MARKIERUNGSZUSAMMENSETZUNG

申请号 EP14701123.3 申请日 2014-01-22 公开(公告)号 EP2948316A1 公开(公告)日 2015-12-02
申请人 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V.; Deutsche Institute für Textil- und Faserforschung Denkendorf; 发明人 GREISIGER, Heinz; SCHAUER, Thadeus; ENTENMANN, Marc; LEHMANN, Henry; SCHNEIDER, Reinhold;
摘要 The invention relates to a marking composition, by means of which better protection of goods than hitherto available can be achieved independently of the coloring of the goods. The marking composition comprises an infrared-absorbing particulate component and a carbon derivative, wherein the weight ratio of infrared-absorbing component to carbon derivative is in the range of approx. 10 : 1 to approx. 10,000 : 1.
权利要求 Patentansprüche
1. Markierungszusammensetzung, umfassend eine Infrarot absorbierende partikuläre Komponente sowie ein Kohlenstoffderivat, wobei das Gewichtsverhältnis von Infrarot absorbierender Komponente zu Kohlenstoffderivat im Bereich von ca. 10 : 1 bis ca. 10.000 : 1 liegt.
2. Markierungszusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass die Zusammensetzung eine feindisperse partikuläre Mischung aus der Infrarot absorbierenden Komponente und dem Kohlenstoffderivat umfasst.
3. Markierungszusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Infrarot absorbierende Komponente ausgewählt ist aus anorganischen Stoffen, insbesondere der Stoffklasse der Oxide, Sulfide und Selenide von Zinn, Zink, Antimon, Indium, Molybdän, Wolfram, Wismut und deren Mischverbindungen.
4. Markierungszusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Infrarot absorbierende Komponente ein mit Indium, Antimon oder Fluor dotiertes Zinnoxid enthalten ist, wobei vorzugsweise das Zinnoxid mit ca. 0,25 bis ca. 15 Gew.-% dotiert ist.
5. Markierungszusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Kohlenstoffderivat ausgewählt ist aus Rußen, Graphit, Fullerenen, Graphenen und Carbon-Nanotubes, deren Derivaten sowie deren Mischungen.
6. Markierungszusammensetzung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Gewichtsverhältnis der Infrarot absorbierenden Komponente zum Kohlenstoffderivat ca. 50 : 1 bis ca. 5.000 : 1, bevorzugt ca. 80 : 1 bis ca. 2.000 : 1, insbesondere ca. 100 : 1 bis ca.
2.000 : 1 beträgt.
7. Markierungszusammensetzung nach einem der Ansprüche 1 bis 6, wobei in der partikulären Mischung der Partikelgrößenkennwert d 50 der Infrarot absorbierenden Komponente bevorzugt ca. 500 nm oder weniger beträgt, insbesondere ca. 100 nm oder weniger und weiter bevorzugt ca. 50 nm oder weniger.
8. Markierungszusammensetzung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Kohlenstoffderivat in Form von Nano- partikeln vorliegt, welche eine Ausdehnung in mindestens einer Richtung von ca. 100 nm oder weniger aufweisen.
9. Markierungszusammensetzung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Zusammensetzung eine flüssige Komponente enthält und als Paste oder als fließfähige Masse, insbesondere als niedrigviskose Flüssigkeit, formuliert ist, vorzugsweise mit einer Viskosität von ca. 25 mPas oder weniger, bevorzugt von ca. 0,5 bis ca.
20 mPas und besonders bevorzugt von ca. 0,5 bis ca. 5 mPas, gemessen bei einem Schergefälle von 1 s "1 .
10. Markierungszusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass die Zusammensetzung in Form einer fließfähigen Masse einen Feststoffanteil der Infrarot absorbierenden Komponente von ca. 0,01 bis ca. 10 Gew.-%, insbesondere ca. 0,05 bis ca. 1 Gew.-% und weiter bevorzugt ca. 0,1 bis ca. 0,5 Gew.-% umfasst.
11. Markierungszusammensetzung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die flüssige Komponente eine monomere, oligomere und/oder eine polymere organische Komponente umfasst, wobei die Konzentration der organischen Komponente vorzugsweise ca. 0,5 bis ca. 30 Gew.-%, insbesondere ca. 1 bis ca. 20 Gew.-% und weiter bevorzugt ca. 2 bis ca. 10 Gew.-% beträgt.
12. Markierungszusammensetzung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die organische Komponente eine Verbindung mit einem Molekulargewicht von ca. 300 bis ca. 15.000 g/mol, insbesondere ca. 500 bis ca. 8.000 g/mol und weiter bevorzugt ca. 800 bis ca. 6.000 g/mol umfasst.
13. Markierungszusammensetzung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die flüssige Komponente ein oder mehrere Polymere und/oder Copolymere, ausgewählt aus den Polymerklassen der Polyether, Polyvinylalkohole, Polyacrylate, Polystyrole, Polyurethane, Polyvinylcaprolactame, Cellulose und/oder Polyvinylpyrrolidone, umfasst.
14. Markierungszusammensetzung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass die Zusammensetzung zusätzlich ca. 0,001 bis ca. 5 Gew.-%, insbesondere ca. 0,1 bis ca. 1 Gew.-% und weiter bevorzugt ca. 0,3 bis ca. 0,8 Gew.-% eines Benetzungs-, Dispergier- und/oder Verlaufsadditivs umfasst.
15. Verwendung der Markierungszusammensetzung nach einem der Ansprüche 9 bis 14 als Beschichtungs- und Tintenformulierung, insbesondere als Ink Jet-druckbare Tintenformulierung, vorzugweise auf Wasserbasis.
16. Verwendung der Markierungszusammensetzung nach einem der Ansprüche 9 bis 14 als Infrarot absorbierende, transparente und visuell unauffällige Beschichtungszusammensetzung und druckbare Tinte, insbesondere in Form einer aushärtbaren Formulierung, bevorzugt als IR- und UV-härtende Beschichtungszusammensetzung und druckbare Tinte, weiter bevorzugt als thermisch härtende Beschichtungszusammensetzung und druckbare Tinte, zur Kennzeichnung und Markierung von Gegen- ständen, insbesondere in Form einer Sicherheitsmarkierung oder eines Datamatrixcodes.
17. Verwendung der Markierungszusammensetzung nach einem der Ansprüche 1 bis 14 für im Infrarotbereich, im nahen Infrarotbereich bei Wellenlängen von ca. 800 bis ca. 2.500 nm und insbesondere im fernen Infrarotbereich bei Wellenlängen von ca. 2,5 bis ca. 14,0 pm detektierbare und dekodierbare Markierungen.
18. Verwendung der Markierungszusammensetzung nach einem der Ansprüche 1 bis 8 in einem Feststoff, insbesondere einem organischen Feststoff, weiter bevorzugt in einer Polymermatrix oder einem Kunststoff, wobei der Gewichtsanteil der Markierungszusammensetzung insbesondere ca. 0,1 bis ca. 30 Gew.-%, bevorzugt ca. 1 bis ca. 20 Gew.-% und weiter bevorzugt ca. 3 bis ca. 10 Gew.-% beträgt.
19. Feststoffzusammensetzung umfassend eine Markierungszusammensetzung nach einem der Ansprüche 1 bis 8 sowie ein Matrixmaterial, wobei das Matrixmaterial insbesondere aus organischen und anorganischen Feststoffen ausgewählt ist.
20. Feststoffzusammensetzung nach Anspruch 19, dadurch gekennzeichnet, dass der Gewichtsanteil der Markierungszusammensetzung insbesondere ca. 0,1 bis ca. 30 Gew.-%, bevorzugt ca. 1 bis ca. 20 Gew.-% und weiter bevorzugt ca. 3 bis ca. 10 Gew.-% beträgt.
21. Substrat umfassend eine Markierung, insbesondere in Form eines Datamatrixcodes, hergestellt aus einer Markierungszusammensetzung nach einem der Ansprüche 1 bis 14.
22. Substrat nach Anspruch 21, dadurch gekennzeichnet, dass die Markierung eine Oberflächenbeschichtung ist.
说明书全文

