基材与DLC膜之间形成的中间层的形成方法、DLC膜形成方法、以及基材与DLC膜之间形成的中间层 |
|||||||
申请号 | CN201480060930.4 | 申请日 | 2014-11-06 | 公开(公告)号 | CN105705675B | 公开(公告)日 | 2017-12-01 |
申请人 | 同和热处理技术株式会社; | 发明人 | 渡边元浩; 松冈宏之; 榊原渉; 野上惣一郎; | ||||
摘要 | 一种 中间层 形成方法,其为通过PVD法来形成中间层的中间层形成方法,所述中间层形成在基材与DLC膜之间,其具有在基材上形成Ti层的Ti层成膜工序、和在Ti层上形成TiC层的TiC层成膜工序,Ti层成膜工序中,向装载基材的腔室内供给Ar气体,以成膜压 力 为0.4Pa以上且1Pa以下的范围内的压力形成Ti层,TiC层成膜工序中,向前述腔室内供给Ar气体和CH4气体,以成膜压力为0.2Pa以上且不足0.4Pa的范围内的压力,对基材施加偏置 电压 比Ti层成膜工序中施加于基材的第一偏置电压高、且偏置电压高于‑100V的第二偏置电压,从而形成TiC层。 | ||||||
权利要求 | 1.一种中间层形成方法,其为通过PVD法来形成中间层的中间层形成方法,所述中间层形成在基材与DLC膜之间, |
||||||
说明书全文 | 基材与DLC膜之间形成的中间层的形成方法、DLC膜形成方法、以及基材与DLC膜之间形成的中间层 技术领域[0001] (关联申请的相互参照) [0002] 本申请基于2013年11月6日在日本国申请的日本特愿2013-230059号主张优先权,将其内容援引至此。 背景技术[0004] 近年来,出于机械部件硬度的确保、提高耐摩耗性的目的,进行对机械部件涂覆DLC膜。另外,为了提高模具的脱模性,也进行对模具涂覆DLC膜,DLC膜的用途多种多样。 [0005] 一般而言,已知在基材的表面形成DLC膜时,基材与DLC膜的密合性差,DLC膜变得容易剥离。因此,以往出于为了提高基材与DLC膜的密合性目的,进行在基材与DLC膜之间形成中间层。例如,专利文献1公开了作为中间层形成Ti层和TiC层的的方法。如此在基材与DLC膜之间设置中间层,由此提高基材与DLC膜的密合性。 [0006] 现有技术文献 [0007] 专利文献 [0008] 专利文献1:日本特开平10-203896号公报 发明内容[0009] 发明要解决的问题 [0010] 但是,市场中期望进一步具有密合性的DLC膜的制造。例如,对汽车部件适用DLC膜的情况下,要求半永久性的密合性。另外,为了模具的脱模性提高而实施DLC涂覆的情况下,越具有耐高表面压力的密合性,越能够扩大可以适用的使用环境,因此需求密合性的提高。 [0011] 进而,就近年的DLC膜的成膜而言,从生产率的观点出发,有时采用成膜速度快的等离子体CVD法,但从制法的特性上来说,难以得到相对于利用以往方法形成的中间层的高密合性。即,通过等离子体CVD法形成的DLC膜,与通过专利文献1公开的这样的方法形成的中间层的密合性不充分,作为结果,基材与DLC膜的密合性也不充分。因此,必需进一步提高了基材与DLC膜的密合性的中间层。 [0012] 本发明是鉴于上述情况作出的,目的在于提高基材与DLC膜的密合性。 [0013] 用于解决问题的方案 [0014] 为了解决上述课题,本发明为中间层形成方法,其特征在于,其为通过PVD法来形成在中间层的中间层形成方法,所述中间层形成在基材与DLC膜之间,其具有在基材上形成Ti层的Ti层成膜工序、和在前述Ti层上形成TiC层的TiC层成膜工序,前述Ti层成膜工序中,向装载基材的腔室内供给Ar气体,以成膜压力为0.4Pa以上且1Pa以下的范围内的压力形成前述Ti层,前述TiC层成膜工序中,向前述腔室内供给Ar气体和CH4气体,以成膜压力为0.2Pa以上且不足0.4Pa的范围内的压力对基材施加偏置电压比前述Ti层成膜工序中施加于基材的第一偏置电压高、且偏置电压高于-100V的第二偏置电压,从而形成前述TiC层。 [0015] 另外,根据其它观点,作为本发明提供通过等离子体CVD法在通过上述中间层形成方法形成的中间层上形成DLC膜的DLC膜形成方法。 [0016] 另外,根据其它观点,本发明的特征在于,其为在基材与DLC膜之间形成的中间层,且具有在基材上形成的Ti层和在前述Ti层上形成的TiC层,针对前述TiC层的通过使用集中法的X射线衍射对该基材的表面测得的TiC的(111)晶面的X射线衍射峰强度ITiC(111)和Fe的(110)晶面的X射线衍射峰强度IFe(110),以ITiC(111)/IFe(110)×100表示的强度比为60以上。 [0017] 发明的效果 [0019] 图1为示出本发明的实施方式的基材上的膜结构的示意图。 [0020] 图2为示出本发明的其它实施方式的基材上的膜结构的示意图。 [0021] 图3为示出比较例1的洛氏硬度试验后的压痕周围区域的图。 [0022] 图4为示出比较例2的洛氏硬度试验后的压痕周围区域的图。 [0023] 图5为示出比较例3的洛氏硬度试验后的压痕周围区域的图。 具体实施方式[0024] 以下,针对本发明的实施方式,如图1所示,基于在基材1的表面形成中间层2(Ti层2a、TiC层2b)、在中间层2上形成DLC膜3的方法进行说明。需要说明的是,本实施方式中,通过为PVD法的一例的所谓的UBMS(非平衡磁控溅射)法形成中间层2,利用等离子体CVD法形成DLC膜3。UBMS(非平衡磁控溅射)法是通过故意地使溅射阴极的磁场非平衡,强化对基板的等离子体照射的溅射方式,能够形成致密的薄膜。另外,中间层2与DLC膜3的形成中使用的装置,使用能够在与形成中间层2的腔室相同的腔室内进行等离子体CVD的UBMS装置。该UBMS装置一般而言是周知的,因此本说明书中省略装置构成的说明。另外,本说明书和附图中,实质上具有相同的功能结构的要素通过赋予同一符号而省略重复说明。 [0025] 首先,向UBMS装置的腔室内装载作为基材1的SCM415、SUS310、SKD11等铁系材料。之后,将腔室内抽真空,例如减压至2.6×10-3Pa左右。接着,利用钨灯丝的加热实施Ar(氩)轰击处理,进行基材表面的清洁。需要说明的是,Ar轰击处理的处理条件例如腔室内压力为 1.3~1.4Pa、处理时间为30分钟、灯丝放电电压为40V、灯丝放电电流为10A、偏置电压为300~400V。 [0026] 接着,开始在基材1上形成Ti层2a的Ti层成膜工序。最初,向腔室内供给作为等离子体生成用气体的Ar气体。此时,以腔室内压力(成膜压力)为0.4Pa以上且1.0Pa以下的范围内的压力供给Ar气体。另外,调节Ar气体的流量以使腔室内压力在Ti层成膜工序中为一定值。腔室内温度被调节至200℃以下。该腔室内温度直至后述的DLC膜3的成膜结束期间,被维持在200℃以下。 [0027] 之后,使靶材用脉冲电源工作同时使偏置用脉冲电源工作,对基材1施加-200V的偏置电压(后述的“第一偏置电压”)。由此,经等离子体化的Ar气体轰击Ti靶材,从Ti靶材表面弹出的Ti到达基材1,开始在基材1形成Ti层2a。进行这样的Ti层2a的成膜处理直至Ti层2a变为规定的膜厚(例如0.1μm)。没有Ti层2a时,得不到后述的TiC层2b与基材的密合性。 [0028] 需要说明的是,Ti层成膜工序中的偏置电压低于-500V时,有对基材1造成损伤之虞。另一方面,Ti层成膜工序中的偏置电压高于-100V时,到达基材1的Ti的能量小,有膜变得不致密、变得过于平滑导致得不到密合性之虞。因此,Ti层成膜工序中的偏置电压优选为-500~-100V。更优选为-400~-200V、进一步优选为-300~-200V。需要说明的是,本说明书中,表示负的偏置电压的高低的情况下,将更接近0V的偏置电压表示为“偏置电压高”。 [0029] 接着,开始在Ti层2a上形成TiC层2b的TiC层成膜工序。首先,进一步向供给有Ar气体的腔室内供给CH4(甲烷)气体。此时,以Ar气体与CH4气体的流量比为95:5左右且为一定值地供给CH4气体。另外,调节各气体的流量使腔室内压力(成膜压力)变为0.2Pa以上且不足0.4Pa的范围内的压力。腔室内压力在TiC层成膜工序中被调节成一定值。另外,对基材1施加的偏置电压从-200V变更为-50V。 [0030] 通过设为上述成膜条件,在Ti层2a上开始形成TiC层2b。进行这样的TiC层2b的成膜处理直至TiC层2b变为规定的膜厚(例如0.45μm)。 [0031] 需要说明的是,TiC层成膜工序中的偏置电压(后述的“第二偏置电压”)为-100V以下时,形成的TiC层2b变得过于平滑而不能充分地确保密合性。因此,TiC层成膜工序中的偏置电压必需设为高于-100V。另一方面,TiC层成膜工序中的偏置电压变为-30V以上时,不进行Ti与碳的混合,有硬度变低之虞。因此,TiC层成膜工序中的偏置电压优选设为高于-100V且不足-30V。进一步优选为-75~-50V。 [0032] 通过以上的Ti层成膜工序及TiC层成膜工序在基材1的表面形成中间层2。 [0033] 之后,向与形成上述中间层2的腔室相同的腔室内供给作为DLC膜3的成膜气体的C2H2(乙炔)气体。随后,利用以往就周知的等离子体CVD法在中间层2的TiC层2b上形成DLC膜3。 [0034] 经过以上一连串工序,在基材上形成中间层2(Ti层2a、TiC层2b)及DLC膜3。如本实施方式所示,使TiC层2b的成膜压力低于Ti层2a的成膜压力、使TiC层2b的成膜工序中的偏置电压(第二偏置电压)高于Ti层2a的成膜工序中的偏置电压(第一偏置电压)时,如后述的实施例所示,能够提高基材1与DLC膜3的密合性。由此,DLC膜3变得难以剥离,能够提高作为DLC膜3的性能。 [0035] 以上,针对本发明的适宜的实施方式进行说明,但本发明不限定于所述的例子。本领域技术人员在权利要求书的范围记载的技术思想的范围内显然可以想到各种变更例或修正例,关于这些也当然地被理解为属于本发明的技术范围。 [0036] 例如,上述实施方式中,使用Ar气体作为等离子体生成用气体,但不限定于此。另外,中间层2的形成时,不限定于使用Ti靶材。另外,向腔室内供给的气体也不限定于CH4气体、C2H2气体。 [0037] (倾斜层2c的形成) [0038] 另外,上述实施方式中,作为中间层2形成Ti层2a和TiC层2b,如图2所示,也可以在Ti层2a与TiC层2b之间形成倾斜层2c。倾斜层2c是指Ti层2a侧是富Ti的、TiC层2b侧与Ti层2a侧相比是C量较多的层。如后述的实施例所示,通过设置倾斜层2c能够提高基材1与DLC膜 3的密合性。 [0039] 此处,针对倾斜层2c的成膜工序进行说明。首先,利用上述实施方式中说明的Ti层成膜工序在基材1上形成Ti层2a。之后,向供给了Ar气体的腔室内供给CH4气体。流量为m3(1000L)/分钟等的体积基准。此时,缓慢增加CH4气体的流量以使Ar气体与CH4气体的流量比从100:0缓慢变为95:5。另外,对基材1施加的偏置电压根据流量从Ti层成膜工序中的-200V缓慢升高至TiC层成膜工序中的-50V。需要说明的是,Ar气体与CH4气体的流量比及偏置电压在直至倾斜层成膜工序结束期间以持续变化的方式进行调节。例如,倾斜层成膜工序中的处理时间为10分钟时,使Ar气体与CH4气体的流量比持续变化10分钟,经过10分钟时的流量比变为95:5。针对偏置电压也是同样的。 [0040] 由此,在Ti层2a上形成组成连续变化的倾斜层2c。需要说明的是,倾斜层成膜工序中的成膜压力可以设定为和Ti层成膜工序中的压力相同,或设定为低于Ti层成膜工序的成膜压力且高于TiC层的成膜压力的压力。