一种包覆有聚乙烯层的多层耐磨擦纤维连续抽油杆

申请号 CN201610873220.4 申请日 2016-09-30 公开(公告)号 CN106337661A 公开(公告)日 2017-01-18
申请人 大庆市华禹石油机械制造有限公司; 发明人 席小平;
摘要 本 发明 属于油田采油设备领域,尤其涉及一种包覆有聚乙烯层的多层耐磨擦 碳 纤维 连续抽油杆,包括 碳纤维 芯体、包覆在碳纤维芯体外侧的玻璃纤维层和包覆在玻璃纤维层外侧的环 氧 树脂 层,碳纤维芯体由通过树脂粘结的碳纤维束构成,所述的玻璃纤维层由缠绕玻璃纤维层和纵向玻璃纤维层组成,缠绕玻璃纤维层螺旋缠绕在碳纤维芯体的外侧,构成纵向玻璃纤维层的玻璃纤维与碳纤维平行设置。本发明所述的抽油杆中设置了两层缠绕玻璃纤维层,缠绕玻璃纤维层可束缚碳纤维芯体中各股碳纤维,有效增强了抽油杆的抗扭强度,同时,用两层缠绕玻璃纤维层将碳纤维芯体包裹,可有效防止纵向玻璃纤维层与碳纤维芯体掺合,从而保证了碳纤维芯体的圆度,消除了强度弱点。
权利要求

1.一种包覆有聚乙烯层的多层耐磨擦纤维连续抽油杆,包括连续抽油杆和抽油杆接头,连续抽油杆内含有碳纤维芯体(1),其特征在于:所述的碳纤维芯体(1)外依次螺旋缠绕有缠绕玻璃纤维层A(2)和缠绕玻璃纤维层B(3),缠绕玻璃纤维层B(3)外包覆有纵向玻璃纤维层(4),纵向玻璃纤维层(4)外壁涂覆有环树脂层(5),所述的环氧树脂层(5)的外侧还包覆有聚乙烯层(6),碳纤维芯体(1)由150根/12K---242根/12K,碳纤维通过环氧树脂粘结的碳纤维束构成,碳纤维拉伸强度4950Mpa以上,碳纤维芯体(1)的质量百分含量为33.1---
28.3%,碳纤维芯体(1)直径为11--14mm,缠绕玻璃纤维层A(2)和缠绕玻璃纤维层B(3)两层缠绕玻璃纤维的缠绕螺旋均为45°,缠绕方向相反,缠绕玻璃纤维层A(2)和缠绕玻璃纤维层B(3)由环氧树脂粘结在碳纤维芯体(1)上,缠绕玻璃纤维层A(2)和缠绕玻璃纤维层B(3)的质量百分含量为5.0—5.9%,缠绕玻璃纤维层A(2)和缠绕玻璃纤维层B(3)两层的缠绕厚度为0.4—0.6mm,纵向玻璃纤维层(4)的玻璃纤维与碳纤维芯体(1)平行设置,纵向玻璃纤维层(4)质量百分含量32—38%,纵向玻璃纤维层(4)由42根/2400tex--106根/2400tex的玻璃纤维组成,纵向玻璃纤维层(4)由环氧树脂粘结在缠绕玻璃纤维层B(3)外壁,连续抽油杆的两个端头连接有抽油杆接头,所述的抽油杆接头主要由锥套(8)、外套管(9)和连接头(10)组成,外套管(9)与连接头(10)之间通过螺纹连接,连接头(10)将锥套(8)封装在外套管(9)内,锥套(8)与外套管(9)的接触面为圆锥面。
2.根据权利要求1所述的一种包覆有聚乙烯层的多层耐磨擦碳纤维连续抽油杆,其特征在于:连续抽油杆的聚乙烯层(6)外侧还设有石墨烯层(7)。
3.根据权利要求1所述的一种包覆有聚乙烯层的多层耐磨擦碳纤维连续抽油杆,其特征在于:所述的缠绕玻璃纤维层A(2)、缠绕玻璃纤维层B(3)及纵向玻璃纤维层(4)中的玻璃纤维采用S级无玻璃纤维,玻璃纤维强度2500Mpa以上;线密度2400±5%TEX;拉伸弹性模量88Gpa以上、含率0.1%以下。
4.根据权利要求1所述的一种包覆有聚乙烯层的多层耐磨擦碳纤维连续抽油杆,其特征在于:所述的环氧树脂耐温160℃,环氧树脂拉伸强度60-85Mpa、拉伸模量2.5-3.0Gpa、伸长率3.5-5.0%、弯曲强度100-135Mpa、弯曲模量2.5-3.5Gpa,环氧树脂耐温达到160℃。
5.根据权利要求1所述的一种包覆有聚乙烯层的多层耐磨擦碳纤维连续抽油杆,其特征在于:所述的锥套(8)的两端各加工有一个切口(11),切口(11)沿轴线方向切入,两个切口(11)所在的平面相互垂直,切口(11)的长度占锥套(8)总长度的百分比为85%-90%。

