可携带的内视镜系统

申请号 CN201480001342.3 申请日 2014-08-08 公开(公告)号 CN104936542B 公开(公告)日 2017-08-29
申请人 玹妵科技有限公司; 发明人 团亲有; 宋京爱;
摘要 本 发明 涉及一种可携带的内视镜系统,更具体地说,该内视镜系统包括 手柄 与可装卸地安装在上述手柄的 探头 ,其特征在于,包括:照明单元,以LED为 光源 并且让光线朝前方照射;显像单元,把通过上述照明单元照射的前方图像加以影像化并显示到外部影像装置;及激光单元,针对通过上述显像单元显示的患部进行 治疗 ;把上述照明单元、显像单元及激光单元一体地安装到手柄内。如前所述的本发明除了显示器等必要装置以外,并不需要另行准备外部影像装置,因此能够不受场地限制地使用内视镜系统,其携带方便,由于其制成紧凑型的形状与尺寸而能够轻易使用。
权利要求

1.一种可携带的内视镜系统,包括手柄与可装卸地安装在上述手柄的探头,其特征在于,
包括:
照明单元,以LED为光源并且让光线朝前方照射;
显像单元,把通过上述照明单元照射的前方图像加以影像化并显示到外部影像装置;

激光单元,针对通过上述显像单元显示的患部进行治疗
把上述照明单元、显像单元及激光单元一体地安装到手柄内;
上述显像单元包括:
显像CCD或CMOS传感器,在PCB上具备传感器驱动电路;变换机构,配备在上述显像CCD或CMOS传感器的前方,相应于拍摄位置地通过影像透镜的远近调整影像焦点;上述显像CCD或CMOS传感器和上述变换机构依次排列在沿着手柄的长度方向形成的外壳内;
上述变换机构包括:
影像托架,与上述影像透镜结合,可朝长度方向移动地安装;
影像旋钮,可旋转地安装在上述手柄的外侧某一面并且调整上述影像透镜的焦点;及影像杆,安装在上述影像托架与影像旋钮之间,把上述影像旋钮的旋转传递给上述影像托架,把旋转运动转换成往复运动。
2.根据权利要求1所述的可携带的内视镜系统,其特征在于,
上述照明单元包括:
分歧的光纤束,让上述LED所生成的光汇聚后朝前方照射;及
准直镜,把上述分歧的光纤束所放射的光加以准直。
3.根据权利要求1所述的可携带的内视镜系统,其特征在于,
上述激光单元还包括控制器,其配备在上述手柄上并且调整激光的出射方向与焦点。
4.根据权利要求3所述的可携带的内视镜系统,其特征在于,
上述控制器包括:
第一控制单元,把激光经过的一双激光镜中的某一个朝长度方向移动而调整激光的焦点;及
第二控制单元,针对已经通过上述第一控制单元的激光的出射方向进行调整。
5.根据权利要求4所述的可携带的内视镜系统,其特征在于,
上述第一控制单元包括:
激光托架,一端结合在上述一双激光镜中的某一个,另一端则连续形成峰与谷;
激光齿轮,与上述激光托架进行齿轮结合并且在旋转运动时让上述激光托架朝上述手柄的长度方向移动;及
激光转盘,一部分暴露于上述手柄外部,与上述激光齿轮啮合,旋转时驱使上述激光齿轮旋转而使得上述激光托架朝上述手柄的长度方向移动,从而让激光镜移动。
6.根据权利要求4所述的可携带的内视镜系统,其特征在于,
上述第二控制单元包括:
一双反射件,由能够将已经通过上述第一控制单元的激光的出射方向予以变换的第一反射件与立方体棱镜构成;及
方向控制按钮,配备在上述手柄的本体外部,连接到上述一双反射件中的第一反射件并控制上述第一反射件的度,从而控制激光的照射方向。
7.根据权利要求6所述的可携带的内视镜系统,其特征在于,
上述方向控制按钮为实现全方位加压的面板形态,可进行操作,在暴露于外部的一面还形成凹槽,上述方向控制按钮的被加压状态由支撑内部某一面的弹性体予以复原。
8.根据权利要求7所述的可携带的内视镜系统,其特征在于,
上述弹性体是选自支撑上述方向控制按钮的外廓边缘的至少一个以上的板弹簧螺旋弹簧中的某一个。
9.根据权利要求1所述的可携带的内视镜系统,其特征在于,