Markierungszusammensetzung

Die Erfindung betrifft eine Markierungszusammensetzung, insbesondere für die Markierung von Textilien.

Der Marken- und Warenschutz durch visuell sichtbare Markierungen, insbesondere durch so genannte Datamatrixcodes, welche beispielsweise mittels Laserbesch riftungsverfahren aufgebracht werden, ist schon seit längerer Zeit bekannt. Diese Methode hat jedoch den Nachteil, dass sowohl der Ort der Aufbringung als auch der Code für einen potentiellen Produktfälscher sofort erkennbar ist.

Sicherheitsmarkierungen zum Schutz hochwertiger Waren gegenüber Plagiaten kommt mit zunehmender Globalisierung und Vernetzung der Märkte weltweit eine wachsende Bedeutung zu. Zum einen kommt es durch Plagiate zu einem großen finanziellen Schaden, der in manchen Bereichen, wie beispielsweise der Textilindustrie, für kleine bis mittelständische Unternehmen und wirtschaftliche Zentren existenzgefährdend sein kann .

Zum anderen kommt es durch Plagiate immer wieder zu Sicherheitsproblemen, indem beispielsweise gesundheitsschädliche Substanzen in Plagiaten von Kinderspielzeug auftauchen oder offizielle sicherheitsrelevante Prüfsiegel der Zulassungsstellen gefälscht werden.

Eine unsichtbare Sicherheitsmarkierung kann auf verschiedenen Wegen erreicht werden. Ein bereits verfolgter Ansatz ist die Verwendung von photochromen Substanzen, z. B. Fluorophoren, die beim Bestrahlen mit UV-Licht eine spezifische Farbe im sichtbaren Bereich oder insbesondere im NIR-Bereich emittieren. Nachfolgend sind die wichtigsten bereits verfolgten Ansätze mit photochromen Substanzen erläutert. Die EP 1 670 868 Bl beschreibt fluoreszierende Farbstoffe bzw. Tinten, welche so genannte Carbon-Nanotubes (CNT) enthalten und insbesondere für Sicherheitsanwendungen gebraucht werden. Bei Bestrahlung mit Licht der Wellenlänge 671 nm fluoreszieren die aufgebrachten Tinten, wobei sie Strahlung im NIR-Bereich emittieren. Im visuellen Bereich sind die aufgebrachten Tinten weniger sichtbar, können jedoch mit einer geeigneten NIR-Kamera detektiert werden.

Gemäß der EP 0 997 503 Bl werden Waren mit Tinten behandelt, die unter Licht aus dem sichtbaren Spektrum für den Betrachter unsichtbar sind und erst nach einer Bestrahlung mit Licht einer anderen, kürzeren Wellenlänge fluoreszieren. Damit werden die mit dieser Tinte gedruckten Markierungen oder Bilder sichtbar und detektierbar.

Die in der EP 0 997 503 Bl beschriebenen Tinten zeichnen sich unter anderem durch ein hohes Niveau der Druckqualität, hervorragende Licht- und Wasserechtheit, hervorragende Fluoreszenzintensität während einer Beleuchtung mit einer geeigneten Lichtquelle und ein hohes Maß an Zuverlässigkeit in Verbindung mit Tintenstrahldrucksystemen aus.

Die EP 0 663 429 Bl beschreibt mit bloßem Auge unsichtbare Sicherheitstinten, die aber durch Bestrahlung mit Licht im Infrarotbereich detektierbar gemacht werden können. Es wird ein Phthalocyanin-Farbstoff als Fluorophor in einer Bindemittelmatrix, bevorzugt aus Carnaubawachs, verwendet.

Die aufgeführten Sicherheitsmarkierungen der EP 1 670 868 Bl, der

EP 0 997 503 Bl und EP 0 663 429 Bl unter Verwendung fluoreszierender Stoffe sind für die Sicherheitsmarkierung von Textilien prinzipiell ungeeignet, da sie teilweise im intensiven Sonnenlicht sichtbar wären. Auch eine Fluoreszenz im NIR-Bereich wäre wegen der Eigenabsorption des Untergrunds und der resultierenden zu geringen Kontraste als Sicherheitsmarkierung für viele dunklere, schwarze oder beispielsweise mit Cu-Phthalocyaninen blau eingefärbte Substrate jeder Art eher ungeeignet. Nachteilig ist bei diesen photochromen oder fluorophoren Substanzen ferner, dass sie oftmals relativ instabil gegenüber UV-Licht sind, so dass ihre Dauerhaftigkeit in Außenanwendungen, beispielsweise auf Bekleidungs- und technischen Textilien, zweifelhaft ist.

Die US 2007/0082963 AI beschreibt IR-absorptive Tinten, die unter anderem antimondotiertes Zinnoxid (ATO) enthalten und sich durch eine nur wenig sichtbare Farbe und eine hohe IR-Absorption auszeichnen.

