequestration at Dakota Gasification Company(在达科他州气化公司的CO2回收和截存)”(2004年10月)(自www.gasification.org得到)和在Dakota Gasification Company网址(www.dakotagas.com)上。
[0013] 该操作的缺点在于该管线,因为超临界CO2被视为有害物质。超临界CO2管线(特别是长达205英里的超临界CO2管线)的构造、许可、操作和维护是昂贵的。因此,非常需要使CO2从合成气操作到达EOR现场的更有利的方式。
[0014] 将CO2用于EOR的另一缺点在于,随着更多的CO2泵送到储油层中,也有更多的CO2与从井中出来的其他液体和气体一起生成。传统上,将与石油共生的CO2分离并排放到大气中;然而,正如合成气生产操作一样,环境问题使得该CO2排放不符合要求。
[0015] 因此,将非常需要将EOR方法与合成气生产方法和空气分离方法以使得CO2向大气的释放最少化(使CO2的捕集和截存最大化)、降低对于长氮气(和CO2(在使用时))传输管线的需要并改善各个方法的综合整合、效率和经济状况的方式整合。本发明提供了这种整合。
[0016] 发明概述在第一方面,本发明提供整合方法以(i) 生成贫酸性气体产物气流,(ii) 生成富氧气流,(iii) 自地下储层经由烃生产井生成含烃流体,及(iv) 促进所述含烃流体自所述地下烃储层的生产,所述方法包括以下步骤:
(1) 将加压的氮气流注入所述地下烃储层中以促进所述含烃流体自所述地下烃储层经由所述烃生产井的生产;
(2) 回收自所述烃生产井生成的所述含烃流体;
(3) 将所述含烃流体分离成(a) 液态烃产物流和(b) 气态烃产物流;
(4) 由碳质原料生成合成气流,所述合成气流包含(a) 二氧化碳和(b) 氢气和甲烷中的至少一种;
(5) 在酸性气体去除单元中处理所述合成气流以生成贫酸性气体产物气流和富二氧化碳流;
(6) 任选在所述酸性气体去除单元中处理所述气态烃产物流以生成贫酸性气体气态烃产物流;
(7) 任选使所述贫酸性气体合成气流、所述气态烃产物流和所述贫酸性气体气态烃产物流中一种或多种的至少一部分燃烧;
(8) 将空气流分离成富氧气流和富氮气流;和
(9) 对所述富氮气流加压以产生所述加压的氮气流,
其中将所述富氧气流的至少一部分用于步骤(4)和(7)中的一个或两个中。
[0017] 在第二方面,本发明提供通过将加压的氮气流注入地下烃储层中而促进含烃流体自所述地下烃储层经由烃生产井的生产的方法,其中所述加压的氮气流通过包括以下步骤的方法产生:(I) 回收自所述烃生产井生成的所述含烃流体;
(II) 将所述含烃流体分离成(a) 液态烃产物流和(b) 气态烃产物流;
(III) 由碳质原料生成合成气流,所述合成气流包含(a) 二氧化碳和(b) 氢气和甲烷中的至少一种;
(IV) 在酸性气体去除单元中处理所述合成气流以生成贫酸性气体合成气流和富二氧化碳流;
(V) 任选在所述酸性气体去除单元中处理所述气态烃产物流以生成贫酸性气体气态烃产物流;
(VI) 任选使所述贫酸性气体合成气流、所述气态烃产物流和所述贫酸性气体气态烃产物流中一种或多种的至少一部分燃烧;
(VII) 将空气流分离成富氧气流和富氮气流;和
(VIII) 将所述富氮气流加压以产生加压的氮气流,
其中将所述富氧气流的至少一部分用于步骤(III)和(VI)中的一个或两个中。
[0018] 在第一方面和第二方面的一个具体实施方案中,将自酸性气体去除产生的富二氧化碳流加压以产生加压的二氧化碳流,将所述加压的二氧化碳流的至少一部分注入地下烃储层中。
[0019] 在第一方面和第二方面的另一具体实施方案中,存在步骤(7)和(VI),且使用该燃烧来生成至少部分地用于空气分离步骤(步骤(8)和(VII))和/或加压(压缩)步骤(步骤(9)和(VIII)和/或CO2压缩)的能量(例如,机械能和/或电能)。
[0020] 在第三方面,本发明提供用于生成含烃流体、贫酸性气体产物气流和富氧气流的装置,所述装置包括:(A) 适合由碳质原料生成合成气的合成气生产系统,所述合成气流包含(i) 二氧化碳和(ii) 氢气和甲烷中的至少一种;
(B) 与包含含烃流体的地下烃储层流体连通的注入井,所述注入井适合将加压的氮气流注入所述地下烃储层中以便提高石油采收率;
(C) 与所述地下烃储层流体连通的烃生产井,所述烃生产井适合自所述地下烃储层中除去含烃流体;
(D) 与所述烃生产井流体连通的分离设备,所述分离设备适合(i) 自所述烃生产井接收所述烃流体,和(ii) 将所述烃流体分离成液态烃产物流和气态烃产物流;
(E) 与所述合成气产生系统流体连通的酸性气体去除单元,所述酸性气体去除单元适合(i) 自所述合成气产生系统接收所述合成气,和(ii) 处理所述合成气以除去酸性气体且生成所述贫酸性气体产物气流和富二氧化碳流;
(F) 空气分离单元,其适合(i) 接收空气流和(ii) 将所述空气流分离成富氧气流和富氮再循环流;和
(G) 与所述空气分离单元和所述注入井流体连通的压缩机单元,所述压缩机单元适合(i) 接收所述富氮再循环流,和(ii) 将所述富氮再循环流压缩以产生加压的氮气流,和(iii) 将所述加压的氮气流提供到所述注入井中。
[0021] 在第三方面的一个具体实施方案中,所述注入井还适合将加压的二氧化碳流注入地下烃储层,且所述装置还包括与酸性气体去除单元和所述注入井流体连通的压缩机单元,所述压缩机单元适合(i) 接收富二氧化碳流,和(ii) 将二氧化碳再循环流压缩以产生加压的二氧化碳流,和(iii) 将所述加压的二氧化碳流提供到所述注入井。
[0022] 在第三方面的另一具体的实施方案中,所述酸性气体去除单元适合接收合成气和气态烃产物流的组合流,并处理所述组合流以除去酸性气体且生成贫酸性气体产物气流和富二氧化碳流。
[0023] 在第三方面的另一具体的实施方案中,所述酸性气体去除单元还适合从分离设备接收气态烃产物流,并处理所述气态烃产物流以除去酸性气体且生成贫酸性气体气态烃产物流。在这种情况下,所述贫酸性气体产物气流将包含贫酸性气体气态烃产物流和贫酸性气体合成气流(单独或组合的)两者。
[0024] 本领域的普通技术人员在阅读以下详述时将更容易地理解本发明的这些及其他实施方案、特征和优势。
[0025] 附图简述图1为根据本发明的整合方法的一个实施方案的图。
[0026] 图2为根据本发明的整合方法的第一具体实施方案的图。
[0027] 图3为图2的整合方法的气体加工部分的一个实施方案的图。
[0028] 图4为根据本发明的整合方法的第二具体实施方案的图。
[0029] 图5为图4的整合方法的气体加工部分的一个实施方案的图。
[0030] 图6为适合与本发明联用的电力区的图。
[0031] 发明详述本发明涉及使合成气生产方法和空气分离方法与提高石油采收率的方法整合。下文提供更多细节。
[0032] 在本发明的上下文中,如果没有另外指明,则本文提到的所有出版物、专利申请、专利和其他参考文献出于所有目的都通过引用全文明确地结合到本文中来,如同完整地阐述了一样。
[0033] 除非另作定义,否则本文所用的所有技术和科学术语都具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。如果存在冲突,则以本发明说明书(包括定义)为准。
[0034] 除非明确注明,否则商标都是以大写表示。
[0035] 尽管在本发明的实施或试验中可使用与本文所述的那些方法和材料类似或等效的方法和材料,但是本文描述合适的方法和材料。
[0036] 除非另有说明,否则所有百分数、份数、比率等都是以重量计。
