再生制动系统重置特征以及对混合式电动车辆和电动车辆的自适应校准

申请号 CN201080065086.6 申请日 2010-03-02 公开(公告)号 CN102802996A 公开(公告)日 2012-11-28
申请人 万国卡车知识产权有限公司; 发明人 S·米勒;
摘要 在配备有再生和非 再生 制动 的车辆中,响应于驾驶者试图以第一速率( 车轮 施加再生制动,如通过防 锁 死 制动系统 控制器 所指示地没有对任何制动轮进行车轮锁定,并且速度超过最小 阈值 。如果在转弯时施加制动,则施加适量的非 驱动轮 行车/ 基础 制动 扭矩 来维持车辆的 稳定性 。所施加基础制动的合适量通过使用查找表根据车辆 偏航 量、 方向盘 输入、以及车辆速度来确定。随着制动需求增加,基础/ 行车制动 首先添加给不提供再生制动的任何车轮、然后添加给具有再生制动的车轮。
权利要求

1.一种车辆,包括:
包括牵引电机、至少一个驱动轮、以及用于将所述牵引电机机械地耦合到所述至少一个驱动轮的装置的车辆传动链;
所述牵引电机具有其中所述牵引电机作为车辆原动机通过所述至少一个驱动轮来操作的牵引模式、以及其中所述牵引电机通过所述至少一个驱动轮吸收车辆动能以供存储的再生制动模式;
车辆速度传感器
连接到所述至少一个驱动轮的行车制动器;
用于请求所计算的制动扭矩的装置;以及
对用于请求所计算的制动扭矩的装置作出响应且能够在所述行车制动器和在再生制动模式中操作的所述牵引电机之间分配所计算的制动扭矩的装置,对用于请求所计算的制动扭矩的装置作出响应且能够分配制动扭矩的所述装置通过将所有制动扭矩分配给所述行车制动器来进一步对落在最小速度阈值以下的车辆速度作出响应、并且通过在所述牵引电机和所述行车制动器之间混合制动扭矩来更进一步对作为所请求的制动扭矩的函数的车辆速度超过所述最小速度阈值作出响应。
2.如权利要求1所述的车辆,其特征在于,还包括:
偏航传感器;
方向盘位置传感器;
至少一个非驱动轮;
连接到所述至少一个非驱动轮的行车制动器;以及
对所述偏航传感器和所述方向盘位置传感器作出响应用于在所述至少一个驱动轮和所述至少一个非驱动轮之间平衡制动扭矩以提供稳定性控制的装置。
3.如权利要求2所述的车辆,其特征在于,对所述偏航传感器和所述方向盘位置传感器作出响应的所述装置通过在所述车辆直线行进时将基本上所有制动扭矩分配给再生制动来对车辆速度超过所述最小速度阈值作出响应,如由所述偏航传感器和所述方向盘位置传感器所确定的,其中所要求的制动扭矩小于最小制动扭矩阈值。
4.如权利要求3所述的车辆,其特征在于,对用于请求所计算的制动扭矩的装置作出响应且能够分配制动扭矩的所述装置根据越来越多的制动扭矩要求或非直线减速度越来越多地将相对制动扭矩从再生制动重新分配到非再生制动。
5.如权利要求4所述的车辆,其特征在于,对用于请求所计算的制动扭矩的装置作出响应且能够分配制动扭矩的所述装置还包括:
用于在再生制动模式和牵引模式之间切换所述牵引电机的牵引电机控制器
用于控制连接到所述至少一个驱动轮的所述行车制动器、以及连接到所述至少一个非驱动轮的行车制动器的施加的制动控制器;以及
用于在所述制动控制器和所述牵引电机控制器之间传输数据的装置。
6.如权利要求5所述的车辆,其特征在于,所述车辆是混合式电动车辆,并且所述车辆传动链还包括可选择性地机械耦合到所述牵引电机的内燃机,其中所述牵引电机是电牵引电机,并且所述内燃机或所述电力牵引电机选择性地作为所述车辆原动机操作。
7.如权利要求6所述的车辆,其特征在于,所述制动控制器和所述牵引电机控制器通过调节来自所述电力牵引电机的制动扭矩来对制动扭矩的越来越多的需求作出响应。