Auch in der WO 2007/132214 AI werden derartige Tinten beschrieben. Es konnte jedoch nur zum Teil bestätigt werden, dass unter Verwendung von na- noskaligen Stoffen, bestehend aus dotierten Zinnoxiden, transparente und im infraroten Bereich des Lichts absorbierende Tinten resultieren. Die im nahen Infrarotbereich detektierbaren Kontraste, wie z. B. in der WO 2007/132214 AI beschrieben, beruhen ausschließlich auf Absorptionseffekten. Aufdrucke mit dieser Art von Tinten sind als dunkel erscheinende Markierungen auf einem eher helleren, d .h. wenig NIR-absorbierenden, Untergrund detektierbar.

Wie bereits in der WO 2007/132214 AI beschrieben, sind diese NIR-Kontraste sehr stark von der Farbe und vom Material des Untergrunds abhängig . Die resultierenden Markierungen solcher Tinten sind deshalb eher bei helleren Substraten entsprechend kontrastreich und teilweise dekodierbar, während beispielsweise auf blauen, mit Cu-Phthalocyaninen eingefärbten Untergründen und generell auf dunkleren oder gar schwarzen Substraten oftmals keine zur Dekodierung ausreichenden Kontraste erreichbar sind.

Auch Tinten, welche nur die in der WO 2004/003070 AI beschriebenen Infrarot absorbierenden Halbleitermaterialien oder die in der DE 198 46 096 AI beschriebenen Zinnoxidverbindungen oder generell im NIR-Bereich absorbierende Pigmente, unabhängig von deren Partikelgröße, beinhalten, können deshalb nicht universell auf verschiedenen Untergründen für dekodierbare Markierungen eingesetzt werden. Solche Tinten, welche beispielsweise nur nanoskalige IR-absorbierende Stoffe beinhalten, werden bislang kaum für den Schutz von Markenware, beispielsweise für hochwertige Textilien, verwendet, da die hohen Anforderungen an die Permanenz der Markierungen, die visuelle Unsichtbarkeit sowie die Anforderungen bezüglich der auf unterschiedlich eingefärbten Untergründen zur De- kodierung notwendigen Kontraste nicht hinreichend erfüllt sind .

Aufgabe der vorliegenden Erfindung ist es, eine Markierungszusammensetzung vorzuschlagen, mit welcher ein besserer Schutz von Waren als bislang verfügbar, insbesondere auch unabhängig von deren Farbgebung, erreicht werden kann.

Diese Aufgabe wird durch eine Markierungszusammensetzung gemäß Anspruch 1 gelöst.

Mit der erfindungsgemäßen Markierungszusammensetzung lassen sich visuell nicht sichtbare, gleichwohl aber einfach detektierbare Markierungen erzeugen, insbesondere auch auf Textilien.

Eine visuell nicht sichtbare Markierung, welche jedoch durch Detektion in einem spezifischen Wellenlängenbereich des IR-Spektralbereichs, beispielsweise unter Verwendung geeigneter Kameras, erkennbar und dekodierbar ist, stellt eine geeignete Lösung für Sicherheitsmarkierungen jeglicher Art dar.

Die mit erfindungsgemäßen Markierungszusammensetzungen erzeugbaren, im sichtbaren Spektralbereich unauffälligen, insbesondere transparent erscheinenden Markierungen sind von besonderem Vorteil, insbesondere für das Anbringen von Sicherheitsmarkierungen auf Textilien.

Auch der wachsende Bedarf an unsichtbaren, versteckten Sicherheitsmerkmalen bei Banknoten, Identifikations- und Ausweispapieren und Kreditkarten lässt sich mit der erfindungsgemäßen Markierungszusammensetzung abdecken, so dass die Fälschungssicherheit auch in Zukunft garantiert und somit beispiels- weise die Einreise oder der Zutritt nicht erwünschter Personen unterbunden werden kann.

Die Erfindung deckt so einen in den westlichen Industrienationen zunehmenden Bedarf und ein starkes Interesse an möglichst einfach zu realisierenden und kosteneffizient aufzubringenden, visuell jedoch unsichtbaren Markierungen von Produkten, welche dann mit speziellen Lesegeräten, beispielsweise von behördlicher Seite, in einfacher Art und Weise erkannt, eingelesen und durch Übersendung der Codierung an bestimmte Datenbanken entschlüsselt werden können. So ist eine zeitnahe und effiziente Reaktion der Behörden zum Schutz der Bevölkerung, des Warenverkehrs und der Wirtschaft möglich.

Die im Stand der Technik vorhandenen nachteiligen Aspekte der visuellen Sichtbarkeit und der nicht universellen Eignung zur Sicherheitsmarkierung auf unterschiedlich eingefärbten Untergründen werden im Rahmen der vorliegenden Erfindung durch eine Mischung aus partikulären Infrarotabsorbern und Kohlenstoffderivaten vermieden.

Überraschenderweise wurden, bei geeigneter Anregung, bei der erfindungsgemäßen Markierungszusammensetzung verstärkende synergistische Emissionseffekte im fernen Infrarotbereich (FIR) gefunden.

Zur Anregung wird bevorzugt eine Lichtemissionsquelle verwendet, welche einen höheren Anteil von NIR-Strahlung mit einer Wellenlänge bis ca. 2 pm aufweist.

Während bei der Detektion im nahen Infrarotbereich (NIR), wie bereits erläutert, hauptsächlich Absorptionsunterschiede in diesem Wellenlängenbereich zwischen Untergrund und Markierung für die erhaltenen Kontraste eine wesentliche Rolle spielen, ist dies für Markierungen mit Detektion im fernen Infrarotbereich (FIR) anders. Bei der Detektion im FIR-Bereich spielen zum einen die Absorption bei der Anregungswellenlänge, welche sich im Regelfall von der Wellenlänge der Detektion stark unterscheidet, die Wärmeleitfähigkeit und ins- besondere das Emissionsvermögen eine wesentliche Rolle. Da die meisten für die Farbgebung von Waren verwendeten Farben sowie generell Hell-Dunkel- Unterschiede auf dem Prinzip der Absorption beruhen, wird eine Detektion einer im NIR-Bereich absorbierenden Markierung immer stark abhängig von der Farbe des markierten Substrats sein.

Diese Problematik ist bei einer im fernen Infrarotbereich (FIR) emittierenden und detektierbaren Markierung zurückgedrängt. Hier können nicht nur, wie bereits erläutert, mehrere Parameter zum Erreichen optimaler Kontraste gegenüber dem Untergrund optimiert, sondern Unterschiede zwischen Einstrahlungsund Detektionswellenlänge genutzt werden, was eine technische Realisierung der Detektion und Dekodierung der visuell unsichtbaren Markierungen in der Praxis wesentlich vereinfacht.