上述手柄还包括立方体棱镜,其把上述显像单元与激光单元的两个管道加以组合并且使这两个管道在内视镜端部形成同轴。
10.根据权利要求1所述的可携带的内视镜系统,其特征在于,
上述手柄还包括玻璃窗,其能够防止通过结合到上述探头的一面污染的情形。
11.根据权利要求1所述的可携带的内视镜系统,其特征在于,
上述探头适用刚性棒形透镜。
12.根据权利要求1所述的可携带的内视镜系统,其特征在于,
上述照明单元配备在手柄的上侧部,显像单元配备在手柄的中间部分,激光单元配备在手柄的下侧部,上述照明单元、显像单元及激光单元则在手柄内一体化。
13.根据权利要求1到12中任一项所述的可携带的内视镜系统,其特征在于,上述显像单元还包括影像效果单元,其用来提高前方图像的可视性并进行患部判读。
14.根据权利要求13所述的可携带的内视镜系统,其特征在于,
上述影像效果单元包括:
滤光件单元,安装在立方体棱镜与影像透镜之间,把针对前方图像的影像效果以至少2种以上显像;
滤光件旋钮,可旋转地配备在上述外壳的外侧某一面;及
滤光件杆,安装在上述滤光件单元与滤光件旋钮之间,把上述滤光件旋钮的旋转力传递给上述滤光件单元而把针对前方图像的效果加以变换。
15.根据权利要求14所述的可携带的内视镜系统,其特征在于,
上述滤光件单元包括滤光件本体,其与上述滤光件杆进行轴结合,以放射状配备有至少一个以上的滤光件;
上述滤光件用来以视觉方式呈现出相异的效果并且在上述滤光件本体以放射状配备2个以上。
16.根据权利要求1所述的可携带的内视镜系统,其特征在于,
配备多个上述LED,并且放射白光与蓝光地或者放射白光与绿光地构成。

说明书全文

可携带的内视镜系统

【技术领域】

[0001] 本发明涉及一种可携带的内视镜系统,更具体地说,该内视镜系统包括手柄与可装卸地安装在上述手柄的探头,其特征在于,包括:照明单元,以LED为光源并且让光线朝前方照射;显像单元,把通过上述照明单元照射的前方图像加以影像化并显示到外部影像装置;及激光单元,针对通过上述显像单元显示的患部进行治疗;把上述照明单元、显像单元及激光单元一体地安装到手柄内。【背景技术】
[0002] 内视镜系统是一种针对现代医学中劳动集约型手术系统进行了革新的新系统,目前广泛地应用于各种手术用途。作为一例,内视镜系统在眼科领域占有非常重要的地位,(a)青光眼手术、内视镜下睫状体光凝术(Endoscopic cyclophotocoagulation,ECP);(b)晶状体囊支持(capsular support(巩膜缝合,Scleral fixation))不存在时的眼球内人工晶体植入术(Implantation of intraocular lenses,IOL)等均为该内视镜系统发挥重要作用的领域。
[0003] 青光眼(glaucoma)是一种视神经疾病并且一旦发病很难恢复,其最主要的原因为眼压(Intraocular pressure,IOP)。原发性开型青光眼(primary open-angle glaucoma,POAG)是青光眼中最常见的疾病。决定进行青光眼手术时主要考虑两种方法。其中最常用的一个方法是是增加房量的方法,也就是所谓的滤过术(filtering surgery)。但滤过术的主要问题是超过滤(overfiltration)。另一个方法是减少房水生产而降低眼压。但这个方法伴随着下睫状体的损伤过程。因此需要把下睫状体冷冻
(cyclocryotherapy)或者利用激光凝固下睫状体后经由巩膜进行手术。
[0004] 在这样的施术过程中由于施术人员无法观察治疗对象而可能在治疗时伤害到治疗对象组织的邻接组织,使得手术过程相对地非常复杂,还能出现疼痛、视下降、炎症、低眼压症及眼球萎缩(phthisis bulbi)现象。