8.如权利要求7所述的车辆,其特征在于,还包括:
用于在通过操作所述车辆所测量的一时间段内暂停再生和非再生制动的混合以有利于非再生制动的手动装置。
9.如权利要求5所述的车辆,其特征在于,所述牵引电机是液压
10.一种用于多个车轮所支承的车辆的制动系统,所述制动系统包括:
耦合到所述多个车轮的子集用于向其施加制动扭矩的再生制动器;
用于向所述多个车轮施加制动扭矩的非再生制动器;
用于控制所述再生制动器所产生的制动扭矩的装置;
用于控制制动扭矩的所述装置对小于最小阈值减速度时的制动扭矩的需求作出响应来施加再生制动器以阻止所述车辆移动;以及
用于控制制动扭矩的所述装置对大于所述最小阈值减速度时用以阻止所述车辆移动的制动扭矩的需求作出响应来添加来自所述再生制动器和所述非再生制动器两者的制动扭矩。
11.如权利要求10所述的制动系统,其特征在于,还包括:
用于通过所述车辆检测转弯的装置;
用于控制制动扭矩的所述装置通过在所述车辆转弯时减少再生制动或增加非再生制动来对检测到转弯作出响应。
12.如权利要求11所述的制动系统,其特征在于,还包括:
用于控制制动扭矩的所述装置具有可手动发起的受限再生制动模式。
13.如权利要求12所述的制动系统,其特征在于,还包括:
所述再生制动器是具有再生操作模式的电力牵引电机。
14.如权利要求14所述的制动系统,其特征在于,还包括:
所述再生制动器是液压泵
15.一种配备有耦合到再生制动用装置且还具有非再生制动器的车轮的车辆,一种使车辆减速的方法包括以下步骤:
响应于在车辆速度小于最小阈值速度时对车辆减速的要求,只施加非再生制动;
响应于在所述车辆以大于所述最小阈值速度的速度行进且要求是直线而没有车轮滑行的小于最小阈值平的减速度时出现的车辆减速要求,只施加再生制动;
响应于在车辆速度超过所述最小阈值且要求是大于所述最小阈值水平的减速度时对车辆减速的需求,混合根据外源性需求水平而成比例的再生和非再生制动;以及在前一步骤中,响应于所述车辆在转弯的指示,调节再生制动和非再生制动的相对比例。
16.一种用于多个车轮所支承的车辆的制动系统,所述制动系统包括:
耦合到所述多个车轮的子集的传动链;
附连到所述传动链的用于向所述多个车轮的子集施加制动扭矩的减速设备;
用于向所述多个车轮施加制动扭矩的行车制动器;
用于控制所述减速设备所产生的制动扭矩的装置;
用于控制制动扭矩的所述装置对小于最小阈值减速度时的制动扭矩的需求作出响应,来施加减速设备以阻止所述车辆移动;以及
用于控制制动扭矩的所述装置对大于所述最小阈值减速度时用以阻止所述车辆移动的制动扭矩的需求作出响应来添加来自所述减速设备和所述行车制动器两者的制动扭矩。
17.如权利要求16所述的制动系统,其特征在于,还包括:
用于通过所述车辆检测转弯的装置;
用于控制制动扭矩的所述装置通过在所述车辆转弯时减少减速设备制动或增加行车制动器制动来对检测到转弯作出响应。
18.如权利要求17所述的制动系统,其特征在于,
所述减速设备是引擎压缩制动器。
19.如权利要求17所述的制动系统,其特征在于,
所述减速设备是传动系减速器。
1.一种车辆,包括:
包括牵引电机、至少一个驱动轮、以及用于将所述牵引电机机械地耦合到所述至少一个驱动轮的装置的车辆传动链;
所述牵引电机具有其中所述牵引电机作为车辆原动机通过所述至少一个驱动轮来操作的牵引模式、以及其中所述牵引电机通过所述至少一个驱动轮吸收车辆动能以供存储的再生制动模式;
车辆速度传感器;
连接到所述至少一个驱动轮的行车制动器;
用于请求所计算的制动扭矩的装置;
