首页 / 国际专利分类库 / 纺织;造纸 / 造纸;纤维素的生产 / 一种高强度网络结构纳米载体材料的制备方法

一种高强度网络结构纳米载体材料的制备方法

申请号 CN201710401948.1 申请日 2017-05-31 公开(公告)号 CN107128895B 公开(公告)日 2019-05-28
申请人 中南林业科技大学; 发明人 吴义强; 张振; 卿彦; 吴清林; 罗莎; 田翠花; 李蕾;
摘要 本 发明 公开了一种高强度网络结构纳米载体材料的制备方法,包括如下步骤:将 纳米 纤维 素溶液、 石墨 烯混合,在 超 声波 粉碎 仪中超声 破碎 ,得纳米 纤维素 / 石墨烯 悬浮液;将该悬浮液与酚 醛 树脂 胶混合搅拌,得纳米纤维素/石墨烯/ 酚醛树脂 悬浮液;将纳米纤维素/石墨烯/酚醛树脂悬浮液注入模具中,置于 冷冻干燥 机中冷冻,分两段 真空 干燥,得纳米纤维素/石墨烯/酚醛树脂气凝胶;将该气凝胶在 马 弗炉 中预热 固化 ,然后在管式炉中高温 热分解 处理,即得具有高强度网络结构的纳米载体材料。该制备方法简单便捷,成本低,环保绿色,具有很好的应用前景,所得载体材料具有较强的耐 水 性能, 力 学性能高,可以承载较多的活性物质。
权利要求

1.一种高强度网络结构纳米载体材料的制备方法,其特征在于,包括如下步骤:
(1)将纳米纤维素溶液、石墨烯混合,然后在声波粉碎仪中超声破碎3min~10min,得到混合均匀的纳米纤维素/石墨烯悬浮液,所述纳米纤维素溶液中的纤维素为木材纤维素;
(2)将步骤(1)得到的纳米纤维素/石墨烯悬浮液与酚树脂胶混合后搅拌,搅拌速度为80rpm~400rpm,搅拌时间为10min~30min,得到纳米纤维素/石墨烯/酚醛树脂悬浮液;
(3)将步骤(2)得到的纳米纤维素/石墨烯/酚醛树脂悬浮液注入模具中,置于冷冻干燥机中冷冻,冷冻温度为-40℃~-60℃,冷冻时间为8h~15h,在-40℃~-60℃下真空干燥5h~8h,然后在10℃~40℃下真空干燥10h~14h,脱模得到纳米纤维素/石墨烯/酚醛树脂气凝胶;
(4)将步骤(3)得到的纳米纤维素/石墨烯/酚醛树脂气凝胶在弗炉中预热固化10min~30min,使气凝胶中的酚醛树脂完全固化成型;
(5)将经步骤(4)预热固化得到的纳米纤维素/石墨烯/酚醛树脂气凝胶在管式炉中高温热分解处理,化完成后即得具有高强度网络结构的纳米载体材料,所述高温热分解处理的温度为800℃~1200℃。
2.根据权利要求1所述的高强度网络结构纳米载体材料的制备方法,其特征在于,所述步骤(1)中,纳米纤维素溶液由以下方法制备得到:
将木材纤维素粉按固液比1:20加入到质量分数为40%~60%的浓硫酸中,在40℃~50℃浴下搅拌1h~3h使纤维素水解,然后用超纯水调节pH值为6~7,通过高压均质处理15~25个循环得到分散均匀的纳米纤维素溶液。
3.根据权利要求1所述的高强度网络结构纳米载体材料的制备方法,其特征在于,所述步骤(1)中,按纳米纤维素与石墨烯的质量比为1:1~10:1,将纳米纤维素溶液与石墨烯混合。
4.根据权利要求1所述的高强度网络结构纳米载体材料的制备方法,其特征在于,所述步骤(2)中,按纳米纤维素与酚醛树脂胶的质量比为2:1~2:15,将步骤(1)得到的纳米纤维素/石墨烯悬浮液与酚醛树脂胶混合。
5.根据权利要求1所述的高强度网络结构纳米载体材料的制备方法,其特征在于,所述步骤(4)中,预热固化温度为100℃~150℃。