[0037] 除非另有说明,否则以psi为单位表示的压力为表压,以kPa为单位表示的压力都是绝对压力。
[0038] 当数量、浓度或其他值或参数作为范围或一列上下限值提供时,应当理解,具体公开的所有范围都由任一对任何上下限范围形成,而与是否单独公开所述范围无关。在本文中列举数值范围的情况下,除非另有说明,否则所述范围旨在包括其端点和所述范围内的所有整数和分数。当限定一个范围时,并非想要将本发明的范围限制于所列的具体值。
[0039] 当使用术语“约”描述范围的值或端点时,应理解本发明包括提到的具体值或端点。
[0040] 本文使用的术语“包含”、“包括”、“具有”或其任何其他变体旨在涵盖非排他性的包括。例如,包含一列要素的工艺、方法、制品或装置并不一定仅限于这些要素,而是可包括所述工艺、方法、制品或装置的没有明确列出或固有的其他要素。此外,除非明确说明相反情况,否则“或”是指包括性“或”而非排他性“或”。例如,条件A或B由以下任一条件满足:A为真(或存在)且B为假(或不存在)、A为假(或不存在)且B为真(或存在)及A和B两者均为真(或存在)。
[0041] 仅是为了方便并考虑本发明的一般含义而使用“一(种/个)”描述本文中的各种要素和组分。应理解此描述包括一种/个或至少一种/个,且除非显而易见它是指其他情况,否则单数也包括复数。
[0042] 除非本文中另作定义,否则本文使用的术语“相当大部分”是指大于约90%的提及材料、优选大于约95%的提及材料且更优选大于约97%的提及材料。当提到分子(诸如甲烷、二氧化碳、一氧化碳硫化氢)时,百分比是以摩尔计算,其他都是以重量计算(例如,含烃流体的液态组分)。
[0043] 除非另作定义,否则本文使用的术语“主要部分”是指大于约50%的提及材料。当提到分子(诸如氢气、甲烷、二氧化碳、一氧化碳和硫化氢)时,百分比是以摩尔计算,其他都是以重量计算(例如,含烃流体的液态组分)。
[0044] 本文使用的术语“含烃流体”是指包含任何烃液体和/或气体的流体。含烃流体还可包含固体粒子。油、气体冷凝液等以及其与诸如水的其他液体的混合物可为在含烃流体中所含的液体的实例。任何气态烃(例如,甲烷、乙烷、丙烷、丙烯、丁烷等)和气态烃混合物都可包含在含烃流体中。在本发明的上下文中,含烃流体自诸如含油地层、气凝储层、天然气储层等的地下烃储层中采收。
[0045] 本文使用的术语“碳质”与烃同义。
[0046] 本文使用的术语“碳质材料”为含有机烃内含物的材料。如本文定义,碳质材料可分类为生物质材料和非生物质材料。
[0047] 本文使用的术语“生物质”是指来源于近代(例如,过去的100年之内)活生物的碳质材料,包括基于植物的生物质和基于动物的生物质。为了清楚起见,生物质不包括基于化石的碳质材料,诸如煤炭。例如,参见US2009/0217575A1和US2009/0217587A1。
[0048] 本文使用的术语“基于植物的生物质”是指来源于绿色植物、作物、藻类和树木的材料,诸如但不限于高粱甘蔗渣、甘蔗、竹子、杂种白杨、杂种柳树、合欢树(albizia tree)、桉树、苜蓿、三叶草、油棕、柳枝稷、苏丹草、粟、麻树属和芒草(例如奇岗(Miscanthus x giganteus))。生物质还包括来自农业耕种、加工和/或降解的废物,诸如玉米芯和皮、玉米秸、稻草、坚果壳、植物油、低芥酸菜籽油、菜籽油、生物柴油、树皮绉、木屑、锯末和园林废物。
[0049] 本文使用的术语“基于动物的生物质”是指由动物养殖和/或使用产生的废物。例如,生物质包括但不限于来自家畜养殖和加工的废物,诸如畜粪、海粪、禽粪、动物脂肪和城市固体废物(例如污水)。
[0050] 本文使用的术语“非生物质”是指未被本文中定义的术语“生物质”涵盖的那些碳质材料。例如,非生物质包括但不限于烟煤、烟煤、次烟煤、褐煤、石油焦炭、沥青烯、液体石油残渣或其混合物。例如,参见US2009/0166588A1、US2009/0165379A1、US2009/0165380A1、US2009/0165361A1、US2009/0217590A1和US2009/0217586A1。
[0051] 本文使用的术语“石油焦炭(petroleum coke和petcoke)”包括(i) 石油加工中得到的高沸点烃馏分的固体热解产物(重质残渣-“残余石油焦炭(resid petcoke)”);和(ii) 加工沥青砂的固体热解产物(沥青质砂或油砂-“沥青砂石油焦炭”)。这类碳化产物例如包括绿色(greem)石油焦炭、煅烧石油焦炭、针状石油焦炭和流化床石油焦炭。
[0052] 残余石油焦炭还可以例如通过用以提高重质残留原油品质的焦化处理而由原油得到,该石油焦炭含有基于焦炭的重量计算通常约1.0重量%或更少、更通常约0.5重量%或更少的灰分作为微量组分。通常这类较低灰分焦炭中的灰分包含诸如镍和的金属。
[0053] 沥青砂石油焦炭可例如通过用来提高油砂品质的焦化处理而由油砂得到。沥青砂石油焦炭含有基于沥青砂石油焦炭的总重量计算通常在约2重量%-约12重量%范围内且更通常在约4重量%-约12重量%范围内的灰分作为微量组分。通常这类较高灰分焦炭中的灰分包含诸如石和/或氧化的材料。
[0054] 石油焦炭具有通常在约0.2重量%-约2重量%范围内的固有低湿含量(基于石油焦炭总重量计算);其通常还具有允许常规催化剂浸渍法的极低水浸容量。所得微粒组合物例如含有与常规干式操作相比增加下游干式操作效率的较低平均湿含量。
[0055] 所述石油焦炭可包含基于石油焦炭的总重量计算至少约70重量%的碳、至少约80重量%的碳或至少约90重量%的碳。通常所述石油焦炭包含基于石油焦炭的重量计算小于约20重量%的无机化合物。
[0056] 本文使用的术语“沥青烯”为室温下的芳族碳质固体,且其可例如通过加工原油和原油沥青砂得到。
[0057] 本文使用的术语“煤炭”是指泥煤、褐煤、次烟煤、烟煤、无烟煤或其混合物。在某些实施方案中,基于煤炭的总重量计算,煤炭的碳含量小于约85重量%、或小于约80重量%、或小于约75重量%、或小于约70重量%、或小于约65重量%、或小于约60重量%、或小于约55重量%、或小于约50重量%。在其他实施方案中,基于煤炭的总重量计算,煤炭的碳含量至高约85重量%、或至高约80重量%、或至高约75重量%。有用的煤炭的实例包括但不限于Illinois #6、Pittsburgh #8、Beulah (ND)、Utah Blind Canyon和Powder River Basin (PRB)煤炭。无烟煤、烟煤、次烟煤和褐煤基于煤炭的总干重计算可分别含有约10重量%、约5-约7重量%、约4-约8重量%和约9-约11重量%的灰分。然而,如本领域的技术人员所熟悉,任何特定煤炭来源的灰分含量都将取决于煤炭的等级和来源。参见,例如“Coal Data: A Reference”, Energy Information Administration, Office of Coal, Nuclear, Electric and Alternate Fuels, U.S. Department of Energy, DOE/EIA-0064(93),1995年2月。
[0058] 如本领域的技术人员所熟悉,由煤炭燃烧生成的灰分通常包括飞灰和炉底灰两者。基于飞灰的总重量计算,来自烟煤的飞灰可包含约20-约60重量%的二氧化硅和约5-约35重量%的氧化铝。基于飞灰的总重量计算,来自次烟煤的飞灰可包含约40-约60重量%的二氧化硅和约20-约30重量%的氧化铝。基于飞灰的总重量计算,来自褐煤的飞灰可包含约15-约45重量%的二氧化硅和约20-约25重量%的氧化铝。参见,例如Meyers等,“Fly Ash. A Highway Construction Material(飞灰,公路建筑材料),” Federal Highway Administration, Report No. FHWA-IP-76-16, Washington, DC, 1976。