Bei der herkömmlichen Detektion im nahen Infrarotbereich muss hingegen aus besagten Gründen oftmals eine Anregung in diesem Bereich des Lichts stattfinden, dh die Anregung muss zeitlich versetzt, beispielweise durch Lichtblitze, vor der Detektion stattfinden.

Für unterschiedliche Materialien, Untergründe und Farben muss deshalb bisher infolge der verschiedenen Absorptionseigenschaften sowohl die Stärke der Anregung als auch der Zeitrahmen der darauf folgenden Detektion sowie zumeist auch die Markierung selbst gezielt optimiert und aufeinander abgestimmt werden. Dies ist schwierig und in der Praxis auch nur mit relativ großem technischem Aufwand realisierbar.

Die herkömmliche Detektion und Dekodierung von NIR-Markierungen würde somit auch ein größeres Fachwissen von demjenigen erfordern, welcher mit der Detektion betraut wird, um Detektionsfehler ausschließen zu können. Es erscheint nahezu unvorstellbar, dass eine NIR-Detektionsmethode mit automatischer Dekodierung, wie in der WO 2007/132214 AI offenbart, sich für einen schnellen und robusten Außeneinsatz durch Behörden in der Praxis bewähren könnte. Überraschenderweise wurde nun erfindungsgemäß gefunden, dass bestimmte heterogene Stoffgemische, welche ein partikuläres Gemisch aus einem Infrarotabsorber und einem Kohlenstoffderivat umfassen, bei entsprechender Lichtanregung im nahen Infrarotbereich die erwarteten integralen und additiven Kontrasteigenschaften beider Stoffkomponenten aufweisen und dass es im fernen Infrarotbereich zu einer unerwarteten gegenseitigen Verstärkung und einem deutlichen synergetischen Effekt im Hinblick auf die Kontrastausprägung kommt. Das Gewichtsverhältnis von Infrarot absorbierender Komponente zu Kohlenstoffderivat kann in weiten Grenzen von ca. 10 : 1 bis ca. 10.000 : 1 variiert werden. Besonders unauffällige, transparent erscheinende Markierungen werden bei Gewichtsverhältnissen im Bereich von ca. 100 : 1 bis ca. 10.000 : 1 möglich.

Bevorzugt liegt das Gemisch als feindisperse partikuläre Mischung vor.

Die erfindungsgemäße Mischung lässt sich in eine Flüssigkeit eindispergieren, welche insbesondere niedrigviskos sein kann und welche zusätzlich eine organische Komponente, insbesondere eine poiymere Bindemittelkomponente, enthalten kann. So lassen sich durch entsprechende Druckapplikationen und Lackierungen sowie Beschichtungen jeglicher Art die erfindungsgemäßen heterogenen Mischungen auf Gegenstände und Waren, insbesondere auch Textilien, aufbringen und zu visuell unsichtbaren Markierungen anwenden.

Wird der applizierte Bereich getrocknet, so wird eine dünne Feststoffschicht, bei Verwendung eines polymeren Bindemittels eine entsprechende Polymermatrix, beinhaltend die erfindungsgemäße feindisperse Mischung aus partikulären Infrarotabsorbern und Kohlenstoffderivaten, erhalten.

Prinzipiell ist auch eine Anwendung direkt in Kunststoffen, insbesondere in thermoplastischen Kunststoffen, denkbar, indem die erfindungsgemäße Markierungszusammensetzung in der Schmelze eindispergiert bzw. als entsprechende Lösemittelpräparation gelösten Kunststoffen zugemischt wird . Die erfindungsgemäß verwendete Infrarot absorbierende Komponente kann insbesondere aus anorganischen Stoffen ausgewählt werden, wobei die Stoffklassen der Oxide, Sulfide und Selenide von Zinn, Zink, Antimon, Indium, Molybdän, Wolfram, Wismut sowie deren Mischverbindungen bevorzugt sind.

Besonders bevorzugt wird ein Zinnoxid verwendet, welches mit Indium, Antimon oder Fluor dotiert ist. Vorzugsweise beträgt der Dotierungsgehalt ca. 0,25 bis ca. 15 Gew.-% bezogen auf das Gewicht des dotierten Zinnoxids.

Das Kohlenstoffderivat als die zweite der beiden Komponenten der erfindungsgemäßen Markierungszusammensetzung wird vorzugsweise ausgewählt aus allotropen Formen des Elements Kohlenstoff wie : Rußen, Graphit, Fullerenen, Graphenen und den so genannten Carbon-Nanotubes, deren Derivaten sowie Mischungen der vorgenannten Kohlenstoffderivate.

Insbesondere wird das Gewichtsverhältnis der Infrarot absorbierenden Komponente zu dem Kohlenstoffderivat im Bereich von ca. 25 : 1 bis ca. 10.000 : 1, bevorzugt ca. 50 : 1 bis ca. 5.000 : 1, weiter bevorzugt ca. 80 : 1 bis ca. 2.000 : 1, am meisten bevorzugt von ca. 100 : 1 bis ca. 2.000 : 1 eingestellt.

Die Größe der Partikel in der erfindungsgemäßen Markierungszusammensetzung wird vorzugsweise so gewählt, dass der Partikelgrößenkennwert d 50 der Infrarot absorbierenden Komponente ca. 500 nm oder weniger beträgt, insbesondere ca. 100 nm oder weniger und weiter bevorzugt ca. 70 nm oder weniger, am meisten bevorzugt ca. 50 nm oder weniger.

Das Kohlenstoffderivat liegt vorzugsweise in Form von Nanopartikeln vor, welche eine Ausdehnung in mindestens einer Richtung von ca. 100 nm oder weniger aufweisen.

Die erfindungsgemäße Markierungszusammensetzung lässt sich, wie bereits erwähnt, insbesondere als fließfähige Masse formulieren und enthält dann eine flüssige Komponente. Gemäß einer bevorzugten Variante der Erfindung wird die fließfähige Masse wasserbasierend formuliert.

Alternativ lässt sich die erfindungsgemäße Markierungszusammensetzung mit einer flüssigen Komponente auch als Paste formulieren.