说明书全文

一种高强度网络结构纳米载体材料的制备方法

技术领域

[0001] 本发明涉及纳米材料技术领域,具体涉及一种具有3D网络结构、学强度高、负载效果好的纳米载体材料的制备方法。

背景技术

[0002] 多孔网络结构的载体材料在负载催化、电容器、储能装置等领域都具有广泛的应用前景,气凝胶因为其具有高比表面积、高孔隙率、低密度、优秀的电学导电性和连续的三维纳米网络结构,被广泛应用于纳米多孔载体材料。当前最常见的碳气凝胶材料为有机碳气凝胶,如间苯二酚/甲碳气凝胶,三聚氰胺/甲醛碳气凝胶,甲醛/甲酚碳气凝胶等,但是这些碳气凝胶的前驱体有毒、价格昂贵,且合成过程也比较复杂,这些问题大大阻碍了有机碳气凝胶在实际中的大规模生产和应用。
[0003] 因此,能代替这些前驱体制备碳气凝胶的材料如细菌纤维素、植物纤维素、动物纤维素等,成为了该领域的研究热点。但目前这些纳米纤维素材料应用于多孔网络结构的载体材料领域存在以下问题:(1)纳米纤维素经过处理成碳材料后无法很好的保存在溶液或有机溶液中,这样就很难成为其他活性物质的载体材料;(2)纳米纤维素经过处理成碳材料后电化学性能较低,阻碍负载活性物质后的电化学性能;(3)纳米纤维素经过处理成碳材料后力学性能较差,负载过多的活性物质后结构容易造成塌陷。因此,开发一种高强度网络结构纳米载体材料对于实现载体物质的高效利用具有重要意义。