[0059] 基于炉底灰的总重量计算,来自烟煤的炉底灰可包含约40-约60重量%的二氧化硅和约20-约30重量%的氧化铝。基于炉底灰的总重量计算,来自次烟煤的炉底灰可包含约40-约50重量%的二氧化硅和约15-约25重量%的氧化铝。基于炉底灰的总重量计算,来自褐煤的炉底灰可包含约30-约80重量%的二氧化硅和约10-约20重量%的氧化铝。参见,例如Moulton, Lyle K. “Bottom Ash and Boiler Slag(炉底灰和炉渣),” Proceedings of the Third International Ash Utilization Symposium, U.S. Bureau of Mines, Information Circular No. 8640, Washington, DC, 1973。
[0060] 诸如甲烷的碳质材料视其来源可为在上文定义下的生物质或非生物质。
[0061] 术语“单元”是指单元操作。当描述存在多于一个“单元”时,那些单元以并联方式操作。然而,单个“单元”可视上下文而包括多于一个串联或并联的单元。例如,酸性气体去除单元可包括硫化氢去除单元和后面串联的二氧化碳去除单元。作为另一实例,污染物去除单元可包括用于第一污染物的第一去除单元和后面串联的用于第二污染物的第二去除单元。作为又一实例,压缩机可包括用以将物流压缩到第一压力的第一压缩机、后面串联的用以进一步压缩物流到第二(较高)压力的第二压缩机。
[0062] 本文中的材料、方法和实施例仅是说明性的且除非明确说明,否则不是用来加以限制。
[0063] 通用工艺信息在本发明的一个实施方案中,如在图1-6中所说明,贫酸性气体产物气流(38)、富氧气流(14)和含烃流体(82)在整合的EOR、空气分离和合成气生产方法中生成。
[0064] 为了利于整合,在一个实施方案中,合成气生产系统(设施)和空气分离单元二者都接近EOR场所(油田),诸如在同一或邻接地块上。
[0065] 提高的石油采收参考图1,所述方法的EOR部分包括利用相关领域的普通技术人员熟知的技术将加压的氮气流(19)和任选的加压的二氧化碳流(89)经由(一个或多个)注入井(500)注入地下烃储层(20)中。
[0066] 如上所指出,加压的氮气流(19)帮助地下储层再加压。通常加压的氮气流(19)在至少约1200psig(约8375kPa)或至少约1500psig(约10444kPa)或至少约2000psig(约13891kPa)的压力下注入地下储层中。
[0067] 同样如上所指出,加压的二氧化碳流(89)(其通常将处于超临界流体状态)用以经由通常包括将地下储层再加压和使捕集的烃的粘度降低(改善流动性质)的机制的组合而提高烃流体(82)自生产井(600)的生产。通常加压的二氧化碳流(89)也将在至少约1200psig(约8375kPa)或至少约1500psig(约10444kPa)或至少约2000psig(约13891kPa)的压力下注入地下储层中。
[0068] 如相关领域的普通技术人员所熟知,使用二氧化碳和氮气的EOR可利用共同注入(co-injection)(在相同场所同时)、同时注入(concurrent injection)(在不同场所同时)、连续注入(在相同或分开的场所一者接一者)或这些各种技术的组合。
[0069] 同样如本领域的普通技术人员所熟知,EOR还可包括共同注入、同时注入或连续注入加压的水、蒸汽和其他流体。所利用的实际的基于二氧化碳/氮气的EOR方法在广义上对于本发明不是关键的。
[0070] 所得含烃流体(82)经(一个或多个)烃生产井(600)生成并回收。生成的含烃流体(82)视烃储层和EOR条件通常含有液态和气态烃组分以及其他液态和气态组分。液态烃组分通常可被视为原油,而气态烃组分通常包含在环境条件下为气体的烃,诸如甲烷、乙烷、丙烷、丙烯和丁烷(天然气的典型组分)。其他典型的液态组分包括水或盐水。含烃流体(82)还可包含二氧化碳,且可包含其他气态组分,诸如硫化氢(来自酸井)和氮气。含烃流体(82)还可包含固态碳和矿物质。
[0071] 可将生成的含烃流体(82)通到分离设备(300)中以使气态组分与液态/固态组分分离以产生气态烃产物流(84)、液态烃产物流(85)和任选的含有来自含烃流体(82)的固态组分的物流(86)。所述固体也可任选地由液态烃产物流(85)携带以便稍后分离,或在分离设备(300)之前通过诸如沉降、离心和/或过滤的熟知技术分离出来。在一个实施方案中,较大/致密的固体在分离设备(300)中分离,而可变得夹带在液态烃产物流(85)中的较细固体随后经由诸如过滤的熟知技术分离。
[0072] 作为分离设备(300)使用的合适的分离设备为本领域的普通技术人员所熟知且例如包括单级或多级水平分离器和旋风分离器。所利用的实际分离设备在广义上对于本发明不是关键的。
[0073] 液态烃产物流(85)因此通常包含至少主要部分(或相当大部分或基本上所有)的来自含烃流体(82)的液态组分,例如包括原油和水/盐水。如相关领域的普通技术人员所熟知,随后可加工液态烃产物流(85)以分离出水和其他污染物,随后进一步加工(例如,精制)成多种最终产物或用于多种最终用途。
[0074] 如果存在含固态组分的物流(86),则通常将其作为浓浆料或与含烃流体(82)的液态内含物的某些部分一起自分离设备(300)除去。可与在物流(86)中的固体移出的油可经由洗涤或相关领域的普通技术人员所熟知的其他技术采收。
[0075] 离开分离设备(300)的所得气态烃产物流(84)通常包含至少相当大部分(或基本所有)的来自含烃流体(82)的气态组分,包含来自含烃流体(82)的至少相当大部分(或基本所有)的气态烃(和存在的二氧化碳)。气态烃产物流(84)还可包含少量水蒸气(其应该在例如在如下文论述的酸性气体去除单元(200)中进一步处理之前被基本除去)以及诸如硫化氢的其他污染物(如果存在的话)。
[0076] 如果含烃流体(82)含有例如大于污染物量的酸性气体如二氧化碳,则所得气态烃流(84)将含有相当大部分(或基本所有)的酸性气体,且在一个实施方案中,其将经受酸性气体去除以除去并回收酸性气体。
[0077] 离开分离设备(300)的气态烃产物流(84)的全部或一部分可与合成气流(50)组合,或另外在如下论述的酸性气体去除单元(200)中与合成气流(50)一起共同加工。在与合成气流(50)组合或在酸性气体去除单元(200)中共同加工之前,任选可将气态烃产物流(84)压缩或加热(未绘出)到适合组合或如下文进一步描述的其他后续加工的温度和压力条件。
[0078] 气态烃产物流(84)的全部或一部分可另外或供选地在动力区块(760a)中燃烧例如用于电力(79a)和/或蒸汽产生。包含来自空气分离单元(800)的富氧气流(14)的至少一部分的富氧气流(14c)可如下论述用于动力区块(760a)中。
[0079] 合成气产生(100)合成气流(50)含有(i) 二氧化碳和(ii) 氢气和甲烷中的至少一种。合成气流(50)的实际组成将取决于用以产生物流的合成气方法和碳质原料,其包括在酸性气体去除单元(200)之前可发生的任何气体加工或与气态烃流(84)的任选的组合。