Besonders bevorzugt wird die fließfähige Masse als niedrigviskose Flüssigkeit formuliert, insbesondere mit einer Viskosität von ca. 25 mPas oder weniger, weiter bevorzugt von ca. 0,5 bis ca. 20 mPas und am meisten bevorzugt mit einer Viskosität von ca. 0,5 bis ca. 5 mPas. Die angegebenen Viskositätswerte sind bezogen auf ein Schergefälle von 1 s "1 .

Die als fließfähige Masse konzipierte Markierungszusammensetzung der vorliegenden Erfindung enthält insbesondere einen Feststoffanteil der Infrarot absorbierenden Komponente von ca. 0,01 bis ca. 10 Gew.-%, weiter bevorzugt ca. 0,05 bis ca. 1 Gew.-% und am meisten bevorzugt ca. 0,1 bis ca.

0,5 Gew.-%.

Die als fließfähige Masse formulierte Markierungszusammensetzung kann eine flüssige Komponente in Form einer monomeren, oligomeren und/oder polyme- ren organischen Komponente umfassen, wobei die Konzentration der organischen Komponente in der Markierungszusammensetzung insbesondere ca. 0,5 bis ca. 30 Gew.-%, weiter bevorzugt ca. 1 bis ca. 20 Gew.-% und am meisten bevorzugt ca. 2 bis ca. 10 Gew.-% beträgt.

Die in der als Paste oder fließfähige Masse formulierten erfindungsgemäßen Markierungszusammensetzung optional zum Einsatz gelangenden organischen Komponenten umfassen vorzugsweise eine Verbindung mit einem Molekulargewicht von ca. 300 bis ca. 15.000 g/mol, weiter bevorzugt ca. 500 bis ca. 8.000 g/mol und am meisten bevorzugt von ca. 800 bis ca. 6.000 g/mol.

Die als Paste oder als fließfähige Masse formulierte erfindungsgemäße Markierungszusammensetzung umfasst vorzugsweise eine flüssige Komponente mit einem oder mehreren Polymeren und/oder Copolymeren, ausgewählt aus den Polymerklassen der Polyether, der Polyvinylalkohole, der Polyacrylate, der Polystyrole, der Polyurethane, der Polyvinylcaprolactame, der Cellulose und/oder der Polyvinylpyrrolidone.

Als fließfähige Massen formulierte erfindungsgemäße Markierungszusammensetzungen weisen bevorzugt zusätzlich ca. 0,001 bis ca. 5 Gew.-%, insbesondere ca. 0,1 bis ca. 1 Gew.-% und am meisten bevorzugt ca. 0,3 bis ca.

0,8 Gew.-% eines Benetzungs-, Dispergier- und/oder Verlaufsadditivs auf.

Wie eingangs bereits angesprochen, lässt sich die erfindungsgemäße Markierungszusammensetzung vielfältig einsetzen .

Eine der wichtigen Verwendungen der erfindungsgemäßen Markierungszusammensetzungen ist die Verwendung als Beschichtungs- und Tintenformulierung, insbesondere als Ink Jet-druckbare Tintenformulierung, vorzugsweise auf Wasserbasis.

Eine weitere wichtige Verwendung der erfindungsgemäßen Markierungszusammensetzung liegt in der Verwendung als Infrarot absorbierende, transparente und visuell unauffällige Beschichtungszusammensetzung und druckbare Tinte.

Die als Paste oder fließfähige Masse formulierten erfindungsgemäßen Markierungszusammensetzungen sind vorzugsweise aushärtbar konzipiert.

Insbesondere werden sie als IR-härtende Beschichtungszusammensetzung und druckbare Tinte, wie in der WO 2004/003070 AI beschrieben, oder als UV- härtende Beschichtungszusammensetzung und druckbare Tinte, wie bereits in der EP 1 954 768 Bl offenbart, formuliert.

Besonders bevorzugt sind thermisch härtende Formulierungen, die gegenüber den strahlenhärtenden (UV- und IR-) Formulierungen weitere Vorzüge aufweisen. Bei den für die erfindungsgemäßen Markierungszusammensetzungen bevorzugt verwendeten Tinten auf wässriger Basis kommt es im Falle einer IR-Här- tung durch die Eigenabsorption des Wassers in diesem Wellenlängenbereich oftmals zu einer geringeren Vernetzung der zur Fixierung der Markierung verwendeten Bindemittelformulierung, was einen negativen Einfluss auf die gerade bei Markierungen so bedeutsame Permanenz hat.

Auch die oftmals, gerade bei UV-härtenden Systemen, als flüssige Komponenten verwendeten Reaktivverdünner erscheinen für eine Formulierung, welche die erfindungsgemäße Markierungszusammensetzung enthält, als weniger bevorzugt, da sich hier die bevorzugt feindispersen Mischungen von IR-Absorber und Kohlenstoffderivaten als instabil erweisen und insbesondere eine Neigung zur Flockulation aufweisen.

Kann der feindisperse Mischungszustand der Kohlenstoffkomponente und des IR-Absorbers nicht gewährleistet werden, verlieren die aufgebrachten Markierungen an Kontrast, Transparenz und Farbneutralität und sind als unsichtbare Markierungen nicht mehr universell anwendbar.

Die UV-härtenden Systeme mit Reaktivverdünnern als Rezepturbestandteile sind insbesondere auch bei der Markierung von Textilien weniger geeignet aufgrund der die Haut sensibilisierenden und reizenden Eigenschaften der Reaktivverdünner.

Die erfindungsgemäße Markierungszusammensetzung wird ferner bevorzugt als wässrige Tintenformulierung und nicht, wie in der US 8,157,905 B2 empfohlen wurde, als oleophile Zusammensetzung formuliert, da zur Berücksichtigung von Umweltaspekten insbesondere weitgehend auf Lösemittelzugaben verzichtet werden kann.

Die erfindungsgemäße Markierungszusammensetzung kann zur Kennzeichnung und Markierung sowie Sicherheitsmarkierung von Gegenständen jeglicher Art dienen, insbesondere als Sicherheitsmarkierung auf Waren jeglicher Art, sowie als visuell unauffälliges Identifikations- und Legitimationsmerkmal in Banknoten, Ausweisen und Papieren jeglicher Art und weiterhin bevorzugt zur Sicherheitsmarkierung von Textilien, Kompaktdisks, DVDs, Computern sowie Konsumgütern jeglicher Art.

Die erfindungsgemäße Markierungszusammensetzung kann als Feststoffgemisch, als Paste oder als insbesondere niedrigviskose Flüssigkeit formuliert verwendet werden als eine im Infrarotbereich, im nahen Infrarotbereich bei Wellenlängen von ca. 800 bis ca. 2.500 nm sowie im fernen Infrarotbereich bei Wellenlängen von ca. 2,5 bis ca. 14 pm detektierbare und dekodierbare Markierung .