对用于请求所计算的制动扭矩的装置作出响应且能够在所述行车制动器和在再生制动模式中操作的所述牵引电机之间分配所计算的制动扭矩的装置,对用于请求所计算的制动扭矩的装置作出响应且能够分配制动扭矩的所述装置通过将所有制动扭矩分配给所述行车制动器来进一步对落在最小速度阈值以下的车辆速度作出响应、并且通过在所述牵引电机和所述行车制动器之间混合制动扭矩来更进一步对作为所请求的制动扭矩的函数的车辆速度超过所述最小速度阈值作出响应;
偏航传感器;
方向盘位置传感器;
至少一个非驱动轮;
连接到所述至少一个非驱动轮的行车制动器;以及
对所述偏航传感器和所述方向盘位置传感器作出响应用于在所述至少一个驱动轮和所述至少一个非驱动轮之间平衡制动扭矩以提供稳定性控制的装置。
2.如权利要求1所述的车辆,其特征在于,对所述偏航传感器和所述方向盘位置传感器作出响应的所述装置通过在所述车辆直线行进时将基本上所有制动扭矩分配给再生制动来对车辆速度超过所述最小速度阈值作出响应,如由所述偏航传感器和所述方向盘位置传感器所确定的,其中所要求的制动扭矩小于最小制动扭矩阈值。
3.如权利要求2所述的车辆,其特征在于,对用于请求所计算的制动扭矩的装置作出响应且能够分配制动扭矩的所述装置根据越来越多的制动扭矩要求或非直线减速度越来越多地将相对制动扭矩从再生制动重新分配到非再生制动。
4.如权利要求3所述的车辆,其特征在于,对用于请求所计算的制动扭矩的装置作出响应且能够分配制动扭矩的所述装置还包括:
用于在再生制动模式和牵引模式之间切换所述牵引电机的牵引电机控制器;
用于控制连接到所述至少一个驱动轮的所述行车制动器、以及连接到所述至少一个非驱动轮的行车制动器的施加的制动控制器;以及
用于在所述制动控制器和所述牵引电机控制器之间传输数据的装置。
5.如权利要求4所述的车辆,其特征在于,所述车辆是混合式电动车辆,并且所述车辆传动链还包括可选择性地机械耦合到所述牵引电机的内燃机,其中所述牵引电机是电力牵引电机,并且所述内燃机或所述电力牵引电机选择性地作为所述车辆原动机操作。
6.如权利要求5所述的车辆,其特征在于,所述制动控制器和所述牵引电机控制器通过调节来自所述电力牵引电机的制动扭矩来对制动扭矩的越来越多的需求作出响应。

说明书全文

再生制动系统重置特征以及对混合式电动车辆和电动车辆

的自适应校准

背景技术

技术领域

[0001] 本发明一般涉及在制动期间提供对车辆动能的收回的车辆,更具体地涉及对车辆的再生和非再生制动的混合的控制,从而增加再生制动对总制动的贡献的比例,并且使对车辆的方向控制基本不受影响。
[0002] 问题描述
[0003] 包括在制动(再生制动)期间提供对车辆动能的收回的车辆在内的许多车辆通过车辆的驱动轮提供这种再生制动。在许多情况下,这允许车辆传动链的部件用作用于能量收回的机构。例如,内燃机可由驱动轮反向驱动以作为空气压缩机操作。当作为压缩机操作时,内燃机将进吸取到其气缸中,并压缩空气以传送到压缩空气存储箱。另一可能性是通过在制动期间将连接到传动链的液压发动机用作、以及将液体存储在增压管中来恢复动能的液压混合动。替换地,电力牵引电机可反向驱动以作为发电机操作,从而对电池充电。再者,其他选项包括旋转飞轮以存储能量。通常,这些车辆并不都是全轮传动,即这些车辆的车辆传动链连接到后轮或前轮,而不是两者。因此,通常只有车辆的后轮或前轮可用于再生制动。在具有少于全轮传动的车辆上,每一车轮上的非再生行车/基础制动器频繁地补充车辆制动,但是这主要通过非驱动轮进行。
[0004] 通过关于具有少于全轮传动的车辆的非再生行车制动器用途来补充再生制动提供了多种功能,这些功能包括通过在车轮之间平衡制动动作用来提供对车辆的可预测控制(特别是在转弯时)。平衡制动通常旨在在每一轴上提供与该轴承载的重量成比例的制动扭矩。这提供了对车辆偏航(yaw)的控制。然而,所提供的非再生制动扭矩越大,收回以供存储的能量越少。平衡制动可减少能量收回。