[0005] 内视镜下睫状体光凝术(Endoscopic cyclophotocoagulation,ECP)装置需要将半导体激光源、内视镜及氙光源配备在同一探头内。上述装置分成两个部分,一个是20Ga的微探头与相机,另一个是内置有连接到光源及混合型(hybride)光电线缆的处理装置的工作站(station)。
[0006] 然而,该装置存在下列问题。
[0007] 1)由于所使用的光纤束在传达图像的像素数量受限制而导致影像装置的分辨率低。
[0008] 2)探头所放射出来的激光束放射机制固定在探头而难以聚焦到治疗对象组织。亦即,因为没有配备调节激光束的焦点或方向等的装置,因此可能会伤害到治疗对象区及其周边组织。更具体地说,由于不具备调整激光束焦点的功能而需要增强用来凝固光的激光输出,从而可能会意外地清除健康组织。
[0009] 3)需要使用大规模的显像(Imaging)系统与光源盒。因此,在屋内使用时受到一定的场地限制。该装置由于通常永久性地或半永久性地安装后使用,因此需要慎重挑选该装置的安装场地。
[0010] 4)白光内视镜虽然是一般检查时的第一选择,但上述内视镜只能局限于从粘膜表面反射的可视光进行观察。因此很难详细观察试料,容易忽略掉诊断或处置过程中所观察的部位的重要形状。为了更加确实地观察特定组织学形状,需要以添加了窄带显像(NBI,Narrow-band i maging)及荧光显像(Fluorescence Imaging)之类的辅助装置的形态辅助白光观察。
[0011] 窄带显像使用特定的蓝色及绿色波长光更加明确地观察粘膜表面的特定形貌。窄带显像通常为了使用440~460nm的蓝光区波长与540~560nm的绿光区波长周边的光而在内视镜光源系统以电磁方式激活特殊滤光件(filter)。由于血红蛋白的吸收峰发生在这些波长而使得血管显得很暗,因此能相对地提升粘膜等的可视性,其它表面的识别程度也会得到改善。
[0012] 美国专利第US 7,063,663号揭示了包括内视镜与照明组件的内视镜系统,上述系统将一系列LED组合到内视镜端部。该设计虽然能够有效地解决由于光源盒与导光件分离供应而发生的场地限制问题,但其设计复杂而且规模依然太大,因此较难携带使用。
[0013] 【解决的技术课题】
[0014] 本发明旨在解决上述问题,本发明的目的是提供一种微内视镜装置,该装置一体地内置了用来准确地进行影像导引激光凝固的所有装置。
[0015] 该装置包含有显像系统、光照明系统及能够运转并进行焦点化的组织清除系统,提供具有可互换式探头头部的便携式一体化封装体(pack age)。
[0016] 而且,本发明的另一个目的是提供一种内视镜装置,为了在进行激光凝固术时尽量减少周边组织的伤害而调整激光的焦点。
[0017] 而且,本发明的再一个目的是利用棒形透镜(Rod lens)而得以相比于使用光纤时获得更高的分辨率,与此同时,还能根据透镜与镜子的机构性游动轻易地调整激光的照射方向、照射领域的大小。
[0018] 而且,本发明的再一个目的是同时引进窄带显像技术而能够实现更高的对比度(contrast),从而能够明确地界定治疗对象。
[0019] 【解决课题的技术方案】
[0020] 能够实现前述目的的本发明的可携带的内视镜系统,包括手柄与可装卸地安装在上述手柄的探头,其特征在于,包括:照明单元,以LED为光源并且让光线朝前方照射;显像单元,把通过上述照明单元照射的前方图像加以影像化并显示到外部影像装置;及激光单元,针对通过上述显像单元显示的组织进行处理;把上述照明单元、显像单元及激光单元一体地安装到手柄内。
[0021] 优选地,上述照明单元包括:分歧的光纤束,让上述LED所生成的光汇聚后朝前方照射;及准直镜,把上述分歧的光纤束所放射的光加以准直。
[0022] 上述显像单元还包括:显像CCD或CMOS传感器,在PCB上具备传感器驱动电路;变换机构,配备在上述传感器的前方,相应于拍摄位置地通过影像透镜的远近调整影像焦点;优选地,依次排列在沿着手柄的长度方向形成的外壳内。