说明书全文

一种包覆有聚乙烯层的多层耐磨擦纤维连续抽油杆

技术领域

[0001] 本发明属于油田采油设备领域,尤其涉及一种包覆有聚乙烯层的多层耐磨擦碳纤维连续抽油杆。

背景技术

[0002] 抽油杆是石油生产过程中常用的一种设备,采油时,通过抽油杆带动井下的抽油泵杆上下往复运动,从而将地层内的石油等液体泵送至地面。在使用过程中,通常要将抽油杆连接至上千米,在此种情况下,抽油杆要承受的自身悬重和抽油泵的负荷,因此承受的拉比较大。现有的抽油杆多由材制成,但钢材存在重量大、易腐蚀、易磨损等物理缺陷,使得抽油杆的损耗居高不下。另外,现有的抽油杆大多为分段式结构,施工时需要逐段安装,因此施工效率比较低。
[0003] 为了解决上述问题,科研人员发明了一种碳纤维连续抽油杆,这种抽油杆利用碳纤维质量轻、韧性好、抗拉强度高等优越的物理性能,解决了上述问题。但这种抽油杆也存在一些缺陷:1、现有的碳纤维抽油杆的抗扭强度比较差;2、现有的碳纤维抽油杆中的碳纤维和玻璃纤维的走向均与抽油杆的长度方向相同,生产时,本该包覆在碳纤维外侧的玻璃纤维很容易掺入碳纤维束中,从而对抽油杆的强度造成不利影响。3、现有的碳纤维抽油杆的外层均为单纯的环树脂层,耐磨性较差。