[0005] 在轻制动或最小制动的情况下,消除了不平衡制动所造成的困难。因此,在从完全不按压的位置到部分按压的位置的制动器踏板行程的一部分上具有制动器踏板“静带”是常见的。在该静带区中,只使用再生制动。当制动器踏板行程增加时,行车/基础制动器用于补充再生制动。车辆重量变化和车辆配置变化可使该方法的应用复杂化。
[0006] 再生制动通常与混合式电动车辆和电动车辆最相关联。在用于将能量存储为液压/气压压力的车辆中、以及在旋转飞轮等其它技术中也找到再生制动。尽管期望本发明示教最常见地会在具有少于全轮传动的车辆中找到应用、并且通常再生制动将通过这些车辆上的驱动轮来提供,但是不一定如此限制。

发明内容

[0007] 在提供再生和非再生制动的车辆、具体地从少于全轮提供再生制动的车辆中,只2
响应于驾驶者试图以小于最大阈值减速度(d锁死制动系统控制器所指示的对任何制动轮都没有进行车轮锁定,并且车辆速度超过最小阈值速度(v>V1英尺/秒)。如果在转弯时施加制动,则偏航传感器方向盘位置传感器指示车辆在转弯,并且制动控制施加适量的非驱动轮行车/基础制动扭矩以维持车辆的稳定性。所施加基础制动的合适量通过使用查找表根据车辆偏航量、方向盘输入、以及车辆速度来确定。随着制动要求增大,将基础/行车制动添加到非驱动轮和驱动轮两者以使维持正确的车辆偏航控制,如车辆偏航控制算法所确定的。
[0008] 当车辆是新车时、或者在已替换了制动衬片/垫之后,加强对驱动轮的再生制动可导致基础/行车制动器的延迟磨合。(联邦发动机车辆安全标准FMVSS105、121和135详述了制动磨合过程。)当车辆是新车、或者在替换制动衬片之后,制动操作包括其中再生制动减少或消除的“重置功能或模式”。当已发起再生制动重置模式时,车辆在基础制动走合期期间使用最小的再生制动。走合期可根据制动施加次数以距离单位来测量(按照制动摩擦面积乘以制动施加压力、或者可指示基础制动衬片已磨合好的某组合)。特定的校准应当通过针对给定车辆类型的车辆测试来确定。一旦制动器被指示为正确地磨合,车辆就会回复到正常的再生制动功能。替换地,代替从单个最小再生制动施加点到正常的再生施加点,一旦满足罗列的条件,就在渐进的基础上在该制动衬片磨合期期间增加再生制动平。
[0009] 有可能建造仅对非驱动轮提供再生制动的车辆(或者未集成在传动链中、但可对驱动轮操作或以传动链为动力来运转的再生制动系统)。也有可能针对非机动车辆(诸如拖车)使用再生和非再生制动的混合。本发明示教的各方面可应用于全轮传动的车辆。重置功能也可应用于从多个传动或非传动轴收回能量的车辆。没有再生制动、但使用诸如Jacobs压缩制动器(Jake制动器)之类的特征的车辆也可从重置功能受益,因为使用Jake制动器可极大地减少车辆减速或停止所需的基础制动量。附图说明
[0010] 图1是车辆牵引和制动系统的高级示意图。
[0011] 图2是车辆牵引和制动系统以及对混合式电动车辆的相关联控制的框图
[0012] 图3是车辆牵引和制动系统以及对液压混合车辆的相关联控制的框图。
[0013] 图4是对图1车辆的制动控制的高级流程图
[0014] 图5是对图2车辆的制动控制的高级流程图的子例程。
[0015] 图6是图4子例程的替换子例程。
[0016] 图7是曲线图。
[0017] 图8是曲线图。

具体实施方式