[0080] 在一个实施方案中,合成气流(50)包含二氧化碳和氢气。在另一实施方案中,合成气流(50)包含二氧化碳和甲烷。在另一实施方案中,合成气流(50)包含二氧化碳、甲烷和氢气。再一次取决于合成气生产方法和碳质原料,合成气流(50)还可含有其他气态组分,诸如一氧化碳、硫化氢、蒸汽及其他气态烃。
[0081] 合成气流(50)在合成气生产系统(100)中产生。在本发明的上下文中可利用任何合成气产生方法,只要该合成气产生方法(包括在与气态烃流(84)任选组合之前或在酸性气体去除单元(200)之前的气体加工)根据本发明的上下文的需要产生合成气流即可。相关领域的普通技术人员通常已知合适的合成气方法,且许多适用的技术都是市售的。
[0082] 包含来自空气分离单元(800)的富氧气流(14)的至少一部分的富氧气流(14a)任选可用于如下所述的合成气生产系统(100)中。
[0083] 下文论述不同类型的合适的合成气产生方法的非限制性实例。这些实例可以单个或组合地使用。所有合成气产生方法都将包括反应器,其在图3和图5中统统表示为(110),碳质原料(10)将在其中加工以生成合成气,在与气态烃流(84)任选组合之前和/或在酸性气体去除单元(200)之前可将该合成气进一步处理。在如下描述的各种合成气产生方法的上下文中,可笼统地参考图3和图5。
[0084] 基于气体的甲烷重整/部分氧化在一个实施方案中,所述合成气产生方法基于气体进料的甲烷部分氧化/重整方法,诸如非催化气态部分氧化、催化自热(authothermal)重整或催化流-甲烷重整方法(catalytic stream-methane reforming process)。这些方法通常在相关领域中熟知。参见,例如Rice和Mann, “Autothermal Reforming of Natural Gas to Synthesis Gas, Reference: KBR Paper #2031(天然气到合成气的自热重整,参考文献:KBR Paper #2031),” Sandia National Laboratory Publication No. SAND2007-2331 (2007);和Bogdan, “Reactor Modeling and Process Analysis for Partial Oxidation of Natural Gas(用于天然气的部分氧化的反应器型号和工艺分析)”,Febodruk, B.V.印刷,ISBN:
90-365-2100-9 (2004)。
[0085] 有效地适合结合本发明使用的技术和反应器自Royal Dutch Shell plc、Siemens AG、General Electric Company、Lurgi AG、Haldor Topsoe A/S、Uhde AG、KBR Inc.等购得。
[0086] 参考图3和图5,这些基于气体的方法在反应器(110)中使作为碳质原料(10)的气态含甲烷物流转化成作为合成气流(50)的合成气(氢气加一氧化碳),视具体方法而定,所述合成气的氢气:一氧化碳比率不同,通常将含有少量的二氧化碳且可含有少量的其他气态组分如蒸汽。
[0087] 可用于这些方法的含甲烷物流包含占主要量的甲烷且可包含其他气态烃和组分。常用的含甲烷物流的实例包括天然气和合成天然气。
[0088] 在非催化气态部分氧化和自热重整中,将富氧气流(14a)与碳质原料(10)一起进料到反应器(110)中。任选地,蒸汽(16)也可进料到反应器(110)中。在蒸汽-甲烷重整中,将蒸汽(16)与碳质原料(10)一起进料到反应器中。在一些情况下,还可将少量的其他气体如二氧化碳、氢气和/或氮气进料到反应器(110)中。
[0089] 各种反应器和技术的反应及其他操作条件和设备及构造在一般意义上为相关领域的普通技术人员所知,且在广义上对于本发明不是关键的。
[0090] 基于固体/液体的气化得到合成气在另一实施方案中,合成气产生方法基于非催化热气化方法,诸如部分氧化气化方法(如吹氧气化器),其中将非气态(液态、半固态和/或固态)烃用作碳质原料(10)。可将各种生物质和非生物质材料(如上所述)用作这些方法中的碳质原料(10)。
[0091] 有效地适合结合本发明使用的吹氧固体/液体气化器在一般意义上为相关领域的普通技术人员所知且例如包括基于自Royal Dutch Shell plc、ConocoPhillips Company、Siemens AG、Lurgi AG (Sasol)、General Electric Company等购得的技术的那些气化器。其他有效合适的合成气产生器例如公开在US2009/0018222A1、US2007/0205092A1和US6863878中。
[0092] 这些方法使固态、半固态和/或液态碳质原料(10)在诸如吹氧气化器的反应器(110)中转化成作为合成气流(50)的合成气(氢气加一氧化碳),取决于具体方法和碳质原料,该合成气的氢气:一氧化碳比率不同,通常将含有少量的二氧化碳且可含有少量的其他气态组分,诸如甲烷、蒸汽、硫化氢、硫氧化物和氮氧化物。
[0093] 在某些这样的方法中,将富氧气流(14a)与碳质原料(10)一起进料到反应器(110)中。任选地,也可将蒸汽(16)以及诸如二氧化碳、氢气、甲烷和/或氮气的其他气体进料到反应器(110)中。
[0094] 在某些这样的方法中,可将蒸汽(16)代替富氧气流(14a)的全部或一部分在高温下用作氧化剂
[0095] 在反应器(110)中的气化通常将在碳质原料(10)的流化床中发生,碳质原料(10)通过富氧气流(14a)、蒸汽(16)和/或可进料到反应器(110)中的其他流化气体(如二氧化碳和/或氮气)的流动流态化。
[0096] 通常,热气化为非催化工艺,因此不需要将气化催化剂加到碳质原料(10)或反应器(110)中,然而,可利用促进合成气形成的催化剂。
[0097] 这些热气化方法通常在高温和压力条件下操作,且可视方法和碳质原料而在结渣或未结渣操作条件下运行。
[0098] 各种反应器和技术的反应及其他操作条件和设备及构造在一般意义上为相关领域的普通技术人员所知,且在广义上对于本发明不是关键的。
[0099] 催化气化/加氢甲烷化得到富甲烷气体在另一供选的实施方案中,合成气产生方法为催化气化/加氢甲烷化方法,其中非气态碳质原料(10)的气化在反应器(110)中在蒸汽和催化剂存在下发生以产生作为合成气流(50)的富甲烷气流,该富甲烷气流通常包含甲烷、氢气、一氧化碳、二氧化碳和蒸汽。
[0100] 碳源到甲烷的加氢甲烷化通常包括四个并发反应:蒸汽碳(steam carbon):C + H2O → CO + H2 (I)
水气转变:CO + H2O → H2 + CO2 (II)
CO甲烷化:CO+3H2 → CH4 + H2O (III)
加氢气化:2H2 + C → CH4 (IV)。
[0101] 在加氢甲烷化反应中,前三个反应(I-III)起主要作用以产生以下总反应:2C + 2H2O → CH4 + CO2 (V)。
[0102] 该总反应基本热平衡;然而,由于工艺热量损失和其他能量需求(诸如蒸发随原料进入反应器的水份所需要),必须将一些热量加到反应器中以保持热平衡。
[0103] 这些反应也基本是合成气(氢气和一氧化碳)平衡的(生成并消耗合成气),因此,随着一氧化碳和氢气随所生成的气体一起移出,根据需要,需要将一氧化碳和氢气加到反应中以避免缺乏。
[0104] 为了保持反应的净热尽可能地接近中性(仅略微放热或吸热)且保持合成气平衡,常将蒸汽(16)和合成气(12)(一氧化碳和氢气)的过热气流进料到反应器(110)中(单独地或组合地)。一氧化碳和氢气流常为自产物气体分离的再循环流,和/或通过重整产物甲烷的一部分而提供。任选地,合成气的全部或一部分可通过将富氧气流(14a)直接进料到反应器(110)中而原位产生。