[0023] 优选地,上述变换机构包括:影像托架,与上述影像透镜结合,可朝长度方向移动地安装;影像旋钮,可旋转地安装在上述手柄的外侧某一面并且调整上述影像透镜的焦点;及影像杆,安装在上述托架与影像旋钮之间,把上述影像旋钮的旋转力传递给上述托架,把旋转运动转换成往复运动。
[0024] 优选地,上述激光单元还包括控制器,其配备在上述手柄并且调整激光的出射方向与焦点。
[0025] 优选地,上述控制器包括:第一控制单元,把激光经过的一双激光镜中的某一个朝长度方向移动而调整激光的焦点;及第二控制单元,针对通过了上述第一控制单元的激光的出射方向进行调整。
[0026] 优选地,上述第一控制单元包括:激光托架,一端结合在上述一双激光镜中的某一个,另一端则连续形成峰与谷;激光齿轮,与上述激光托架进行齿轮结合并且在旋转运动时让上述激光托架朝上述手柄的长度方向移动;及激光转盘(dial),一部分暴露于上述手柄外部,与上述激光齿轮啮合,旋转时驱使上述激光齿轮旋转而使得上述激光托架朝上述手柄的长度方向移动,从而让激光镜移动。
[0027] 优选地,上述第二控制单元包括:一双反射件,由能够将通过了上述第一控制单元的激光的出射方向予以变换的第一反射件与立方体棱镜构成;及方向控制按钮,配备在上述手柄的本体外部,连接到上述一双反射件中的第一反射件并控制上述第一反射件的角度,从而控制激光的照射方向。
[0028] 优选地,上述方向控制按钮为实现全方位加压的面板形态,可进行操作,在暴露于外部的一面还形成凹槽,上述方向控制按钮的被加压状态由支撑内部某一面的弹性体予以复原。
[0029] 优选地,上述弹性体是选自支撑上述方向控制按钮的外廓边缘的至少一个以上的板弹簧螺旋弹簧中的某一个。
[0030] 优选地,上述手柄还包括立方体棱镜(cube prism),其把上述显像单元与激光单元的两个管道加以组合并且使其在内视镜端部形成同轴。
[0031] 优选地,上述手柄还包括玻璃窗(glass window),其能够防止通过结合到上述探头的一面污染的情形。
[0032] 优选地,上述探头适用刚性棒形透镜。
[0033] 优选地,上述照明单元配备在手柄的上侧部,显像单元配备在手柄的中间部分,激光单元配备在手柄的下侧部,上述照明单元、显像单元及激光单元则在手柄内一体化。
[0034] 优选地,上述显像单元还包括影像效果单元,其用来提高前方图像的可视性并进行患部判读。
[0035] 优选地,上述影像效果单元包括:滤光件单元,安装在上述立方体棱镜与影像透镜之间,把针对前方图像的影像效果以至少2种以上显像;滤光件旋钮,可旋转地配备在上述外壳的外侧某一面;及滤光件杆,安装在上述滤光件单元与滤光件旋钮之间,把上述滤光件旋钮的旋转力传递给上述滤光件单元而把针对前方图像的效果加以变换。
[0036] 上述滤光件单元包括滤光件本体,其与上述滤光件杆进行轴结合,以放射状配备有至少一个以上的滤光件;上述滤光件用来以视觉方式呈现出相异的效果,优选地,在上述滤光件本体以放射状配备2个以上。
[0037] 优选地,配备多个上述LED,并且放射白光与蓝光地或者放射白光与绿光地构成。
[0038] 【有益效果】
[0039] 如前所述的本发明内视镜一体地内置了用来准确地进行影像导引(vi deo guide)激光凝固的所有装置,从而能够提高便携式内视镜的使用便利性及使用领域的扩展性。
[0040] 而且,本发明在进行激光凝固术时能够以机构方式调整激光焦点,可以根据凝固术对象组织的位置灵活地运用激光,因此能够在施术时尽量减少周边组织的损伤。
[0041] 而且,本发明使用了分辨率相对较高的棒形透镜而得以相比于使用光纤时获得更高的分辨率,与此同时,还能根据透镜与镜子的机构性游动轻易地调整激光的照射方向、照射领域的大小。
[0042] 而且,本发明同时引进窄带显像技术而能够实现更高的对比度(cont rast),从而能够明确地界定治疗对象。【附图说明】