Die erfindungsgemäßen Markierungszusammensetzungen können insbesondere auch in einem Feststoff, insbesondere einem organischen Feststoff, bevorzugt in einer Polymermatrix oder einem Kunststoffmaterial, eingebettet verwendet werden.

Dabei beträgt der Gewichtsanteil der erfindungsgemäßen Markierungszusammensetzung vorzugsweise ca. 0,1 bis ca. 30 Gew.-%, weiter bevorzugt ca. 1 bis ca. 20 Gew.-% und am meisten bevorzugt ca. 3 bis ca. 10 Gew.-%.

Diese und weitere Vorteile der Erfindung werden im Folgenden anhand der Beispiele und der Figuren erläutert.

Es zeigen im Einzelnen :

Figur 1 : UV-VIS-NIR-Absorptionskurven einer nanoskaligen antimondotierten

Zinnoxid-, einer Ruß- und einer CNT-Dispersion sowie diese enthaltender erfindungsgemäßer Markierungszusammensetzungen jeweils in Wasser; UV-VIS-NIR-Absorptionskurven getrockneter antimondotierter Zinnoxid-, Ruß- und CNT-Dispersionen sowie getrockneter erfindungsgemäßer Markierungszusammensetzungen;

UV-VIS-NIR-Absorptionskurven getrockneter bindemittelhaltiger Tin- tenpräparationen der Einzelkomponenten und einer erfindungsgemäßen Markierungszusammensetzung ; gegenüber unbedrucktem weißem Papier gemessene Farbwertdifferenzen gemessen an Aufdrucken von Tintenpräparationen mit der nanoskaligen antimondotierten Zinnoxid-Komponente (weißer Balken), von Tintenpräparationen, welche erfindungsgemäße feindisperse Markierungszusammensetzungen der nanoskaligen antimondotierten Zinnoxid-Probe mit Ruß (schraffierter Balken) sowie mit CNT (schwarzer Balken) enthalten; und prozentuale Farbänderungen der Kontraste im VIS-, NIR- und FIR- Detektionsbereich für die Aufdrucke von Tintenpräparationen mit der nanoskaligen antimondotierten Zinnoxid-Komponente (weißer Balken), von Tintenpräparationen, welche die erfindungsgemäßen feindispersen Markierungszusammensetzungen der nanoskaligen antimondotierten Zinnoxid-Probe mit Ruß (schraffierter Balken) sowie CNT (schwarzer Balken) enthalten.

Beispiele

In den folgenden Beispielen wurden als Kohlenstoffderivat Flammruß in Form von Printex ® U der Evonik Industries AG mit einer durchschnittlichen Primärpartikelgröße von 21 nm oder so genannte MWCNT (multi-walied carbon nano- tubes) in Form von Nanocyl™ NC 7000 der Nanocyl SA mit einem mittleren Röhrchendurchmesser von 9,5 nm und einer mittleren Faserlänge von 1,5 pm verwendet. Als Infrarotabsorber wurde ein antimondotiertes Zinnoxid-Nanopulver (ATO), erhältlich unter der Artikelnummer 549541 als "antimony tin oxide, nanopow- der" von Sigma-Aldrich Co., mit einer Primärpartikelgröße kleiner 50 nm und einem Antimonoxidgehalt im Bereich von 7 bis 11 Gew.-% verwendet.

Vor der Anwendung wurde eine Dispergierung der Infrarot absorbierenden Komponente und des Kohlenstoffderivats unter Verwendung einer Nanomühle vorgenommen. Dabei wurde bei den flüssigen Formulierungen ein Dispergier- und Netzmittel zugegeben (25 Gew.-% von Disperbyk 190 der Byk-Chemie, bezogen auf den Festkörpergehalt der Kohlenstoff- bzw. der Infrarot absorbierenden Komponente), bis ein feindisperser Zustand mit Partikelgrößen d 50 von ca. 70 nm oder kleiner erreicht wurde. Die Teilchengrößen in einer Dispersion und somit auch der disperse Zustand der Dispersion wurden unter Verwendung von Lichtstreuungsmethoden bestimmt.

Das polymere Bindemittel kam in Beispiel 3 als eine Mischung von PVP K12 (Polyvinylpyrrolidon) der Sigma-Aldrich Co. und WALOCEL™ MW3600 (Hydro- xyethylmethylcellulose) der Dow Wolff Cellulosics GmbH im Gewichtsverhältnis von 1 : 1, formuliert als 0,02 Gew.-%ige Lösung in Wasser zum Einsatz.

Das polymere Bindemittel der Tintenformulierungen des Beispiels 4 lag als wässrige Bindemitteldispersion vor. Hierzu wurde Hydrosol 900 (35 Gew.-%ige wässrige Styrolacrylat-Copolymerdispersion der Lefatex-Chemie GmbH) mit Wasser auf einen ca. 10 Gew.-%igen Feststoffanteil des polymeren Bindemittels (Styrolacrylat-Copolymer) verdünnt.

Beispiel 1:

Gegenüberstellung der UV-VIS-NIR-Absorption einer nanoskaligen antimondotierten Zinnoxid-, einer Ruß- und einer CNT-Dispersion sowie deren erfindungsgemäßer Mischungen in Wasser In Figur 1 ist eine Gegenüberstellung der UV-VIS-NIR-Absorption A einer nanoskaligen antimondotierten Zinnoxid-, einer Ruß- und einer CNT-Dispersion sowie deren erfindungsgemäßer Mischungen in Wasser gezeigt.

Die gezeigten Absorptionskurven beziehen sich hierbei auf die folgenden Dispersionen :

Absorptionskurve (1) : destilliertes Wasser

Absorptionskurve (2) : wässrige Dispersion mit ca. 0,001 Gew.-% Flammruß

Absorptionskurve (3) : wässrige Dispersion mit ca. 0,001 Gew.-% MWCNT

Absorptionskurve (4) : wässrige Dispersion mit ca. 0,05 Gew.-% nanoskali- gem, antimondotiertem Zinnoxid ATO (d 50 ca. 66 nm)

Absorptionskurve (5) : wässrige Dispersion mit ca. 0,001 Gew.-% Flammruß und ca. 0,05 Gew.-% nanoskaligem, antimondotiertem Zinnoxid ATO (d 50 ca. 66 nm)

Absorptionskurve (6) : wässrige Dispersion mit ca. 0,001 Gew.-% MWCNT und ca. 0,05 Gew.-% nanoskaligem, antimondotiertem Zinnoxid ATO (d 50 ca.