发明内容

[0004] 本发明提供一种包覆有聚乙烯层的多层耐磨擦碳纤维连续抽油杆,以解决上述背景技术中提出的问题。
[0005] 本发明所解决的技术问题采用以下技术方案来实现:本发明提供了一种包覆有聚乙烯层的多层耐磨擦碳纤维连续抽油杆,包括连续抽油杆和抽油杆接头,连续抽油杆内含有碳纤维芯体,所述的碳纤维芯体外依次螺旋缠绕有缠绕玻璃纤维层A和缠绕玻璃纤维层B,缠绕玻璃纤维层B外包覆有纵向玻璃纤维层,纵向玻璃纤维层外壁涂覆有环氧树脂层,所述的环氧树脂层的外侧还包覆有聚乙烯层,碳纤维芯体由150根/12K---242根/12K碳纤维通过环氧树脂粘结的碳纤维束构成,碳纤维拉伸强度4950Mpa以上,碳纤维芯体的质量百分含量为33.1---28.3%,碳纤维芯体直径为11--14mm,缠绕玻璃纤维层A和缠绕玻璃纤维层B两层缠绕玻璃纤维的缠绕螺旋均为45°,缠绕方向相反,缠绕玻璃纤维层A和缠绕玻璃纤维层B由环氧树脂粘结在碳纤维芯体上,缠绕玻璃纤维层A和缠绕玻璃纤维层B的质量百分含量为5.0—5.9%,缠绕玻璃纤维层A和缠绕玻璃纤维层B两层的缠绕厚度为0.4—0.6mm,纵向玻璃纤维层的玻璃纤维与碳纤维芯体平行设置,纵向玻璃纤维层质量百分含量32—38%,纵向玻璃纤维层由42根/2400tex--106根/2400tex玻璃纤维组成,纵向玻璃纤维层由环氧树脂粘结在缠绕玻璃纤维层B外壁,连续抽油杆的两个端头连接有抽油杆接头,抽油杆接头与连续抽油杆杆体的连接处能承受的拉力达到698KN,剪切强度达到92MPa;拉伸弹性模量≥150GPa,抽油杆接头主要由锥套、外套管和连接头组成,外套管与连接头之间通过螺纹连接,连接头将锥套封装在外套管内,锥套与外套管的接触面为圆锥面。
[0006] 上述方案中的连续抽油杆的聚乙烯层外侧还设有石墨烯层。
[0007] 上述方案中,所述的缠绕玻璃纤维层A、缠绕玻璃纤维层B及纵向玻璃纤维层中的玻璃纤维采用S级无玻璃纤维,玻璃纤维强度2500Mpa以上;线密度2400±5%TEX;拉伸弹性模量88Gpa以上、含率0.1%以下。
[0008] 上述方案中的环氧树脂耐温160℃,环氧树脂拉伸强度60-85Mpa、拉伸模量2.5-3.0Gpa、伸长率3.5-5.0%、弯曲强度100-135Mpa、弯曲模量2.5-3.5Gpa。
[0009] 上述方案中,所述的锥套的两端各加工有一个切口,切口沿轴线方向切入,两个切口所在的平面相互垂直,切口的长度占锥套总长度的百分比为85%-90%。
[0010] 本发明的有益效果为:
[0011] 1、本发明所述的抽油杆中设置了两层方向相反的缠绕玻璃纤维,缠绕玻璃纤维可束缚碳纤维芯体中各股碳纤维,避免抽油杆承受扭矩时各股碳纤维发生分离引起抽油杆损坏,从而有效增强了抽油杆的抗扭强度,同时,用两层方向相反的缠绕玻璃纤维将碳纤维芯体包裹,可有效防止纵向玻璃纤维层与碳纤维芯体掺合,从而保证了碳纤维芯体的圆度,即保证了抽油杆结构强度的均匀性,消除了强度弱点。
[0012] 2、聚乙烯层和石墨烯层赋予抽油杆更优秀的耐磨性能,同时,通过在抽油杆表面设置多层结构,可避免油液渗透,延缓树脂水解,从而防止抽油杆因树脂水解而损坏。所涉及的技术成熟可靠,性能稳定性高。
[0013] 3、石墨烯具有极好的耐磨性能,在生产时,石墨烯层的厚度极小,因此,在抽油杆直径一定的情况下,增加石墨烯层不会影响其它各层的结构分布。
[0014] 4、在抽油杆本身的弯曲直径不增大的同时,利用石墨烯的耐磨性,改善连续杆的耐磨性能。当石墨烯磨损失效后,热固性聚乙烯代替其性能继续保护抽油杆的内部结构。而且热固性的聚乙烯与抽油杆的环氧树脂层5为两相结构,当热固性PE材料磨损失效后,可以通过相应工艺对受损部分进行剥离重新修复,增加抽油杆使用寿命。
[0015] 5、本发明针对本抽油杆设计了配套的专用抽油杆接头,通过该抽油杆接头可以将本抽油杆与普通的钢制抽油杆快速、稳定、可靠地连接。附图说明
[0016] 图1是本发明中的抽油杆的结构示意图;
[0017] 图2是抽油杆接头的结构示意图;
[0018] 图3是锥套的剖视图;
[0019] 图4是图3中A向的剖视图。
[0020] 图中:1-碳纤维芯体,2-缠绕玻璃纤维层A,3-缠绕玻璃纤维层B,4-纵向玻璃纤维层,5-环氧树脂层,6-聚乙烯层,7-石墨烯层,8-锥套,9-外套管,10-连接头,11-切口。