[0105] 可用于这些方法的碳质原料例如包括广泛种类的生物质和非生物质材料。
[0106] 在这些方法中利用的催化剂例如包括金属、碱土金属和过渡金属和化合物、其混合物及其络合物。
[0107] 在催化气化/加氢甲烷化方法中的温度和压力操作条件通常比非催化气化方法更温和(温度和压力较低),且有时在成本和效率方面可具有优势。
[0108] 催化气化/加氢甲烷化方法和条件例如公开在以下文献中:US3828474、US3998607、US4057512、US4092125、US4094650、US4204843、US4468231、US4500323、US4541841、US4551155、US4558027、US4606105、US4617027、US4609456、US5017282、US5055181、US6187465、US6790430、US6894183、US6955695、US2003/0167961A1和 US2006/0265953A1 以 及 共 同 拥 有 的 US2007/0000177A1、US2007/0083072A1、US2007/0277437A1、US2009/0048476A1、US2009/0090056A1、US2009/0090055A1、US2009/0165383A1、US2009/0166588A1、US2009/0165379A1、US2009/0170968A1、US2009/0165380A1、US2009/0165381A1、US2009/0165361A1、US2009/0165382A1、US2009/0169449A1、US2009/0169448A1、US2009/0165376A1、US2009/0165384A1、US2009/0217582A1、US2009/0220406A1、US2009/0217590A1、US2009/0217586A1、US2009/0217588A1、US2009/0218424A1、US2009/0217589A1、US2009/0217575A1、US2009/0229182A1、US2009/0217587A1、US2009/0246120A1、US2009/0259080A1、US2009/0260287A1、US2009/0324458A1、US2009/0324459A1、US2009/0324460A1、US2009/0324461A1、US2009/0324462A1、US2010/0121125A1、US2010/0120926A1、US2010/0071262A1、US2010/0076235A1、US2010/0179232A1、US2010/0168495A1 和US2010/0168494A1;美国专利申请第12/778,538号(代理机构案号FN-0047 US NP1,题为Process for Hydromethanation of a Carbonaceous Feedstock(使碳质原料加氢甲烷化的方法))、美国专利申请第12/778,548号(代理机构案号FN-0048 US NP1,题为Processes for Hydromethanation of a Carbonaceous Feedstock(使碳质原料加氢甲烷化的方法))和美国专利申请第12/778,552号(代理机构案号FN-0049 US NP1,题为Processes for Hydromethanation of a Carbonaceous Feedstock(使碳质原料加氢甲烷化的方法)),其各自在2010年5月12日提交;2010年8月6日提交的美国专利申请第12/851,864号(代理机构案号FN-0050 US NP1,题为Process for Hydromethanation of a Carbonaceous Feedstock(使碳质原料加氢甲烷化的方法));和美国专利申请第12/882,415号(代理机构案号FN-0051 US NP1,题为Process for Hydromethanation of a Carbonaceous Feedstock(使碳质原料加氢甲烷化的方法))、美国专利申请第12/882,412号(代理机构案号FN-0052 US NP1,题为Integrated Hydromethanation Combined Cycle Process(整合的加氢甲烷化联合循环方法))、美国专利申请第12/882,408号(代理机构案号FN-0053 US NP1,题为Integrated Hydromethanation Combined Cycle Process(整合的加氢甲烷化联合循环方法))和美国专利申请第12/882,417号(代理机构案号FN-0054 US NP1,题为Process for Hydromethanation of a Carbonaceous Feedstock(使碳质原料加氢甲烷化的方法)),其各自在2010年9月15日提交。
[0109] 各种催化气化/加氢甲烷化反应器和技术的通用反应及其他操作条件可自以上参考文献中见到且在广义上对于本发明不是关键的。
[0110] 热交换(140)所有上述合成气产生方法通常将产生温度高于适合对下游气体方法(包括酸性气体去除单元(200))进料和/或与气态烃流(84)组合的合成气流(50),因此,在从反应器(110)离开后,合成气流(50)通常穿过换热器单元(140)以除去热能且产生冷却的合成气流(52)。
[0111] 如本领域的普通技术人员将认识到,在换热器单元(140)中回收的热能例如可用以产生蒸汽和/或使各种工艺物流过热。所产生的任何蒸汽都可用于例如内部工艺需求和/或产生电力。
[0112] 在一个实施方案中,所得冷却的合成气流(52)通常将在约450℉(约232℃)-约1100℉(约593℃)、更通常约550℉(约288℃)-约950℉(约510℃)的温度下且在适合随后的酸性气体去除加工(考虑任何中间加工)的压力下离开换热器单元(140)。通常该压力为约50psig(约446kPa)-约800psig(约5617kPa)、更通常约400psig(约2860kPa)-约
600psig(约4238kPa)
在酸性气体去除之前的气体处理
可将合成气流(50)和气态烃流(84)单独加工或任选可在各种地点组合且以各种处理方法个单个或共同加工,或任选在酸性气体去除单元(200)处或在酸性气体去除单元(200)中组合并共同处理。组合和/或共同加工合成气流(50)和气态烃流(84)的具体实施方案描绘在图2-5中。组合地点和加工变化将主要取决于两种物流的组成、温度和压力和任何所要的最终产物。
[0113] 在酸性气体去除之前的加工选择例如包括酸转变(700)(水气转变)、污染物去除(710)和脱水(720)中的一项或多项。虽然这些中间加工步骤可以任何顺序发生,但是脱水(720)通常刚好发生在酸性气体去除之前(在系列的最后),因为在合成气流(50)和气态烃流(84)中的相当大部分的任意水理想地应该在于酸性气体去除单元(200)中处理之前除去。
[0114] 在图2和图3中描绘的一个实施方案中,合成气流(50)和气态烃流(84)在酸性气体去除单元(200)之前组合以产生组合的气流(60)。在一个具体的实施方案中,合成气流(50)和气态烃流(84)在脱水(720)之前组合。在另一具体的实施方案中,合成气流(50)和气态烃流(84)单独脱水(720和720a)且在酸性气体去除之前或期间组合。