[0043] 图1是本发明一实施例的内视镜的侧视、后视、主视图,其示出了透视状态。
[0044] 图2是本发明一实施例的内视镜手柄及分离后的探头的剖视图。
[0045] 图3是内视镜的局部上剖视图,其包括照明系统的详细图。
[0046] 图4是两种类型的分歧型光纤束,各自示出了一般光纤束与具备锥形(taper)端部的光纤束。
[0047] 图5是关于激光束转向(steering)及聚焦机构的图形。
[0048] 图6示出了基于方向控制按钮的运动的光束照射方向。
[0049] 图7是说明影像效果单元的剖视图。
[0050] 图8示出了内视镜的可更换式探头的各种变量。【具体实施方式】
[0051] 下面结合较佳实施例与附图详细说明本发明。
[0052] 本发明的便携式内视镜系统凭借下列理由不同于现有技术
[0053] 1)本发明内视镜的激光凝固(清除组织)系统与影像管道(channel)成为同轴地安装,在直接连续处理影像的同时还能精密地进行凝固术,即使如此,系统的整体大小却非常紧凑。
[0054] 2)本发明的激光凝固系统包括激光束聚光器及控制器,因此在清除组织时能够尽量减少作为非处理对象的其它组织上可能会发生的损伤。
[0055] 3)由于安装了窄带显像系统而得以实现较高的对比度(contrast)。因此能够精密地施术。
[0056] 如图1所示,本发明的内视镜系统分成两个部分,第一部分是手柄(20)并且在内部包含照明单元(110)、显像单元(120)、激光单元(150),外部则包含激光束聚焦机构及控制器(153)。利用方向控制按钮(167)调整上述激光的照射方向,利用激光转盘(157)调整激光的焦点。第二个部分是可装卸的探头(10)。根据光学特性与图像性能选择性地使用可装卸的探头(10)。
[0057] 更具体地说,上述内视镜系统包括:照明单元(110),以LED(113)为光源并且让光线朝前方照射;显像单元(120),把通过上述照明单元(110)照射的前方图像加以影像化并显示到外部影像装置;激光单元(150),针对通过上述显像单元(120)显示的组织进行清除之类的处理;尤其是,把上述照明单元(110)、显像单元(120)及激光单元(150)一体地安装到手柄(20)内,因此携带方便并且能够实现轻型紧凑的内视镜系统。尤其是,上述照明单元(110)在手柄(20)的上侧部、显像单元(120)在手柄(20)的中间部分、激光单元(150)在手柄(20)的下侧部各自沿着长度方向排列地配置,上述照明单元(110)、显像单元(120)及激光单元(150)则手柄(20)内一体化。
[0058] 因此,为了小型化及轻型化而在手柄(20)内适当排列并且实现本发明的特征。
[0059] 探头(10)通过联结用构件(未图示)连接到手柄(20),也能让手柄(20)与探头(10)进行光学对中。在手柄(20)侧面配备装卸杆(25),对装卸杆(25)加压就能在手柄(20)对探头(10)进行装卸。
[0060] 内视镜通过多销接头(Multi pin connector)(23)直接连接到显示器(3)而得以立即观察被检查的对象,还因为紧凑结构实现轻型化而具备优异的携带性,能够在任何现场立即使用。而且,内视镜可以连接到图像处理器(2)或电脑(1)后进行图像对比度调整、白平衡(white bala nce)及色感改善之类的图像精密处理。
[0061] 对于更换探头(10)而进行的焦距调整,可以操作位于内视镜背面的激光转盘(161)即可实现。如果使用由棒形透镜(13)制成的刚性探头(10),可以利用激光转盘(161)在内视镜被固定的状态下调整内视镜探头(10)端部与观察区之间的工作距离。凭此,在特别狭窄的空间使用激光时,能够在不伤害周边组织的情形下清除内视镜端部的不同距离内的所有区域的组织(ablation)。