具体实施方式

[0021] 以下结合附图对本发明做进一步描述:
[0022] 本实施例包括碳纤维芯体1,碳纤维芯体1由150根/12K---242根/12K碳纤维通过环氧树脂粘结的碳纤维束构成,碳纤维拉伸强度≥4950MPa,所述的碳纤维芯体1外依次螺旋缠绕有缠绕玻璃纤维层A2和缠绕玻璃纤维层B3,缠绕玻璃纤维层B3外包覆有纵向玻璃纤维层4,纵向玻璃纤维层4外壁涂覆有环氧树脂层5。缠绕玻璃纤维可束缚碳纤维芯体1中各股碳纤维,避免抽油杆承受扭矩时各股碳纤维发生分离引起抽油杆损坏,从而有效增强了抽油杆的抗扭强度,同时,用缠绕玻璃纤维将碳纤维芯体1包裹,可有效防止纵向玻璃纤维层4与碳纤维芯体1掺合,从而保证了碳纤维芯体1的圆度,即保证了抽油杆结构强度的均匀性,消除了强度弱点。
[0023] 碳纤维芯体1由150根/12K---242根/12K碳纤维通过环氧树脂粘结的碳纤维束构成,碳纤维芯体1的质量百分含量为33.1---28.3%,碳纤维芯体1直径为11--14mm。每根碳纤维的单丝数量是碳纤维的一项重要指标,单丝数量越大成本越高,但强度越高同时抽油杆也会加粗。本发明选用单丝数量为12K的碳纤维,在满足连续抽油杆的强度要求的同时,也兼顾了经济性。受使用环境和生产标准的限制,连续抽油杆的直径通常被限定为几个固定值,根据连续抽油杆直径的不同,将12K碳纤维的数量限制在150-242根,可在保证连续抽油杆强度的同时降低了生产成本,抽油杆整体也变轻了降低了能耗,保证连续抽油杆的其它层不会因为碳纤维芯体1的直径过大而被迫压缩,进而影响连续抽油杆的整体性能。本发明将碳纤维芯体1的质量百分含量为33.1---28.3%,这是极有必要的。在碳纤维的根数被限定的情况下,对碳纤维芯体1的质量百分含量的限定既是对连续抽油杆质量的限定,也是对连续抽油杆内碳纤维含量与其它各组分含量的比例的限定。连续抽油杆的直径一定时,碳纤维芯体1的质量百分含量越高,连续抽油杆的抗拉强度越高,但连续抽油杆中的环氧树脂和玻璃纤维等组份也会相应的被压缩,从而影响这些组份性能的发挥,因此,碳纤维芯体1的质量百分含量必须限定在一个合理的范围内。
[0024] 缠绕玻璃纤维层A2和缠绕玻璃纤维层B3两层缠绕玻璃纤维的缠绕螺旋角均为45°,缠绕方向相反,缠绕玻璃纤维层A2和缠绕玻璃纤维层B3由环氧树脂粘结在碳纤维芯体
1上。45°是工业设计中的一个特殊角度,在本发明中,45°是最优的缠绕角度,缠绕角度大于
45°时,角度越大在工艺上越难以实现,缠绕角度小于45°时,角度越小,抽油杆抵抗扭矩的能力越差。缠绕玻璃纤维层A2和缠绕玻璃纤维层B3的缠绕方向相反,使得抽油杆在顺时针和逆时针两个旋向上获得相同的抗扭强度。
[0025] 缠绕玻璃纤维层A2和缠绕玻璃纤维层B3的质量百分含量为5.0—5.9%,为了使连续抽油杆具有良好的抗扭强度并预留出足够的安全阈值,缠绕玻璃纤维的含量必须足够,经过对使用需求的详细调查和系统分析,此处将最低值设定为5.0%,为了避免连续抽油杆生产中因过于严格的精度控制要求而提高精度控制成本,同时避免材料的无效损耗,此处将缠绕玻璃纤维的质量百分含量的上限设定为5.9%。