[0018] 在以下详细描述中,相同的附图标记和字符可用于指示不同附图中的相同、相应、或相似的部件。此外,示例性尺寸、模型、值、或范围可参考特定实施例而给出,但不认为是概括地限定。本文中所教示的原理可扩展到一般使用再生制动的各种车辆,并且本发明示教的一些特定方面可应用于使用诸如像Telma所制造的传动系减速器或像Jacobs所制造的引擎压缩制动器之类的设备来补充基础制动的车辆。
[0019] 现在参考附图、具体地参考图1,示出通用车辆10,该车辆10提供了混合的再生(使用再生制动变换器和再生制动器46)和非再生制动(使用行车制动器24)的可能性。再生制动器46通过传动轴17和传动轴差速器18耦合到一对车轮104,并且应用于少于所有车轮104。替换地,再生制动器46可直接连接到车轮104。行车制动器24可与最多所有车轮104一起使用。行车制动器24处于制动系统和防锁死制动系统控制器28的控制下。再生制动器46处于传动链控制器44的控制下。响应于制动器踏板位置/力传感器34所产生的制动要求信号,进行制动。偏航传感器32和任选的方向盘位置传感器36(如果车辆配备有方向盘,则可选地可替换传感器,诸如第五轮旋转传感器)用于确定车辆10是否在转弯。可提供车辆接口40用于将车辆10置于再生制动重置模式中,并且可提供向操作人员指示车辆10处于重置模式中的驾驶者显示器42。
[0020] 车辆10可以是动力车辆,在此情况下可提供被示为处于传动链控制器44的控制下的原动机48。原动机48可通过传动轴17耦合到传动轴差速器18以驱动一些组合轮104。替换地,原动机48可通过自动离合器21经由再生制动器46链接到传动轴差速器18。
在一些实施例中,原动机48和再生制动器46可以是在不同模式中操作的同一设备。例如,电力牵引电机可作为发电机操作,或者飞轮可分接能量由此使其减速,或者该飞轮可旋转以吸收能量。作为另一替换方案,内燃机可作为抽气泵操作以提供非行车制动器制动扭矩,如在Jacobs压缩制动器中、或在其中操作引擎以将空气抽入储槽的系统中完成的。同样,使用排气涡轮作为动力源可用于轻度混合系统。
[0021] 现在参考图2,图1中的车辆的一般原理适用于并联混合式电动车辆11。并联混合式电动车辆11包括具有热机12(通常为内燃机)的传动链15、电力牵引电机/发电机14、变速器16、传动轴17、传动轴差速器18、以及一对驱动轮20。自动离合器21可位于电力牵引电机/发电机14与热机12之间。热机12或电力牵引电机/发电机14可经由变速器16用作车辆原动机。变速器16通过传动轴17连接到传动轴差速器18。动力从传动轴差速器18传输到驱动轮20。简单地通过移除热机12、自动离合器21、以及引擎控制器30,可将基本相同的配置用于电动车辆。如果使用手动变速器,则任选的离合器19可置于变速器16和电力牵引电机/发电机14之间。
[0022] 当热机12不再用作原动力时,自动离合器21允许热机12与传动链15的其余部分断开。可啮合自动离合器21且释放离合器19,从而使用热机12来驱动电力牵引电机/发电机14以对车辆电池(未示出)重新充电。替换地,变速器16可简单地置于齿轮外部。变速器16进而用于将来自电力牵引电机/发电机14的动力施加给驱动轮20。变速器16是双向的,并且可用于将来自驱动轮20的能量传输回电力牵引电机/发电机14。电力牵引电机/发电机14可用于向变速器16(单独地或与热机12协作地)提供原动能量。
[0023] 响应于电力牵引电机/发电机14被车辆动能反向驱动,传动链15提供动能的收回(再生制动)。电力牵引电机/发电机14在制动期间产生通过换向器(未示出)施加给蓄电池(未示出)的电力。除了再生制动以外,并联混合式电动车辆11使用驱动轮20和非驱动轮22上的行车制动器24来提供基础制动。