[0062] 开关(31)把照明源与相机连接到外部电源。电源选自外部电池组(4)或电压适配器(5)。
[0063] 图2是本发明一实施例的内视镜手柄及分离后的探头的剖视图。该图没有揭示激光运行及聚焦机构。
[0064] 照明单元(110)包括一个或两个LED(113),各自安置于分离的热沉(Heat Sink)(115)上。上述两个LED(113)由单一LED驱动器(117)驱动。
[0065] 热沉(115)能将LED(113)所生成的热的一部分排除,通过外壳(21)排到外气。
[0066] 优选地,如图3所示,上述照明单元(110)包括:分歧的光纤束(119),让上述LED(113)生成的光汇聚后朝前方照射;及准直镜(111),把上述分歧的光纤束(119)所放射的光加以准直。上述LED(113)由两个LED(113)构成,从上述LED(113)放射的光束由分歧的光纤束(119)在某一地点予以汇合。
[0067] 作为一实施例,上述两个LED(113)中的一个照射白光而另一个则照射蓝光或绿光并且可以利用开关(未图示)选择性地使用,从而能够使用白光显像或窄带显像。上述LED(113)可以由两个以上的数量构成。
[0068] 另一方面,上述两个LED(113)也可以只使用白光并且在显像单元的镜头上并列设置滤光件(filter)而得以选择性地观察白光显像与窄带显像,这将在后面予以说明。亦即,不适用滤光件地使用颜色不同的LED(113)的情形及适用滤光件的情形各自属于独立的实施例。
[0069] 分歧的光纤束(119)虽然可以由二色性分束器(dichroic beam splitter)替代,但单价较高,因此分歧的光纤束(119)更有利。
[0070] 分歧的光纤束(119)的二色性分束器的另一个优点是如图4所示地生成锥部(taper)形状的端部而得以减少端部直径。凭借锥部形状的端部减少了端部直径时,可以让照明源的光斑(spot)更小而得以提高照射效率(efficiency of projection)。
[0071] 例如,光纤束(119)的端部直径减少到2分之1时能得到4倍的放射强度增强效果,光纤束(bundle)(119)的直径减少到3分之1时能得到9倍的放射强度增强效果。如前所述地提高照明效率时,LED(113)的耗电量也会减少。
[0072] 把LED(113)从白光替换成绿光或蓝光而得以改变放射光谱,为了进一步缩小放射波长带并且为了在显像时提高信噪比,可以把窄带通滤光件置于LED(113)与光纤束(119)之间。
[0073] 更具体地说,滤光件转换杆(118)用来把显像模式从白光显像(W)转换到窄带显像(NB)。亦即,滤光件由无色透明滤光件与绿色或蓝色的彩色滤光件构成,利用滤光件转换杆(118)把所需滤光件置放到LED(113)而得以让白光显像与窄带显像互相替代。
[0074] 如果在窄带光谱观察试料,可以在观察组织类型时或者在病理学上获得对比度(contrast)改善效果而得以和组织的周边明确区分开来。此时,在组织的周边部事先注入染料(Fluorescence endoscopy,荧光内视镜)或者利用特定光谱带(窄带显像,NBI)中更容易吸收的现象。滤光件转换杆(12)能够以机械方式驱使位于显像单元(120)正面部的滤光件更换器旋转。作为一例,所需要获得的影像必须在组织类型或者病理学上与周边组织形成对比时应该提高对比度,为此,可以利用荧光内视镜通过NBW光谱观察组织,非常有利于组织的定量分析。
[0075] 窄带显像(Narrow Band Imaging,NBI)使用具备440~460nm波长的蓝光与具备540~560nm波长的绿光等频带较窄的放射光进行。由于血红蛋白的吸收峰发生在这些波长而使得血管显得很暗,因此相对地提高了对于血红蛋白的可视性并且相比于其它表面结构显得更明晰。