[0115] 这两种物流的组合也可能需要使物流中的一种或两种压缩或膨胀。通常气态烃流(84)在与合成气流(50)组合之前将需要至少一定程度的压缩。
[0116] 在另一实施方案中,如图4和图5所描绘,如下文更详细地论述,合成气流(50)和气态烃流(84)在酸性气体去除单元(200)内共同加工。
[0117] 酸转变(700)在某些实施方案中,特别是在物流含有明显量的一氧化碳且希望使氢气和/或二氧化碳产量最大化的情况下,可将这种物流(诸如合成气流(50))的全部或一部分供应到酸转变反应器(700)中。
[0118] 在酸转变反应(700)中,气体在水性介质(诸如蒸汽)存在下经历酸转变反应(也称作水气转变反应,参见上式(II))以将至少主要部分(或相当大部分或基本所有)的CO转化为CO2,其也增加H2的分数,以便生成富氢气流(54)。
[0119] 例如在US7074373中详细描述了酸转变方法。所述方法包括加入水或使用气体中所含的水并使所得水-气混合物在蒸汽重整催化剂上绝热反应。典型的蒸汽重整催化剂包括在耐热载体上的一种或多种VIII族金属。
[0120] 本领域技术人员熟知用于对含CO的气流进行酸气转变反应的方法和反应器。合适的反应条件和合适的反应器可视必须从气流贫化的CO的量而变化。在一些实施方案中,酸气转变可在单级中在从约100℃、或从约150℃、或从约200℃到约250℃、或到约300℃、或到约350℃的温度范围内进行。在这些实施方案中,转变反应可通过本领域技术人员已知的任何合适催化剂催化。这类催化剂包括但不限于诸如Fe2O3-Cr2O3催化剂的基于Fe2O3的催化剂和基于其他过渡金属和基于过渡金属氧化物的催化剂。在其他实施方案中,酸气转变可分多级进行。在一个特定的实施方案中,酸气转变分两级进行。该两级工艺使用高温顺序,接着低温顺序。高温转变反应的气体温度为约350℃-约1050℃。典型的高温催化剂包括但不限于任选组合了较少量氧化铬的氧化。用于低温转变的气体温度为约150℃-约300℃、或约200℃-约250℃。低温转变催化剂包括但不限于可负载在氧化锌或氧化铝上的氧化物。酸转变方法的合适方法描述在先前提到的US2009/0246120A1中。
[0121] 酸转变反应为放热的,因此其常用换热器(未绘出)进行以容许有效地使用热能。本领域技术人员熟知使用这些特征的转变反应器。回收的热能可例如用以产生蒸汽、使各种工艺物流过热和/或预加热供其他蒸汽产生操作使用的锅炉进水。合适的转变反应器的实例说明在先前提到的US7074373中,尽管本领域技术人员已知的其他设计也是有效的。
[0122] 如果存在酸转变且希望保持一定的一氧化碳含量,则可将物流的一部分分流以绕过酸转变反应器(700)且在酸性气体去除单元(200)之前的某一地点与富氢气流(54)组合。这在希望回收单独的甲烷副产物时特别有用,因为所保留的一氧化碳随后可如下论述甲烷化。
[0123] 污染物去除(710)如本领域技术人员所熟悉,合成气流(50)的污染程度将取决于碳质原料的性质和合成气产生条件。例如,石油焦炭和某些煤炭可具有高硫含量,导致较高的硫氧化物(SOx)、H2S和/或COS污染。某些煤炭可含有显著水平的可在合成气产生期间挥发的汞。其他原料可具有高氮含量,产生、氮氧化物(NOx)和/或氰化物。
[0124] 诸如H2S和COS的一些这样的污染物通常在酸性气体去除单元(200)中除去。诸如氨和汞的其他污染物通常需要在酸性气体去除单元(200)之前除去。
[0125] 当存在时,特定污染物的污染物去除将从如此处理的净化气流(56)中除去至少相当大部分(或基本所有)的污染物,通常到处于或低于对于所要酸性气体去除单元(200)或所要最终产物的规格极限的水平。
[0126] 虽然在图3中显示气态烃流(84)和冷却的合成气流(54)可在污染物去除单元(700)之后组合,但这仅是为了例示而显示,因为这两种物流可在污染物去除单元(710)之前组合,或在需要的情况下单独处理以去除污染物且随后组合。
[0127] 污染物去除方法在一般意义上为相关领域的普通技术人员所熟知,如在许多先前提到的参考文献中例示。
[0128] 脱水(720)另外,在酸性气体去除单元(200)之前,单独或组合的合成气流(50)和气态烃流(84)应该经由脱水单元(720)(和(720a)(如果存在的话))处理以降低残留水含量,以生成脱水物流(58)(和(58a),如果存在脱水单元(720a)的话)。
[0129] 合适的脱水单元的实例包括气液分离器(knock-out drum)或类似水分离设备和/或吸水方法,诸如二醇处理。
[0130] 这类脱水单元和方法在一般意义上同样为相关领域的普通技术人员所熟知。
[0131] 酸性气体去除(200)根据本发明,至少所述合成气流(50)(或由中间处理产生的衍生物流)在酸性气体去除单元(200)中加工以除去二氧化碳及其他酸性气体(诸如硫化氢(如果存在的话))且产生富二氧化碳流(87)和作为贫酸性气体产物气流(38)的贫酸性气体合成气流。
[0132] 任选地,合成气流(50)和气态烃产物流(84)(或由中间处理产生的衍生物流)在酸性气体去除单元(200)中共同加工以除去二氧化碳及其他酸性气体(诸如硫化氢(如果存在的话))且产生贫酸性气体产物气流(38),贫酸性气体产物气流(38)可为由合成气流(50)和气态烃产物流(84)(或由中间处理产生的衍生物流)的组合产生的单一物流或由合成气流(50)和气态烃产物流(84)(或由中间处理产生的衍生物流)得到的单个物流。参见,例如共同拥有的美国专利申请第12/906,552号(代理机构案号FN-0055 US NP1,题为Integrated Enhanced Oil Recovery Process(整合的提高石油采收率的方法))和美国专利申请第12/906,547号(代理机构案号FN-0056 US NP1,题为Integrated Enhanced Oil Recovery Process(整合的提高石油采收率的方法)),其两者都在2010年10月18日提交。
[0133] 如在图2和图3中陈述且如下文进一步论述,合成气流(50)和气态烃产物流(84)共同加工以产生富二氧化碳流(87)和组合的贫酸性气体气态烃产物流(80)(作为贫酸性气体产物气流(38))。
[0134] 如在图4和图5中陈述且如下文进一步论述,合成气流(50)和气态烃产物流(84)共同加工以产生富二氧化碳流(87)和单个的贫酸性气体气态烃产物流(31)和单个的贫酸性气体合成气流(30)(贫酸性气体产物气流(38))。
[0135] 酸性气体去除方法通常包括使气流与诸如单乙醇胺、二乙醇胺、甲基二乙醇胺、二异丙胺、二甘醇胺、氨基酸的钠盐溶液、甲醇、热的碳酸等的溶剂接触以产生负载CO2和/®或H2S的吸收剂。一种方法可包括使用具有两列的Selexol (UOP LLC, Des Plaines, IL ®
USA)或Rectisol (Lurgi AG, Frankfurt am Main, Germany)溶剂;各列含有H2S吸收剂和CO2吸收剂。
[0136] 一种除去酸性气体的方法描述在先前提到的US2009/0220406A1中。
[0137] 至少相当大部分(例如基本所有)的CO2和/或H2S(和其他剩余的痕量污染物)应通过酸性气体去除方法除去。在酸性气体去除的上下文中,“相当大部分”去除是指去除足够高百分数的组分以使得可产生所要的最后产物。实际去除量因此可因组分而不同。理想地,仅(至多)痕量的H2S存在于贫酸性气体产物流中,尽管取决于所要最终产物可以容忍较高量的CO2。