[0026] 缠绕玻璃纤维层A2和缠绕玻璃纤维层B3两层的缠绕厚度为0.4—0.6mm,厚度的下限值设置为0.4mm,才可完全保证纵向玻璃纤维层4内的玻璃纤维不会掺合到碳纤维芯体1内,为了避免连续抽油杆生产中因过于严格的精度控制要求而提高精度控制成本,同时避免材料的无效损耗,缠绕玻璃纤维的厚度可向上浮动至0.6mm。
[0027] 纵向玻璃纤维层4的玻璃纤维与碳纤维芯体1平行设置,纵向玻璃纤维层4质量百分含量32—38%,纵向玻璃纤维层4由42根/2400tex--106根/2400tex玻璃纤维组成,纵向玻璃纤维层4主要起抗剪切作用,因此对玻璃纤维的线密度必然提出要求。本发明中采用线密度为2400tex的玻璃纤维,以保证良好的抗剪切能力。而在实际生产中,线密度过高(即纤维过粗)会严重影响环氧树脂的粘结效果和纵向玻璃纤维层4的均匀度,因此,在满足抗剪切性能的情况下,线密度定为2400tex即可,不宜过高。
[0028] 纵向玻璃纤维层4由环氧树脂粘结在缠绕玻璃纤维层B3外壁。
[0029] 所述的玻璃纤维可采用S级无碱玻璃纤维。玻璃纤维强度≥2500Mpa;线密度2400±5%TEX;拉伸弹性模量≥88Gpa、含水率≤0.1%。
[0030] 构成纵向玻璃纤维层4的玻璃纤维与碳纤维芯体1平行设置,使得纵向玻璃纤维层4与碳纤维芯体1可共同分担拉力载荷,有利于提高连续抽油杆的抗拉强度。
[0031] 抽油杆的外侧还设有聚乙烯层6和石墨烯层7。石墨烯具有极好的耐磨性能,在生产时,石墨烯层的厚度极小,因此,在抽油杆直径一定的情况下,增加石墨烯层7不会影响其它各层的结构分布。
[0032] 聚乙烯层6和石墨烯层7赋予抽油杆更优秀的耐磨性能,同时,通过在抽油杆表面设置多层结构,可避免油液渗透,延缓树脂水解,从而防止抽油杆因树脂水解而损坏。所涉及的技术成熟可靠,性能稳定性高。
[0033] 在原有的碳纤维拉挤工艺基础上增加了热固性的聚乙烯层6及石墨烯层7。在抽油杆本身的弯曲直径不增大的同时,利用石墨烯的耐磨性,增加连续杆的耐磨性能。当石墨烯磨损失效后,热固性聚乙烯代替其性能继续保护抽油杆的内部结构。而且热固性的聚乙烯与抽油杆的环氧树脂层5为两相结构,当热固性聚乙烯材料磨损失效后,可以通过相应工艺对受损部分进行剥离并重新修复,增加抽油杆使用寿命。
[0034] 上述方案中,所述的缠绕玻璃纤维层A2、缠绕玻璃纤维层B3及纵向玻璃纤维层4中的玻璃纤维采用S级无碱玻璃纤维,玻璃纤维强度≥2500Mpa;线密度2400±5%TEX;拉伸弹性模量≥88Gpa、含水率≤0.1%。
[0035] 上述方案中的环氧树脂耐温160℃,环氧树脂拉伸强度60-85Mpa、拉伸模量2.5-3.0Gpa、伸长率3.5-5.0%、弯曲强度100-135Mpa、弯曲模量2.5-3.5Gpa。上述参数保证了环氧树脂层5的强度,防止其在弯曲过程中开裂。环氧树脂购自惠柏新材料科技(上海)股份有限公司。
[0036] 为了保证玻璃纤维和环氧树脂的拉伸状态与碳纤维的拉伸状态在承受载荷时可以协同变化(防止玻璃纤维断裂或环氧树脂开裂),玻璃纤维和环氧树脂的选用必须严格依照上述参数确定。