[0024] 针对与传动链15和车辆制动一起使用、且用于使车辆适合热机12的牵引、电力牵引电机/发电机14的牵引、以及在其发电机或再生模式中使用电力牵引电机/发电机14的再生制动的控制方面,示出并联混合式电动车辆11的简化控制系统25。行车制动器24处于制动系统和防锁死制动系统控制器28的直接控制下,对于非再生操作该控制器对制动器踏板位置/力传感器34、以及来自车轮动作传感器(未示出)的反馈作出响应以供控制制动扭矩。制动系统和防锁死制动系统控制器28的操作通过来自混合控制器26的信号修改。当制动器踏板位置/力传感器34没有检测到制动器踏板的位移时,也可存在响应于对车轮20滑行的检测的牵引控制器38。
[0025] 简化控制系统25包括耦合用于电力牵引电机/发电机14和自动离合器21的传输和控制的混合控制器26。通过允许换档操作的混合控制器26来检测和管理电力牵引电机/发电机14的正和负扭矩贡献之间的转换。混合控制器26与制动系统和防锁死制动系统控制器28交换数据以确定在发起再生制动的情况下再生制动是否可增加或增强车轮打滑状况。变速器控制器27将这些数据转换为施加给混合控制器26的控制信号。混合控制器26可与制动系统和防锁死制动系统控制器28协作地操作以混合再生制动和非再生制动。
由于制动混合取决于车辆操作状况,混合控制器26连接到偏航传感器32和方向盘位置传感器36,来自该混合控制器26的数据可改变再生和非再生制动的平衡。车辆速度可源于常规传动轴转速器、或者制动系统和防锁死制动系统控制器28。
[0026] 简化控制系统25还包括引擎控制器30,该引擎控制器30连接用于控制和监测热机12,并且通过在并联混合式电动车辆11在电池电力下操作的时间段期间提供热机12的切断来作为混合系统中的常规引擎控制器操作。引擎控制器30可监测点火开关(IGN)的位置和从关到开的循环。
[0027] 并联混合式电动车辆11的制动控制基于制动状况给予调节制动施加响应。更具体地,当车辆是新车、或者制动衬片或垫刚刚替换时,提供再生制动减少的磨合时间段。耦合到混合控制器的车辆接口40供维修人员使用,该车辆接口40允许他们重置/初始化磨合时间段。车辆接口40是不应容易被无意发起的重置功能。再生制动重置功能可通过车辆诊断或服务装备的插件、或者某一其他任意输入源同时向下按住其他两个无关的控制按钮达特定时间段来发起。
[0028] 现在参考图3(并联液压混合车辆211的功能框图),并联液压混合车辆211包括具有热机12(通常为内燃机)的传动链215、变速器154、传动轴164、分动箱和离合器156、引导至传动轴差速器18的第二传动轴。分动箱和离合器156机械地耦合到液压泵/发动机158。液压泵/发动机158可通过系160选择性地连接在低压液压流体储槽162和高压液压流体储能器166之间。
[0029] 分动箱和离合器156允许热机12与传动轴差速器18断开,并且还允许分动箱和离合器156反向驱动以操作液压泵/发动机158,从而在制动期间将液压流体从低压液压流体储槽162转移到高压液压流体储能器166。替换地,分动箱和离合器156可将热机12(通过变速器154)连接到传动轴差速器18,从而向传动轴供应原动力。阀系160可被设置成允许液压流体从高压液压流体储能器166通过液压泵/发动机156流向低压液压流体储槽162,从而向传动轴17添加扭矩以驱动并联液压混合车辆211。也有可能并联液压混合车辆211在没有热机12支持的情况下专通过来自高压液压流体储能器166的液压流体来供应动力。