66 nm)

Es ist zu erkennen, dass die Zugabe des nanoskaligen, antimondotierten Zinnoxids die Absorptionseigenschaften der Dispersionen in Wasser im UV-VIS-NIR maßgeblich, die Kohlenstoffderivate Flammruß und MWCNT sie jedoch in diesem Wellenlängenbereich nur geringfügig beeinflussen . Beispiel 2:

Gegenüberstellung der UV-VIS-NIR-Absorptionen getrockneter antimondotierter Zinnoxid-, Ruß- und CNT-Dispersionen sowie getrockneter erfindungsgemäßer Mischungen

In Figur 2 ist die UV-VIS-NIR-Absorption A getrockneter antimondotierter Zinnoxid-, Ruß- und CNT-Dispersionen sowie getrockneter erfindungsgemäßer Mischungen in Gegenüberstellung gezeigt. Die Absorptionskurven beziehen sich hierbei auf die folgenden Feststoffe bzw. Feststoffzusammensetzungen :

Absorptionskurve (1) : ca. 50 μΙ getrocknete Flammruß-Dispersion aus Beispiel 1 auf Quarzglas (Schichtdicke ca. 700 nm)

Absorptionskurve (2) : ca. 50 μΙ getrocknete MWCNT-Dispersion aus Beispiel 1 auf Quarzglas (Schichtdicke ca. 700 nm)

Absorptionskurve (3) : ca. 50 μΙ getrocknete antimondotiertes Zinnoxid(ATO)- Dispersion aus Beispiel 1 auf Quarzglas (Schichtdicke ca. 700 nm)

Absorptionskurve (4) : ca. 50 μΙ getrocknete erfindungsgemäße Mischung der Flammruß- und nanoskaligen, antimondotierten Zinnoxid(ATO)-Dispersionen aus Beispiel 1 auf Quarzglas (Schichtdicke ca. 700 nm)

Absorptionskurve (5) : ca. 50 μΙ getrocknete erfindungsgemäße Mischung der MWCNT- und nanoskaligen, antimondotierten Zinnoxid(ATO)-Dispersionen aus Beispiel 1 auf Quarzglas (Schichtdicke ca. 700 nm)

Anhand der UV-VIS-NIR-Spektren der durch Trocknung der Dispersionen aus Beispiel 1 erhaltenen Feststoffe ist zu erkennen, dass die erfindungsgemäße feindisperse Zumischung der Kohlenstoffderivate Flammruß und MWCNT zu der nanoskaligen antimondotierten Zinnoxid(ATO)-Dispersion die Absorptionseigenschaften im UV- und visuell sichtbaren Bereich des Lichts nicht wesent- lieh beeinflusst, dass es jedoch im NIR-Bereich zu maßgeblichen Veränderungen der Absorption kommt.

Betrachtet man nun die generell äußerst geringe Absorption der getrockneten Dispersionen beider Kohlenstoffderivate, so ergibt sich ferner, dass es sich hier nicht nur um einen rein additiven, sondern um einen synergistischen Verstärkungseffekt bei der vermehrten Absorption im NIR-Bereich des Lichts handelt.

Beispiel 3:

Gegenüberstellung der UV-VIS-NIR-Absorptionen getrockneter bindemittelhal- tiger Präparationen der Einzelkomponenten und der erfindungsgemäßen heterogenen Stoffmischungen

In Figur 3 ist die UV-VIS-NIR-Absorption A getrockneter bindemittelhaltiger Präparationen der Einzelkomponenten und erfindungsgemäßer heterogener Stoffmischungen gezeigt. Die Absorptionskurven repräsentieren hierbei die folgenden Bindemittelpräparationen :

Absorptionskurve (1) : Polymeres Bindemittel auf Quarzglas (Schichtdicke ca. 1.800 nm)

Absorptionskurve (2) : Polymeres Bindemittel mit ca. 0,15 Gew.-% nanoskali- gem, antimondotiertem Zinnoxid (ATO) auf Quarzglas (Schichtdicke ca.

1.800 nm)

Absorptionskurve (3) : Polymeres Bindemittel mit einer erfindungsgemäßen Mischung aus ca. 0,006 Gew.-% MWCNT und ca. 0,15 Gew.-% nanoskaligem, antimondotiertem Zinnoxid auf Quarzglas (Schichtdicke ca. 1.800 nm)

Absorptionskurve (4) : Polymeres Bindemittel mit einer erfindungsgemäßen Mischung aus ca. 0,006 Gew.-% Flammruß und ca. 0,15 Gew.-% nanoskaligem, antimondotiertem Zinnoxid (ATO) auf Quarzglas (Schichtdicke ca. 1.800 nm) Auch bei den Absorptionsspektren, welche nach Einarbeitung der Komponenten und der erfindungsgemäßen Markierungszusammensetzungen in eine ca. 0,2 Gew.-%ige polymere Bindemitteldispersion auf Basis von Polyvinylpyrroli- don und Hydroxyethylmethylcellulose nach der Trocknung auf einem Quarzglasträger erhalten wurden, lässt sich deutlich erkennen, dass für die erfindungsgemäßen feindispersen Markierungszusammensetzungen, erhalten aus den Kohlenstoffderivaten Flammruß oder MWCNT mit dem nanoskaligen antimondotierten Zinnoxid (ATO) als Infrarot absorbierender Komponente, die Absorptionseigenschaften im UV- und visuell sichtbaren Bereich des Lichts eher wenig, jedoch im NIR-Bereich maßgeblich beeinflusst werden. Es ergibt sich ferner, dass es sich auch hier nicht nur um einen rein additiven, sondern um einen synergistischen Verstärkungseffekt für die Absorption im NIR-Bereich des Lichts handelt.

Beispiel 4:

Gegenüberstellung der visuellen Sichtbarkeit und der Infrarotkontraste von Aufdrucken bindemittelhaltiger Tintenpräparationen der Einzelkomponenten und bindemittelhaltiger Tintenpräparationen mit den erfindungsgemäßen heterogenen Stoffmischungen auf weißem Druckerpapier

Die Tintenpräparationen in diesem Beispiel wurden mit der eingangs beschriebenen wässrigen Bindemitteldispersion auf Hydrosol 900-Basis hergestellt, wobei im Vergleichsbeispiel 5 Gew.-% der nanoskaligen antimondotierten Zinn- oxid(ATO)-Komponente, bezogen auf den Feststoffanteil des polymeren Bindemittels, zugegeben wurden. In den erfindungsgemäßen Beispielen wurden zusätzlich zu den 5 Gew.-% nanoskaliger antimondotierter Zinnoxid(ATO)-Kom- ponente noch 50 ppm Flammruß (Printex U) bzw. 50 ppm MWCNT (Nanocyl NC 7000), jeweils bezogen auf den Feststoffanteil des polymeren Bindemittels, zugegeben.