另外,即使在将偏置电压设为一定值,使CH4气体的流量缓慢地增加的情况下,也能够形成倾斜层2c。 [0041] 之后,倾斜层2c形成规定的膜厚(例如,0.05μm)后,利用上述实施方式中说明的TiC层成膜工序在倾斜层2c上形成TiC层2b。随后,通过等离子体CVD法在TiC层2b上形成DLC膜3。 [0042] 实施例 [0043] 以下述的表1所示的条件在基材上以UBMS法形成中间层,在该中间层上以等离子体CVD法形成DLC膜。随后,针对此时的DLC膜的密合性的差异进行评价。针对DLC膜的评价结果示于表1。 [0044] 本实施例中,作为基材使用的是将SCM415进行浸碳淬火处理,在200℃下进行回火处理,研磨至表面粗糙度为Ra=0.01μm的物质。另外,为了抑制基材的硬度下降,调节腔室内温度以从Ti层成膜工序的开始至DLC膜成膜工序的结束为200℃以下。另外,靶材个数设为1个,靶材用脉冲电源的输出设为6kW。另外,基材与Ti靶材的距离设为约15cm、基板旋转数设为2rpm的自公转运动,频率设为25kHz、Duty比(占空比)设为75%。需要说明的是,表1中的“成膜压力”是指成膜处理中的腔室内的压力。 [0045] 另外,本实施例中,形成Ti层及TiC层作为中间层。需要说明的是,实施例3~8,比较例1~4中进一步还形成倾斜层。就各层的成膜时间而言,Ti层为15分钟、倾斜层为7.5分钟、TiC层为105分钟。另外,DLC膜以膜厚为1.8μm的方式进行成膜,膜硬度使用微小硬度试验机(HELMUT FISCHER集团制FISCHERSCOPE H100C)调节至HV1600左右。 [0046] 另外,DLC膜的密合性的评价利用划痕试验和洛氏硬度试验机进行压痕观察,用各试样进行比较。 [0047] 对于划痕试验,在试样表面使用洛氏硬度C等级压头(基准JIS Z 2245:前端的曲率半径0.2mm、圆锥角120°的金刚石)、以划痕长度10mm、划痕速度10mm/分钟、划痕负载0~100N实施,划痕后,记录以附属的显微镜观察发生剥离的负载。本实施例中,从实用性的观点出发,发生剥离时的负载为35N以上记作合格。 [0048] 另外,利用洛氏硬度试验机的压痕是在试样的表面用上述洛氏硬度C等级压头负载初试验力98.07N、总试验力1471N来形成。随后,针对压痕周围区域的DLC膜的剥离的有无进行观察。本实施例中,将没有DLC膜的剥离的记作合格。 [0049] 即,本实施例中,划痕试验中DLC膜的发生剥离时的负载为35N以上、并且洛氏硬度试验的压痕周围区域中DLC膜的剥离不存在的状态时,判断提高了基材与DLC膜的密合性。 [0050] [表1] [0051] [0052] 如表1的实施例1~8所示,使TiC层的成膜压力低于Ti层的成膜压力来形成中间层的情况下,划痕试验及洛氏硬度试验的结果均达到合格基准。 [0053] 另一方面,如比较例1~3所示,将中间层的成膜压力设定为一定值的情况下,划痕试验的结果低于合格基准(发生剥离时的负载为35N以上)。另外,在洛氏硬度试验后的压痕周围区域如图3(比较例1)、图4(比较例2)、图5(比较例3)所示,可知产生DLC膜的剥离、DLC膜的密合性不良。 [0054] 接着,着眼于实施例1~3的成膜条件时,Ti层的成膜压力为0.4Pa、TiC层的成膜压力为0.2Pa,成膜压力为相同条件。但是,结果是具有倾斜层的实施例3中的划痕试验的发生剥离时的负载大于没有倾斜层的实施例1、2的发生剥离时的负载。即,可知作为中间层形成倾斜层时,提高DLC膜的密合性的效果变大。 [0055] 另外,比较例1中虽然具有能够提高DLC膜的密合性的倾斜层,但DLC膜的评价结果为不合格。另一方面,不具有倾斜层的实施例1、2中的DLC膜的评价结果是良好的。即,实施例1、2与比较例1相比时,证明Ti层及TiC层的成膜压力不为一定值为宜。 [0056] 接着,着眼于实施例3与实施例4的成膜条件时,实施例3、4均具有倾斜层,但差别仅在于Ti层的成膜压力为0.4Pa和1Pa。比较实施例3和实施例4的DLC膜的评价结果时,结果是实施例3的划痕试验中的发生剥离时的负载大。因此,可知Ti层的成膜压力优选较低一者。 [0057] 此外,实施例3与实施例4的成膜条件的差异仅为Ti层的成膜压力,以及实施例3与实施例4中的DLC膜的评价结果均达到合格基准,鉴于以上可知:Ti层的成膜压力高于实施例3的0.4Pa的压力且低于实施例4的1Pa的压力,例如即使设为0.7Pa时,DLC膜的评价结果也是良好的。 [0058] 另外,比较例1的Ti层及TiC层的成膜压力为0.4Pa这一定值,该条件下的DLC膜的评价结果为不合格。另一方面,实施例3中的Ti层的成膜压力为0.4Pa、TiC层的成膜压力为0.2Pa,TiC层的成膜压力小于Ti层的成膜压力。该条件下的DLC膜的评价结果为合格,鉴于此可知Ti层与TiC层的成膜压力不为一定值,TiC层的成膜压力低于Ti层的成膜压力为宜。 [0059] 因此,鉴于实施例3、4以及比较例1的结果,将Ti层的成膜压力设为0.4Pa以上、且1Pa以下的范围内的压力、将TiC层的成膜压力设为0.2Pa以上且不足0.4Pa的范围内的压力时,可以认为能够提高DLC膜的密合性。 [0060] 但是,比较例4中,虽然TiC层的成膜压力低于Ti层的成膜压力,但DLC膜的密合性的评价低于合格基准。另一方面,与比较例4同样地具有倾斜层且成膜压力、各层的膜厚也相同的实施例3、5中,DLC膜的评价结果达到合格基准。此处,着眼于实施例3、5及比较例4的偏置电压时,TiC层成膜工序中的偏置电压各自不同。即,对于比较例4中的DLC膜的密合性变差的理由,可以认为是因为TiC层成膜工序中的偏置电压为-100V,因此形成的TiC层变得过于平滑而密合性不充分。 [0061] 因此,为了提高DLC膜的密合性,要求将Ti层的成膜压力设为0.4Pa以上且1Pa以下的范围内的压力,并且将TiC层的成膜压力设为0.2Pa以上且不足0.4Pa的范围内的压力,进一步将TiC层成膜工序中的偏置电压设为高于-100V。 [0062] 接着,以实施例3、5、6、8及比较例1、3、4的条件形成TiC层的状态中,针对基材表面通过使用X射线衍射装置(Rigaku Corporation制、RINT2000)的集中法进行X射线衍射。X射线管球使用Cu管球,电压:40kV、电流:20mA、扫描角度2θ:20~80°、扫描步骤设为3°/分钟。根据此时的X射线衍射(XRD)配置文件,针对2θ:36.3度附近出现的TiC(111)晶面的X射线衍射峰强度ITiC(111)与2θ:44.6度附近出现的Fe(111)晶面的X射线衍射峰强度IFe(110),算出以ITiC(111)/IFe(110)表示的强度比。将其结果示于表2。 [0063] [表2] [0064] [0065] 如表2所示,比较例1、3、4中,ITiC(111)小于IFe(110)、TiC与Fe的强度比最大为58左右。另一方面,实施例3、5、6、8中,ITiC(111)比比较例1、3、4大,TiC与Fe的强度比均超过100。 [0066] 考虑表1所示的DLC膜的密合性评价结果及表2所示的XRD测定的结果时,为了提高DLC膜的密合性,可知形成以ITiC(111)/IFe(110)×100表示的强度比为60以上这样的中间层即可。另外,更优选的强度比为80以上、进一步优选的强度比为100以上。 [0067] 产业上的可利用性 [0068] 本发明能够适用于基材的DLC膜涂覆。 [0069] 附图标记说明 [0070] 1 基材 [0071] 2 中间层 [0072] 2a Ti层 [0073] 2b TiC层 [0074] 2c 倾斜层 [0075] 3 DLC膜 |