发明内容

[0004] 本发明的目的是克服以上背景技术中提到的缺陷和不足,提供一种具有3D网络结构、力学强度高、负载效果好的纳米纤维素基多孔载体材料的制备方法,该方法操作简单便捷,成本较低,提高了多孔载体材料的应用价值与应用领域。
[0005] 为解决上述技术问题,本发明提供的技术方案为:
[0006] 一种高强度网络结构纳米载体材料的制备方法,其特征在于,包括如下步骤:
[0007] (1)将纳米纤维素溶液、石墨烯混合,然后在声波粉碎仪中超声破碎3min~10min,得到混合均匀的纳米纤维素/石墨烯悬浮液;
[0008] (2)将步骤(1)得到的纳米纤维素/石墨烯悬浮液与酚醛树脂胶混合后搅拌,搅拌速度为80rpm~400rpm,搅拌时间为10min~30min,得到纳米纤维素/石墨烯/酚醛树脂悬浮液;
[0009] (3)将步骤(2)得到的纳米纤维素/石墨烯/酚醛树脂悬浮液注入模具中,置于冷冻干燥机中冷冻,冷冻温度为-40℃~-60℃,冷冻时间为8h~15h,在-40℃~-60℃下真空干燥5h~8h,然后在10℃~40℃下真空干燥10h~14h,脱模得到纳米纤维素/石墨烯/酚醛树脂气凝胶;
[0010] (4)将步骤(3)得到的纳米纤维素/石墨烯/酚醛树脂气凝胶在弗炉中预热固化10min~30min,使气凝胶中的酚醛树脂完全固化成型;
[0011] (5)将经步骤(4)预热固化得到的纳米纤维素/石墨烯/酚醛树脂气凝胶在管式炉中高温热分解处理,碳化完成后即得具有高强度网络结构的纳米载体材料。
[0012] 纳米纤维素是天然的、可再生的、最丰富的聚合物,具有很强的可再生能力和优异的生物降解能力,比表面积高、分散性好。石墨烯是一种具有薄、强度大、导电导热性能强等优点的一种新型纳米材料,极具研究价值。将石墨烯和纳米纤维素溶液混合后,通过超声波粉碎作用使导电性能优异的石墨烯能够很好的分散并附着在纳米纤维素上。水溶性酚醛树脂易溶于水溶液中,因此,在纳米纤维素/石墨烯混合悬浮液中加入酚醛树脂并进行充分搅拌至酚醛树脂完全溶解在混合悬浮液中,此时酚醛树脂通过氢键和纳米纤维素连接在一起,并将石墨烯包覆在两者中间得到纳米纤维素/石墨烯/酚醛树脂悬浮液。将得到的悬浮液进行低温冷冻处理,使酚醛树脂包覆的纳米纤维素/石墨烯形成稳定的网络骨架结构。然后通过真空干燥将里面的晶通过升华的方式排出去,得到纳米纤维素/石墨烯/酚醛树脂气凝胶。将纳米纤维素/石墨烯/酚醛树脂气凝胶先在马弗炉中进行预热固化处理,最后在管式炉里高温热分解,酚醛树脂碳化为玻璃碳结构包覆在纳米纤维素上,从而得到具有高力学性能、优异的负载效果、多孔的纳米纤维素基活性物质载体材料。
[0013] 进一步的,所述步骤(1)中,纳米纤维素溶液的固含量为0.5%。纳米纤维素溶液的制备方法包括以下步骤:将木材纤维素粉按固液比1∶20加入到质量分数为40%~60%的浓硫酸中,在40℃~50℃水浴下搅拌1h~3h至纤维素完成水解过程,然后用超纯水调节pH值为6~7,然后通过高压均质处理15~25个循环得到分散均匀的纳米纤维素溶液。