[0076] 分歧的光纤束(119)端部所放射的光由准直镜(collimating lens,111)予以准直。准直后的光则由聚焦透镜(focusing lens,11)汇聚到可装卸的探头(10)的光纤束(119)端部上。
[0077] 优选地,上述显像单元(120)还包括:显像CCD或CMOS传感器(121),在PCB(123)上具备传感器驱动电路;变换机构(127),配备在上述传感器(121)的前方,相应于拍摄位置地通过影像透镜(125)的远近调整影像焦点;优选地,依次排列在沿着手柄(20)的长度方向形成的外壳(21)内。上述传感器(121)正面部的影像透镜(125)向传感器(121)表面照射图像。
[0078] 上述变换机构(127)包括:影像托架(129),与上述影像透镜(125)结合,可朝长度方向移动地安装;影像旋钮(131),可旋转地安装在上述手柄(20)的外侧某一面并且能够调整上述影像透镜(125)的焦点;及影像杆(133),安装在上述影像托架(129)与影像旋钮(131)之间,把上述影像旋钮(131)的旋转力传递给上述影像托架(129),把旋转运动转换成往复运动。
[0079] 而且,立方体棱镜(27)把诸如显像及激光之类的两个管道(channel)加以组合并且使其在内视镜端部形成同轴,另一方面,还能发挥出作为分束器的中继作用而把后述的第一反射件(165)所反射的激光重新加以反射后照射到棒形透镜(13)。上述立方体棱镜(27)让截面为直角三角形的两个三角柱棱镜的斜面对接而整体形成四角柱,激光在各斜面所构成的界面折射而被导向棒形透镜(13)。
[0080] 玻璃窗(29)能够防止装置被异物与湿气污染。棒形透镜(13)将图像中继光学装置(15)发出的显像束(imaging beam)予以准直并且将其传给聚焦透镜(11)。
[0081] 另一方面,显像单元(120)还包括图8所示影像效果单元(140)以便把LED(113)的白光替换成绿光或蓝光而提高前方图像的可视性与组织的判读性。
[0082] 影像效果单元(140)把白光图像转换成窄带图像,如果在窄带光谱观察试料,可以在观察组织类型时或者在病理学上获得对比度改善效果而得以和组织的周边明确区分开来。亦即,其用途在于利用手术等方式清除组织时区分正常组织与作为清除对象的组织,区分组织时,在组织的周边部事先注入染料或者利用特定光谱带中更容易吸收的现象。
[0083] 如前所述的影像效果单元(140)包括:滤光件单元(141),安装在立方体棱镜(27)与影像透镜(125)之间,把针对前方图像的影像效果以2种以上显像;滤光件旋钮(147),可旋转地配备在外壳(21)外侧影像旋钮(未图示)的邻接区域;滤光件杆(149),安装在滤光件单元(141)与滤光件旋钮(147)之间,把滤光件旋钮(147)的旋转力传递给滤光件单元(141)而把针对前方图像的效果加以变换。
[0084] 滤光件单元(141)包括:至少一双滤光件(145),在立方体棱镜(27)与影像透镜(125)之间以LED(113)的白光实现绿色或蓝色等2种以上的效果;滤光件本体(143),与滤光件杆(149)进行轴结合,滤光件(145)则呈放射状地配备。
[0085] 滤光件(145)如图所示地包括将白光直接显像的第一滤光件(145-1)、把白光变换成绿色或蓝色后显像的第二滤光件(145-2),该滤光件(145)可以根据滤光件旋钮(147)的旋转而选择性地适用。此时,各滤光件(145)的特性可以互相变换位置,优选地,根据制作用途而选择性地适用。
[0086] 图5是关于激光束转向及聚焦机构的图形。
[0087] 由光纤构成的外部激光源通过连接器(151)连接到内视镜手柄。为了让准直后的激光束在输出时良好地输出经过准直的光束而使其经过两个同一激光镜(153),该两个激光镜的相隔距离等于它们的焦距之和。
[0088] 构成上述管道的激光单元(150)还包括控制器(153),其配备在上述手柄(20)并且调整激光的出射方向与焦点。