Insbesondere bei Markierungszusammensetzungen, die als Markierungstinten formuliert sind, empfehlen sich Gewichtsverhältnisse der Infrarot absorbie- renden Komponente zu dem Kohlenstoffderivat im Bereich von ca. 100 : 1 bis ca. 10.000 : 1. Selbst bei solchen extrem geringen Anteilen des Kohlenstoffderivats an der Markierungszusammensetzung lässt sich wie im vorliegenden Beispiel 4 gezeigt ein deutlicher synergistischer Effekt beobachten.

In Figur 4 wurden die mit dem X-rite MA68 Farbmessgerät (Firma X-Rite Inc.) gemessenen Farbwertdifferenzen der Aufdrucke der Tintenpräparationen, welche nur die nanoskalige antimondotierte Zinnoxid(ATO)-Komponente enthalten (weißer Balken), mit den Farbwertdifferenzen der Aufdrucke der Tinten mit den erfindungsgemäßen feindispersen Stoffmischungen, welche die nanoskalige antimondotierte Zinnoxid(ATO)-Probe gemischt mit Flammruß (schraffierter Balken) bzw. mit MWCNT (schwarzer Balken) enthalten, gegenüber unbedrucktem weißem Papier verglichen. Die als X-rite-Messgeometrie angegebenen Winkel geben hierbei definitionsgemäß den Winkelabstand vom Glanzwinkel wieder.

Unter gewöhnlichen Druckkonditionen sind Aufdrucke der in den Beispielen genannten Rezepturen transparent und farbneutral. Zum Zwecke der visuellen Prüfung und der Auswertung mittels Farbmessung wurden in diesem konkreten Beispiel jeweils im Zusammenhang mit den in Figur 4 und 5 dargestellten Ergebnissen die Aufdrucke bezüglich der Zahl der Overprints und der Druckdichte (dpi) so vorgenommen, dass für die Aufdrucke der Tintenpräparationen, welche nur die herkömmliche nanoskalige, antimondotierte Zinnoxid(ATO)- Komponente enthalten (Vergleichsbeispiel, weißer Balken), eine Farbwertdifferenz ΔΕ von ca. 1 zum weißen Papier bei einer X-rite-Messgeometrie von 45° erhalten wurde. In der Folge sind die Aufdrucke schwach sichtbar und damit besser differenzierbar.

Für die Aufdrucke der Tinten mit den erfindungsgemäßen feindispersen Stoffmischungen (erfindungsgemäße Beispiele, schraffierte und schwarze Balken) wurden die entsprechenden Drucke mit analogen Druckparametern ausgeführt, d .h. die Zahl der Overprints und die Druckdichte (dpi) waren dieselben wie bei dem nur das ATO enthaltenden Vergleichsbeispiel . Die Farbwertdifferenzen ΔΕ sind in Figur 4 für den sichtbaren Wellenlängenbereich von 400 bis 720 nm angegeben. Es ist zu erkennen, dass die Aufdrucke der Tinten, welche die erfindungsgemäßen feindispersen Mischungen des Zinnoxids als Infrarot absorbierende Komponente mit den Kohlenstoffderivaten enthalten, sich farblich nur unwesentlich über verschiedene Betrachtungswinkel verändern.

In Figur 5 sind, basierend auf den im Zusammenhang mit Figur 4 beschriebenen Aufdrucken, den prozentualen Farbänderungen im sichtbaren Bereich (VIS: 400 bis 720 nm; X-rite-Messgeometrie 110°) die nach Anregung im NIR- Bereich erhaltenen, prozentualen Kontraständerungen im nahen Infrarot (NIR: 720 bis 2.500 nm)- und fernen Infrarot (FIR: 2,5 bis 14 pm)-Detektionsbe- reich gegenübergestellt.

Die Werte wurden jeweils unter Verwendung entsprechender IR-Kameras für die Aufdrucke gemessen : der Tintenpräparationen mit der nanoskaligen, antimondotierten

Zinnoxid (ATO)-Komponente (weißer Balken), der Tintenpräparationen, welche die erfindungsgemäßen feindispersen Stoffmischungen der nanoskaligen, antimondotierten Zinnoxid(ATO)- Probe mit Flammruß (schraffierter Balken) bzw. mit MWCNT (schwarzer Balken) enthalten.

Die Kontraständerungen werden aus den Intensitätswerten, welche vorab mit Hilfe der NIR- und FIR-Kameras ermittelt worden sind, berechnet nach der Formel : Untergrund - I Markierung

Kontrast = 100 %

Untergrund + 1 Markierung

Es ist zu erkennen, dass im VIS-Bereich der Detektion die Farbänderungen und damit die visuelle Sichtbarkeit der Aufdrucke sich ähnlich prozentual verhalten wie die erzielbaren Kontraste im NIR-Bereich, dass sich jedoch im Bereich der FIR-Detektion extrem vergrößerte Kontraste für die erfindungsgemäßen Markierungszusammensetzungen aus antimondotiertem Zinnoxid und den Kohlenstoffderivaten Ruß und CNT ergeben.

Insbesondere für Tinten, welche die erfindungsgemäße Mischung mit dem CNT enthalten, werden im Vergleich zu den visuell sichtbaren Farbänderungen extrem vergrößerte FIR-Kontraste erhalten. Wird die entsprechende NIR-Absorp- tion der Ruß- und der CNT-haltigen erfindungsgemäßen Mischungen in Figur 3 mit den resultierenden FIR-Kontrasten in Figur 5 verglichen, so ist klar ersichtlich, dass aufgrund der vergrößerten Absorption der Ruß- bzw. CNT-haltigen erfindungsgemäßen Mischungen (siehe Figur 3) die Energieaufnahme durch Absorption nicht der alleinige Grund für die erhaltenen, stark vergrößerten FIR-Kontraste ist. Vielmehr tragen auch die durch Einfluss der Ruß- bzw. CNT- Komponente veränderten Effekte der Wärmeleitfähigkeit und des Emissionsvermögens offensichtlich zu den verstärkten FIR-Kontrasten bei.

QQ群二维码
意见反馈