[0014] 进一步的,所述步骤(1)中,按纳米纤维素与石墨烯的质量比为1∶1~10∶1,将纳米纤维素溶液与石墨烯混合。如果用量配比低于1∶1时,将会有很大部分石墨烯无法负载在纳米纤维素上,同时也会影响石墨烯的均匀分散性;如果用量配比高于10∶1时,只有少量石墨烯负载在纳米纤维素上,最终得到的载体材料导电性能较差。
[0015] 进一步的,所述步骤(2)中,按纳米纤维素与酚醛树脂的质量比为2∶1~2∶15,将步骤(1)得到的纳米纤维素/石墨烯悬浮液与酚醛树脂胶混合。如果用量配比低于2∶1时,酚醛树脂不能够很好将石墨烯包覆在纳米纤维素上;如果用量配比高于2∶15时,酚醛树脂分散不均匀,影响网络结构的形成。
[0016] 进一步的,所述步骤(4)中,预热固化温度为100℃~150℃,目的是将酚醛树脂中的水分充分排出去,使酚醛树脂稳定的包覆在纳米纤维素上。如果温度过低,酚醛树脂不能很好的固定在纤维丝上;如果温度过高,纳米纤维素会化分解导致结构塌陷。
[0017] 进一步的,所述步骤(5)中,碳化温度为800℃~1200℃,在这个温度范围内,纳米纤维素和酚醛树脂会热分解为碳材料,得到具有导电好、力学性能优异、负载效果稳定、多孔的活性物质载体材料。如果温度低于这个温度,得到的载体材料无法完全碳化从而导致导电性变弱;如果温度高于这个温度,纳米纤维素和酚醛树脂会石墨化,网络结构容易坍塌。
[0018] 采用本发明的高强度网络结构纳米载体材料的制备方法,得到的是一种高孔隙率、多孔、纤维素相互交错的三维网络结构载体材料,该材料整体为多孔结构,密度约为2 2
3.05g/m ~3.70g/m ,孔径为0.02μm~5μm,介孔较多。相对于微孔和大孔而言,活性材料可以更好并且更多的附着在介孔上。
[0019] 与现有技术相比,本发明的优点在于:本发明的高强度网络结构纳米载体材料具有较强的耐水性,可以长时间并且完整的保存在水溶液中,从水溶液中取出来烘干后依然能够保持原有的三维网络结构,形态结构没有受到破坏。该载体材料在比它本身重几百倍的压力下依然能够保持很好的形态,只有轻微的压缩变形现象,这样可以在高压下进行活性材料负载,并且可以承载比较多的活性材料而不影响其结构。本发明的制备方法操作简单、可控性强,且原料植物纤维来源广泛,成本低廉,符合绿色可持续发展战略目标。附图说明
[0020] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0021] 图1为本发明所得高强度网络结构纳米载体的实物图。
[0022] 图2为本发明实施例1所得高强度网络结构纳米载体的微观结构电镜图。
[0023] 图3为本发明实施例1和实施例2所得高强度网络结构纳米载体的压力形变对比曲线。
[0024] 图4为本发明实施例3所得高强度网络结构纳米载体分别在水(左图)和无水乙醇(右图)中的状态图。