[0138] 通常基于进料到酸性气体去除单元(200)中的物流中所含的那些组分的量计算,至少约85%、或至少约90%、或至少约92%的CO2和至少约95%、或至少约98%、或至少约99.5%的H2S将被除去。
[0139] 自酸性气体去除而回收的任何H2S (88)都可通过包括克劳斯法(Claus process)的本领域技术人员已知的任何方法转化为元素硫。硫可作为熔融液回收。
[0140] 然而,对于EOR目的来讲,不必分离CO2和H2S。因此在一个实施方案中,由酸性气体去除产生的富二氧化碳流(87)为酸CO2流,如在先前提到的并同时提交的美国专利申请第__/___,___号(代理机构案号FN-0058 US NP1,题为Integrated Enhanced Oil Recovery Process(整合的提高石油采收率的方法))中所公开。
[0141] 图2和图3的实施方案在该实施方案中,如先前所指出,合成气流(50)和气态烃流(84)可在酸性气体去除单元(200)之前的各级处组合以产生进料到酸性气体去除单元(200)的组合气流(60),或者这两种物流可在酸性气体去除单元(200)中的某一点组合并共同处理。
[0142] 所得贫酸性气体气态烃产物流(80)通常将包含CH4和H2中的一种或两种、来自气态烃流(84)的其他气态烃和任选的CO(用于下游甲烷化)和通常不超过污染物量的CO2、H2O及其他污染物。
[0143] 还产生含有来自合成气流(50)和气态烃流(84)两者的相当大部分的二氧化碳的富二氧化碳流(87)。如果合成气流(50)和气态烃流(84)中的一种或两种含有诸如硫化氢的其他酸性气体污染物,则可产生额外物流,诸如硫化氢流(88)。
[0144] 或者,如上所述,其他酸性气体可保留在富二氧化碳流(87)中,特别是在其中富二氧化碳流(87)用于EOR的情况下,在这种情况下,富二氧化碳流(87)将为酸CO2流。
[0145] 图4和图5的实施方案在该实施方案中,合成气流(50)和气态烃流(84)(或由中间处理产生的衍生物流)在酸性气体去除单元中共同加工以除去二氧化碳和其他酸性气体(诸如硫化氢(如果存在的话))且产生富二氧化碳流(87)、贫酸性气体气态烃产物流(31)和贫酸性气体合成气流(30)。
[0146] 在该酸性气体去除单元中,合成气流(50)和气态烃流(84)首先分别在第二酸性气体吸收剂单元(210)和第一酸性气体吸收剂单元(230)中分别处理以产生单独的贫酸性气体合成气流(30)和第二富酸性气体吸收剂流(35),及单独的贫酸性气体气态烃产物流(31)和第一富酸性气体吸收剂流(36)。
[0147] 所得贫酸性气体气态烃产物流(31)通常包含CH4和来自气态烃流(84)的其他气态烃和通常不超过污染物量的CO2、H2O、H2S及其他污染物。所得贫酸性气体合成气流(30)通常包含CH4和H2中的一种或两种和任选的CO(用于下游甲烷化)和通常不超过污染物量的CO2、H2O及其他污染物。
[0148] 所得贫酸性气体气态烃产物流(31)和贫酸性气体合成气流(30)可如下进一步描述共同加工或单独加工。
[0149] 所得第一富酸性气体吸收剂流(36)和第二富酸性气体吸收剂流(35)在吸收剂再生单元(250)中共同加工以最终产生含有从合成气流(50)和气态烃流(84)两者中除去的组合酸性气体(及其他污染物)的酸性气流。第一富酸性气体吸收剂流(36)和第二富酸性气体吸收剂流(35)可在吸收剂再生单元(250)之前或在其内组合以便共同加工。产生酸性气体贫乏吸收剂流(70),其可根据需要连同补给吸收剂一起再循环回到第一酸性气体吸收剂单元(230)和第二酸性气体吸收剂单元(210)中的一个或两个中。
[0150] 还产生含有来自合成气流(50)和气态烃流(84)两者的相当大部分的二氧化碳的富二氧化碳流(87)。如果合成气流(50)和气态烃流(84)中的一种或两种含有诸如硫化氢的其他酸性气体污染物,则可产生额外物流,诸如硫化氢流(88)。
[0151] 或者,如上所述,其他酸性气体可保留在富二氧化碳流(87)中,特别是在其中富二氧化碳流(87)用于EOR的情况下,在这种情况下,富二氧化碳流(87)将为酸CO2流。
[0152] 富二氧化碳流(87)用于EOR的用途在一个实施方案中,富二氧化碳流(87)用于EOR。
[0153] 在这一实施方案中,回收的富二氧化碳再循环流(87)整体或部分地经由压缩机(400)压缩以产生加压的二氧化碳流(89)以便用于该方法的EOR部分。CO2产物流(90)也可任选地自加压的二氧化碳流(89)中分流出来。
[0154] 将富二氧化碳再循环流(87)压缩到用于EOR的适当压力和条件的合适压缩机在一般含义上为相关领域的普通技术人员所熟知。
[0155] 任选进一步加工贫酸性气体产物流可将贫酸性气体产物气流(38)(图1)、贫酸性气体气态烃产物流(80)(图2和图3)或贫酸性气体合成气流(30)和贫酸性气体气态烃产物流(31)(图4和图5)的全部或一部分(单个地,或者整体或部分组合地)加工成最终产物和/或用于相关领域的普通技术人员所熟知的最终用途。
[0156] 下文参考图3和图5论述非限制性的选择。虽然图3和图5仅描绘了施加到贫酸性气体气态烃产物流(80)和贫酸性气体合成气流(30)的选择中的一些,但是这些选择(及其他选择)在适当的情况下可施加到贫酸性气体气态烃产物流(31)(或组合物流)。
[0157] 氢气分离(730)氢气可根据本领域技术人员已知的方法自贫酸性气体气态烃产物流(80)或贫酸性气体合成气流(30)的全部或一部分中分离,所述方法诸如为低温蒸馏、使用分子筛、气体分离(例如,陶瓷膜或聚合膜)膜和/或变压吸附(PSA)技术。
[0158] 在一个实施方案中,对于气体分离利用PSA设备。自含有甲烷(和任选的一氧化碳)的气体混合物分离氢气的PSA技术通常为相关领域的普通技术人员所熟知,如例如在US6379645(及其中提到的其他引文)中所公开。PSA设备通常为市售的,例如基于自Air Products and Chemicals Inc.(Allentown, PA), UOP LLC (Des Plaines, IL)等购得的技术。
[0159] 在另一实施方案中,可使用氢气膜分离器,随后有PSA设备。
[0160] 这种分离提供高纯度的氢气产物流(72)和贫氢气流(74)。
[0161] 回收的氢气产物流(72)优选具有至少约99摩尔%或至少99.5摩尔%或至少约99.9摩尔%的纯度。
[0162] 回收的氢气可例如用作能源和/或用作反应物。例如,该氢气可用作基于氢气的燃料电池的能源或用于动力和/或蒸汽产生例如在动力区块(760)中的能源。该氢气也可用作各种加氢方法中的反应物,诸如在化学和石油精制工业中所见的加氢方法。
[0163] 贫氢气气流(74)基本包含诸如甲烷的轻质烃以及任选的少量一氧化碳(主要取决于酸转变反应和分流(bypass)的程度)、二氧化碳(主要取决于酸性气体去除方法的有效性)和氢气(主要取决于氢气分离技术的程度和有效性),且可如下文所述进一步加工/利用。
[0164] 甲烷化(740)如果贫酸性气体气态烃产物流(80)或贫酸性气体合成气流(30)(或贫氢脱硫气流(74))含有一氧化碳和氢气,则所述物流的全部或一部分可进料到(微调)甲烷化单元(740)以由一氧化碳和氢气产生额外的甲烷(参见上式(III)),产生富甲烷气流(75)。
[0165] 甲烷化反应可在任何合适的反应器中进行,例如单级甲烷化反应器、一系列单级甲烷化反应器或多级反应器。甲烷化反应器包括而不限于固定床、移动床或流化床反应器。参见,例如US3958957、US4252771、US3996014和US4235044。甲烷化反应器和催化剂通常为市售的。在甲烷化中使用的催化剂和甲烷化条件通常为相关领域的普通技术人员所知,且将例如取决于进气流的温度、压力、流速和组成。