[0030] 响应于液压泵/发动机158被车辆动能反向驱动,传动链215提供动能的收回(再生制动)。在制动期间,液压泵/发动机158将液压流体从低压液压流体储槽162移动到高压液压流体储能器166。使用驱动轮20和非驱动轮22上的行车制动器24的基础制动也是可用的。
[0031] 示出并联液压混合车辆211的简化控制系统216。车辆控制主干是通过其各种控制器彼此通信的车辆控制器局域网总线148。车辆集成由车体计算机152处理,该车体计算机152在本实施例中直接支持涉及再生制动重置模式的驾驶者显示器42和车辆接口40。另外,偏航传感器32和方向盘位置传感器36连接到车体计算机152。行车制动器24处于制动系统和防锁死制动系统控制器28的直接控制下,对于非再生操作该控制器对制动器踏板位置/力传感器34、以及来自车轮动作传感器(未示出)的反馈作出响应,以供控制行车制动器24所产生的制动扭矩。制动系统和防锁死制动系统控制器28的操作通过来自车辆控制器局域网总线148上的液压混合控制器150的信号修改。当制动器踏板位置/力传感器34没有检测到制动器踏板的位移时,也可存在响应于对车轮20滑行的检测的牵引控制器38。
[0032] 简化控制系统216包括耦合用于传输和控制分动箱和离合器156、以及打开和关闭阀系160的液压混合控制器150。通过液压流体控制器150来检测和管理液压泵/发动机158的正和负扭矩贡献之间的转换,该液压流体控制器150对其作出响应来重置阀系160,并且啮合和释放分动箱和离合器156中的离合器。液压混合控制器150通过车辆控制器局域网总线148与制动系统和防锁死制动系统控制器28交换数据以确定在发起再生制动的情况下再生动力制动是否可增加或增强车轮打滑状况。变速器控制器27响应于这些信号选择变速器154的齿轮。液压混合控制器150可与制动系统和防锁死制动系统控制器28协作地操作以混合再生制动和非再生制动。由于制动混合取决于车辆操作状况,液压混合控制器150连接到偏航传感器32和方向盘位置传感器36,来自该液压混合控制器150的数据可改变再生和非再生制动的平衡。车辆速度可源于常规传动轴转速器、或者制动系统和防锁死制动系统控制器28。
[0033] 简化控制系统216还包括引擎控制器30,该引擎控制器30连接用于控制和监测热机12,并且通过在再生制动、或者并联液压混合车辆211处于液压动力下的时间段期间提供热机12的切断来作为混合器系统中的常规引擎控制器操作。引擎控制器30还监测点火开关(IGN)的位置和从关到开的循环。
[0034] 参考图4,高级流程图示出本车辆制动系统的操作。应当理解,为了简化说明起见,省略了关于收集传感器数据(诸如对车辆速度的测量)、确定制动器踏板位置以及调节制动施压的多个输入和输出步骤。通常在使点火(IGN)循环至打开时,在步骤50进入该过程。该过程前进到条件步骤52,该步骤52确定车辆10是否处于其再生制动重置模式中。
[0035] 再生制动重置模式是用于新车辆、或者在其上刚刚安装了新的制动垫和衬片的车辆、且在其期间再生制动最小化或根本不使用直至车辆长时间操作足以确保制动磨合的模式。如果车辆10处于再生制动重置模式中,则来自条件步骤52的是分支到达处理步骤54,其指示车辆在再生制动重置模式中操作,这本质上意味着在很少或没有使用再生制动的情况下制动器可作为非混合式车辆操作。
[0036] 如果车辆未处于再生制动重置模式中,则跟随否分支从条件步骤52到达条件步骤56,其中将车辆速度与最小阈值速度S1作比较。如果车辆速度小于最小阈值,则跟随否分支到达条件步骤58,其中确定是否施加了制动器踏板(通过获取对其位移的测量、或者施加给它的压力)。如果未施加制动器踏板,则跟随否分支从条件步骤58回到条件步骤56。如果施加了制动器踏板,则执行输入/输出(I/O)步骤60以指示以与制动器踏板的移位程度相称的程度施加行车制动器24。在施加行车制动器24之后,该过程返回至条件步骤56。