具体实施方式

[0025] 为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
[0026] 除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
[0027] 除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
[0028] 实施例1:
[0029] 本发明高强度网络结构纳米载体材料的制备方法的一种实施例。该高强度网络结构纳米载体材料的具体制备步骤如下:
[0030] 第一步:将木材纤维素粉按固液比1∶20加入到质量分数为48%的浓硫酸中,在45℃水浴下搅拌2h使纤维素水解,然后用超纯水调节pH值为6~7,通过高压均质处理15~25个循环得到分散均匀的纳米纤维素溶液。
[0031] 第二步:将第二步得到的纳米纤维素溶液与石墨烯按照纤维素和石墨烯以质量比1∶1的比例混合,然后在超声波粉碎仪中超声3min,得到混合均匀的纳米纤维素/石墨烯悬浮液。
[0032] 第三步:将第二步得到的纳米纤维素/石墨烯悬浮液和酚醛树脂胶按照质量比为2∶1的比例混合后搅拌,搅拌速度为100rpm,搅拌时间为10min,搅拌均匀后得到纳米纤维素/石墨烯/酚醛树脂悬浮液。
[0033] 第四步:将第三步得到的纳米纤维素/石墨烯/酚醛树脂悬浮液注入模具中,在冷冻干燥机中-40℃下冷冻15h,随后在-40℃下真空干燥5h,最后在20℃左右真空干燥12h,脱模即得纳米纤维素/石墨烯/酚醛树脂气凝胶。
[0034] 第五步:将第四步得到的纳米纤维素/石墨烯/酚醛树脂气凝胶在马弗炉中预热固化30min,预热固化温度为100℃,使气凝胶中的酚醛树脂完全固化成型。
[0035] 第六步:将第五步得到的纳米纤维素/石墨烯/酚醛树脂气凝胶经管式炉高温热分解处理进行碳化,热分解处理温度为800℃,碳化完成后即得高强度网络结构纳米载体材料。
[0036] 所得高强度网络结构纳米载体的实物图如图1所示。该高强度网络结构纳米载体材料的微观结构如图2所示。对该载体材料的承受最大力和耐压强度进行测试,测试结果如表1所示。
[0037] 实施例2:
[0038] 本发明高强度网络结构纳米载体材料的制备方法的一种实施例。该高强度网络结构纳米载体材料的具体制备步骤如下:
[0039] 第一步:将木材纤维素粉按固液比1∶20加入到质量分数为48%的浓硫酸中,在45℃水浴下搅拌2h使纤维素水解,然后用超纯水调节pH值为6~7,通过高压均质处理15~25个循环得到分散均匀的纳米纤维素溶液。
[0040] 第二步:将第二步得到的纳米纤维素溶液与石墨烯按照纤维素和石墨烯以质量比5∶1的比例混合,然后在超声波粉碎仪中超声5min,得到混合均匀的纳米纤维素/石墨烯悬浮液。
[0041] 第三步:将第二步得到的纳米纤维素/石墨烯悬浮液和酚醛树脂胶按照质量比为2∶5的比例混合后搅拌,搅拌速度为200rpm,搅拌时间为20min,搅拌均匀后得到纳米纤维素/石墨烯/酚醛树脂悬浮液。
[0042] 第四步:将第三步得到的纳米纤维素/石墨烯/酚醛树脂悬浮液注入模具中,在冷冻干燥机中-50℃下冷冻10h,随后在-40℃下真空干燥7h,最后在30℃左右真空干燥12h,脱模即得纳米纤维素/石墨烯/酚醛树脂气凝胶。
[0043] 第五步:将第四步得到的纳米纤维素/石墨烯/酚醛树脂气凝胶在马弗炉中预热固化20min,预热固化温度为130℃,使气凝胶中的酚醛树脂完全固化成型。
[0044] 第六步:将第五步得到的纳米纤维素/石墨烯/酚醛树脂气凝胶经管式炉高温热分解处理进行碳化,热分解处理温度为900℃,碳化完成后即得高强度网络结构纳米载体材料。
[0045] 所得高强度网络结构纳米载体的实物图如图1所示。本实施例和实施例1所得纳米载体材料的压力形变对比曲线如图3所示。对该载体材料的承受最大力和耐压强度进行测试,测试结果如表1所示。
[0046] 实施例3:
[0047] 本发明高强度网络结构纳米载体材料的制备方法的一种实施例。该高强度网络结构纳米载体材料的具体制备步骤如下:
[0048] 第一步:将木材纤维素粉按固液比1∶20加入到质量分数为48%的浓硫酸中,在45℃水浴下搅拌2h使纤维素水解,然后用超纯水调节pH值为6~7,通过高压均质处理15~25个循环得到分散均匀的纳米纤维素溶液。
[0049] 第二步:将第二步得到的纳米纤维素溶液与石墨烯按照纤维素和石墨烯以质量比10∶1的比例混合,然后在超声波粉碎仪中超声10min,得到混合均匀的纳米纤维素/石墨烯悬浮液。
[0050] 第三步:将第二步得到的纳米纤维素/石墨烯悬浮液和酚醛树脂胶按照质量比为2∶15的比例混合后搅拌,搅拌速度为300rpm,搅拌时间为30min,搅拌均匀后得到纳米纤维素/石墨烯/酚醛树脂悬浮液。
[0051] 第四步:将第三步得到的纳米纤维素/石墨烯/酚醛树脂悬浮液注入模具中,在冷冻干燥机中-60℃下冷冻8h,随后在-40℃下真空干燥8h,最后在40℃左右真空干燥12h,脱模即得纳米纤维素/石墨烯/酚醛树脂气凝胶。
[0052] 第五步:将第四步得到的纳米纤维素/石墨烯/酚醛树脂气凝胶在马弗炉中预热固化10min,预热固化温度为150℃,使气凝胶中的酚醛树脂完全固化成型。
[0053] 第六步:将第五步得到的纳米纤维素/石墨烯/酚醛树脂气凝胶经管式炉高温热分解处理进行碳化,热分解处理温度为1000℃,碳化完成后即得高强度网络结构纳米载体材料。
[0054] 所得高强度网络结构纳米载体的实物图如图1所示。本实施例所得载体材料分别在水(左图)和无水乙醇(右图)中的状态图如图4所示。由图4可知,其在水中和乙醇中能够完整的保存,具有较好的耐水性。对该载体材料的承受最大力和耐压强度进行测试,测试结果如表1所示。
[0055] 表1实施例1~3所得高强度网络结构纳米载体材料的力学性能
[0056]测试项目 实施例1 实施例2 实施例3
承受最大力(N) 38 51 47
耐压强度(Pa) 54 72 62
[0057] 由表1可见,通过本发明的方法制备得到的纳米载体材料具有良好的力学强度。
[0058] 以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
QQ群二维码
意见反馈