[0037] 本发明针对本连续抽油杆设计了配套的专用抽油杆接头,通过该抽油杆接头可以将本连续抽油杆与普通的钢制抽油杆快速、稳定、可靠地连接。抽油杆接头主要由锥套8、外套管9和连接头10组成,外套管9与连接头10之间通过螺纹连接,连接头10将锥套8封装在外套管9内,锥套8与外套管9的接触面为圆锥面,所述的锥套8的两端各加工有一个切口11,切口11沿轴线方向切入,两个切口11所在的平面相互垂直,切口11的长度占锥套8总长度的百分比为85%-90%。
[0038] 连续抽油杆与上述的抽油杆接头连接时,将连接头10拆下并使锥套8与外套管9分离,然后使连续抽油杆的端部依次穿入外套管9和锥套8,然后使锥套8与外套管9重新贴合,贴合过程中,锥套8侧壁不断向连续抽油杆靠拢贴合,最终将连续抽油杆夹紧。在连续抽油杆承受拉力载荷后,锥套8侧壁进一步向连续抽油杆靠拢贴合,拉力载荷越大夹紧力越大,消除了连续抽油杆松脱的可能,保证了连接的可靠性。在锥套8的两端各加工有一个切口11且两个切口11所在的平面相互垂直,这样的切口设计,使得锥套8上的所有区段均可以在外套管9内壁的挤压作用下向连续抽油杆靠拢贴合,锥套8的有效夹紧长度等于锥套8的长度,与在锥套8的一端设置切口11相比,夹紧的可靠性大大增强。另外,切口11的长度占锥套8总长度的百分比限制为85%-90%,若切口11过长,则锥套8的结构强度会比较薄弱,在生产、安装和使用过程中容易损坏,若切口11过短,则锥套8的柔性就会变差,影响锥套8的内壁与连续抽油杆的周向贴合程度,进而对夹紧的可靠性和稳定性造成影响。
[0039] 下面是对本申请的抽油杆进行测试,测试结果如下:
[0040] 1)剪切强度达到92MPa;拉伸弹性模量≥150GPa。
[0041] 2)对抽油杆的疲劳性能进行测试,最小拉力40KN,最大拉力120KN,拉力变化频率100Hz,次数1千万次。
[0042] 3)碳纤维连续抽油杆杆体性能:
[0043] 表1
[0044]序号 检测项目 单位 数据要求 实测数据
1 规格尺寸 mm 19±0.2 19.10
2 密度 g/m3 1.5-1.95 1.736
3 径向耐压 KN ≥110 119.1
4 弯曲强度 MPa ≥800 1046
5 弯曲弹性模量 GPa ≤100 85.6
6 拉伸破坏载荷 KN ≥690 700.5
7 拉伸模量 GPa ≥150 152
8 表现水平剪切强度 MPa ≥60 92
9 玻璃化转变温度(Tg) ℃ ≥160 181.14
[0045] 表2
[0046]
[0047]
[0048] 抽油杆拉伸试验结果:拉伸强度:1831MPa,断裂延伸率:1.84%,拉伸模量为152GPa。
[0049] 4)抽油杆圆形截面D(mm):153.938(mm2)时承重46.18(吨),201.062(mm2)承重60.32(吨),283.529(mm2)承重85.06(吨)。
[0050] 5)对抽油杆的密度进行测试(取5根抽油杆),结果如下:
[0051] 表3
[0052]
[0053] 6)对抽油杆的抗压性能进行测试(取3根抽油杆),结果如下:
[0054] 表4
[0055]  最大载荷N
第1根 140471.09
第2根 102943.23
第3根 113920.12
平均值 119111.48
[0056] 注:以上测试数据均依据标准Q/JHY006-2014测定。
QQ群二维码
意见反馈