[0089] 上述控制器(153)包括:第一控制单元(155),把激光经过的一双激光镜(153)中的某一个朝长度方向移动而调整激光的焦点;第二控制单元(163),针对通过了上述第一控制单元(155)的激光的出射方向进行调整。
[0090] 上述第一控制单元(155)包括:激光托架(157),一端结合在上述一双激光镜(153)中的某一个,另一端则连续形成峰与谷;激光齿轮(159),与上述激光托架(157)进行齿轮结合并且在旋转运动时让上述激光托架(157)朝上述手柄(20)的长度方向移动;激光转盘(d i a l)(161),一部分暴露于上述手柄(20)外部,与上述激光齿轮(159)啮合,旋转时驱使上述激光齿轮(159)旋转而使得上述激光托架(157)朝上述手柄(20)的长度方向移动,从而让激光镜(163)移动。
[0091] 上述激光镜(153)中的一个可以结合在第一控制单元(155)后沿着轴移动。通过该排列及透镜(l en s)的轴移动可以精密地调整分散角,从而能够精密地调整棒形透镜(13)端部的激光焦点位置。
[0092] 上述第二控制单元(163)包括:一双反射件(第一反射件(165)及立方体棱镜(27)),把经过上述第一控制单元(155)的激光的出射方向加以转换;方向控制按钮(167),配备在上述手柄(20)外部,连接到上述第一反射件(165)并控制上述反射件(165)的角度而得以调整激光的照射方向。
[0093] 经过准直的光束由连接到方向控制按钮(167)的第一反射件(165)以90度反射。第一反射件(165)具有和具备2个自由度的方向控制按钮(167)相同的自由度地游动。
[0094] 让上述方向控制按钮(167)左右移动或上下移动时激光在内视镜端部随其转换方向。方向控制按钮(167)通过弹性体(171)得到弹性支持,设定了让激光束从棒形透镜(13)的中心部照射的基准位置。
[0095] 激光能够对焦并且在整个领域的视野(173)控制方向,因此拿开对象物体(175)时免不了对周边组织造成伤害。图6示出了通过棒形透镜(13)照射的激光方向领域。
[0096] 图7示出了内视镜的可更换式探头的各种变量。
[0097] 如今存在着具备各式各样功能的内视镜探头并且可以互换,这些功能针对诸如不同长度、不同直径、视角(Angle of View,AOV)、视野(Field of View,FOV)、弯曲程度(the degree of flexibility)、最小功过距离、最大工作距离(Working Distance,WD)、特定类型的诊断照射及患者身体领域。
[0098] 因此,凭借着该互换性而得以非常有效地应用于多图导引鼻喉科手术(multipicture guided ENT surgery)领域。而且,小型的刚性探头可应用于微创骨科手术(Minimal Invasive Orthopedic Surgery,M IOS)领域,具体地说,能够应用于膝盖、肩膀、手、脚或臀的关节镜施术。
[0099] 而且,准小型刚性探头的另一个应用领域是眼科手术领域和乳腺管观测领域。具备游动性的探头能够在以诸如诊断及治疗为目的的泌尿科(urology)、支气管内视镜检查(bronchoscopy)领域。
[0100] 而且,利用适用于慢性腰痛(chronic back pain)与神经根病(radiculopathy)的诊断及治疗用途的微侵袭技术(minimally invasive technique)检查硬膜外腔(epidural space)时可以使用具备游动性的小型探头。
[0101] 【产业上的用途】
[0102] 在产业方面,内视镜系统用来照射及观察较难接近或危险的区域。更进一步,可互换式探头可以制成具备机构及/或吸入管道(channel)的可回收性探头或一次性探头。
QQ群二维码
意见反馈