[0166] 因为甲烷化反应为放热的,所以富甲烷气流(75)可例如进一步提供到换热器单元(750)中。虽然换热器单元(750)描绘为单独的单元,但是其可原样存在和/或整合到甲烷化单元(740)中,因此能够冷却甲烷化单元(740)且从富甲烷流(75)中除去至少一部分热能以降低温度且产生冷却的富甲烷流(76)。回收的热能可例如用以由水和/或蒸汽源产生工艺蒸汽流。
[0167] 富甲烷流(75)的全部或部分可作为甲烷产物流(77)回收,或其可在必要时进一步加工以通过本领域技术人员已知的任何合适的气体分离方法分离并回收CH4,所述气体分离方法包括但不限于低温蒸馏和使用分子筛或气体分离膜(例如陶瓷膜)。
[0168] 管线品质天然气在某些实施方案中,贫酸性气体烃流(80)、或贫酸性气体合成气流(30)、或贫酸性气体气态烃产物流(31)、或贫酸性气体合成气流(30)和贫酸性气体气态烃产物流(31)的组合、或氢气贫化气流(74)和/或富甲烷气流(75)为“管道品质(pipeline-quality natual)的天然气”。“管道品质天然气”通常指如下天然气:(1) 在纯甲烷热值的±5%
3
内(纯甲烷的热值在标准大气条件下为1010 btu/ft),(2) 基本不含水(通常露点为约-40℃或更低)且(3) 基本不含毒性或腐蚀性污染物。
[0169] 气态烃产物流的用途上述物流的全部或一部分可例如用于例如在发电区块(760)中的燃烧和/或蒸汽产生以生成可在工厂内使用或可销售到电网的电力(79)。
[0170] 这些物流中的全部或一部分也可用作再循环烃流(78),例如用作在气态部分氧化/甲烷重整方法中的碳质原料(10)、或用于产生在加氢甲烷化方法(例如在气态部分氧化/甲烷重整方法)中使用的合成气进料流(12)。这两种用途可例如最终引起氢气产物流(72)和富二氧化碳流(87)的优化生产。
[0171] 发电区块(760、760a)如上详细论述的本发明方法可与发电区块(760、760a)整合以便生成作为整合方法的产物的电力(79、79a)。发电区块(760、760a)可具有类似于通常用于整合的气化联合循环(IGCC)应用的构造。
[0172] 特别地讲,发电区块(760、760a)可包括用于由空气流(18)产生富氧气流(14)和富氮气流(17)的空气分离单元(800a)。
[0173] 适合结合本发明使用的发电区块的一个实例描绘在图6中。在图6和下文中提到了发电区块(760),但该论述也适用于发电区块(760a)。
[0174] 将可燃气流(81)进料到发电区块(760)中。可燃气流(81)通常为富甲烷气流和/或富氢气流,诸如天然或合成天然气流。在各种实施方案中,可燃气流(81)可包含以下气流中一种或多种的全部或一部分:(i) 贫酸性气体产物气流(38);(ii) 贫酸性气体气态烃产物流(31)、(iii) 贫酸性气体烃产物流(80);和/或(iv) (i)、(ii)和/或(iii)的下游衍生物,诸如氢气产物流(72)、贫氢气流(74)和/或富甲烷气流(76)。
[0175] 如在图1中描绘,可存在发电区块(760)和(760a)中的一个或两个。当存在发电区块(760a)时,可燃气流(81)为气态烃流(84)。发电区块(760a)(如果存在的话)可具有与发电区块(760)相同或不同的构造。
[0176] 取决于可燃气流(81)的压力,其最初可进料到膨胀机(987)中,该膨胀机(987)可为第一涡轮电机。第一电力流(79b)可由于该解压缩而产生。
[0177] 解压缩的可燃气流随后可连同压缩空气流(未绘出)或压缩的富氧气流(14b)进料到燃烧器(980)中,在其中其燃烧以生成处于高温和高压下的燃烧气体(83)。在一个实施方案中,压缩的富氧气流(14b)包含富氧气流(14)的至少一部分。相关领域的普通技术人员通常熟知合适的燃烧器。
[0178] 所得燃烧气体(83)进料到第二涡轮发电机(982)中,其中产生第二电力流(79c)。
[0179] 第二涡轮发电机(982)可(以机械方式和/或电方式)连接到压缩机以便压缩例如空气流(18)而产生压缩的空气流以供燃烧器(980)使用。在一个实施方案中,如在图6中所描绘,压缩机为空气分离单元(800a),将空气流(18)进料到其中,且产生富氧气流(14)和富氮气流(17)。在另一实施方案中,空气分离单元(800)利用在发电区块(760)中产生的电力(79)操作。
[0180] 在穿过第二涡轮发电机(982)之后,燃烧气体(83)仍包含显著的热能,且可通到余热回收蒸汽发生器(984)中,之后作为烟囱气流(96)离开发电区块(760)。
[0181] 如果燃烧器(980)用基本纯净的氧气作为压缩的富氧气流(14b)进料且可燃气流(81)为富甲烷流,则烟囱气流(96)将基本包含CO2且可任选经由酸性气体去除单元(200)加工以捕集二氧化碳,或直接提供到压缩机(诸如压缩机(400))以供EOR使用。
[0182] 可将在余热回收蒸汽发生器(985)中产生的蒸汽流(91)通到第三涡轮发电机(985)中,在其中产生第三电力流(79d)。随后将来自第三涡轮发电机(985)的蒸汽/水流(98)通回余热回收蒸汽发生器(984)以便再加热和再使用。
[0183] 如果燃烧器(980)用基本纯净的氧气作为压缩的富氧气流(14b)进料且可燃气流(81)为富氢气流,则烟囱气流(96)将基本包含蒸汽,该蒸汽可在该方法中回收并利用,例如直接进料到第三涡轮发电机(985)中以便产生电力。
[0184] 空气分离单元(800)相关领域的普通技术人员通常熟知适合作为空气分离单元(800)和(800a)使用的空气分离单元。熟知的空气分离技术例如包括低温蒸馏、周围温度吸附和膜分离。
[0185] 由空气流(18)获得所要富氧气流(14)和富氮气流(17)的各种技术的操作条件和设备及构造在一般意义上为相关领域的普通技术人员所知且在其广义上对于本发明不是关键的。
[0186] 富氮气流(17)经由压缩机(410)整体或部分地压缩以产生加压的氮气流(19)用于该方法的EOR部分。将富氮气流(17)压缩到用于EOR的适当压力和条件的合适压缩机在一般含义上为相关领域的普通技术人员所熟知。
[0187] 其他具体实施方案的实施例在一个实施方案中,合成气流通过催化蒸汽甲烷重整方法利用含甲烷的物流作为碳质原料生成。
[0188] 在另一实施方案中,合成气流通过非催化(热)气态部分氧化方法利用含甲烷的物流作为碳质原料生成。
[0189] 在另一实施方案中,合成气流通过催化自热重整方法利用含甲烷的物流作为碳质原料生成。
[0190] 在这些方法中使用的含甲烷物流可为天然气流、合成天然气流或其组合。在一个实施方案中,所述含甲烷物流包含贫酸性气体气态烃产物流(或在后续加工之后该物流的衍生物)的全部或一部分。
[0191] 取决于在酸性气体去除之前的气体加工,自这些方法得到的合成气流将至少包含氢气及一氧化碳和二氧化碳中的一种或两种。
[0192] 在另一实施方案中,该合成气流通过非催化热气化方法利用诸如煤炭、石油焦炭、生物质及其混合物的非气态碳质材料作为碳质原料生成。
[0193] 取决于在酸性气体去除之前的气体加工,自该方法得到的合成气流将至少包含氢气及一氧化碳和二氧化碳中的一种或两种。
[0194] 在另一实施方案中,该合成气流通过催化加氢甲烷化方法利用诸如煤炭、石油焦炭、生物质及其混合物的非气态碳质材料作为碳质原料生成。
[0195] 取决于在酸性气体去除之前的气体加工,自该方法得到的合成气流将至少包含甲烷、氢气和二氧化碳及任选的一氧化碳。
QQ群二维码
意见反馈