[0037] 在车辆速度超过最小阈值速度S1的任何时候,从条件步骤56起都跟随是分支。沿着是分支处理前进到条件步骤62,其中确定是否施加了制动器踏板(或者是否例如从速度控制器接收到了对制动扭矩的请求)。如果为否,则处理沿着否分支返回至所执行循环中的条件步骤56直至按压制动器踏板。沿着是分支,处理步骤64反映了对响应于制动器踏板位移或力使再生制动最大化的算法的执行。在处理步骤64之后,执行关于制动器踏板位移/力是否增加的条件步骤66。如果为否,则跟随否分支回到条件步骤56以确定速度是否落至最小阈值S1以下。步骤56、62、64和66可循环通过直至车辆速度不再超过最小阈值、制动器踏板被释放、或者直至制动压力减小。
[0038] 来自条件步骤66的是分支使处理离开例程的第一循环前进到其第二级中的处理步骤68。处理步骤68表示响应于制动器踏板所施加的力和/或位移的变化对再生制动的调节。接着,在处理步骤70,检查车辆的稳定性准则。这些准则包括针对所测量的车辆速度的方向盘位置和车辆偏航的比较。将稳定性算法的输出与指标作比较。在后轮驱动混合2
或电动车辆上,当驾驶者按压制动器踏板刚好足以使车辆以阈值速率(加速。如果转弯时施加再生制动,则偏航传感器和方向盘位置传感器将指示车辆在转弯,并且将同时施加适量的非驱动轮22(通常为前轮)基础/行车制动以维持良好的车辆稳定性。所施加的非驱动轮22的基础/行车制动的量通过使用查找表根据车辆偏航量、方向盘输入、以及车辆速度来确定。如果制动要求超过可通过再生制动所施加的量,则将基础制动添加至传动轴和非传动轴两者。
[0039] 在处理步骤70之后,提供确定是否满足稳定性准则的条件步骤72。如果为否,则跟随否分支到达处理步骤84,其中执行减少再生制动量、并按比例增加基础/行车制动以补偿再生制动的损失的算法。这首先针对非再生车轮22进行,但是可包括再生车轮20的行车制动器24。接着,执行条件步骤68以确定制动器踏板是否保持施加。如果为否,则该过程沿着退出/结束路径88断开。如果制动器踏板仍然移位,则处理返回处理步骤68。
[0040] 返回至条件步骤72,当满足稳定性准则时跟随是分支。沿着该路径,条件步骤74用于确定车辆是否仍然超过最小阈值速度S1。如果为否,则不使用再生制动,并且该过程跟随否路径到达I/O步骤76,其中行车制动器24只用于阻止车辆10的动作。接着,将控制传递到条件步骤78,其中确定车辆是否停止。如果为是,则该过程通过程序终止框80退出。如果为否,则否分支将控制引导回条件步骤74,以供涉及车辆速度和针对再生制动的最小阈值速度S1的另一比较。从条件步骤74沿着是分支,将控制传递到条件步骤82,其中确定是否仍然施加制动器踏板。如果为否,则该过程终止,而如果是,则该过程将控制返回至处理步骤68。
[0041] 转向图5,示出用于处理制动器磨合时间段的持续时间的过程、或者重置再生制动模式。在I/O步骤90,该过程通过点火键从关到开循环来开始,之后是确定车辆10是否处于重置再生制动模式中的条件步骤92。如果为否,则否分支到达正常“最大化再生制动”模式处理步骤94。从条件步骤92沿着是分支,提供指示通过最小再生制动的操作的处理步骤96。这包括不使用再生制动。接着,将控制传递到测量用于确定重置模式的持续时间的度量(诸如制动周期、所行程的英里数等)的算法,这些度量用作行车制动器24的垫/衬片磨合状况的替代。接着,在条件步骤100,确定是否满足作为制动垫/衬片磨合状况的状况指示符而测量的替代操作变量。如果为是,则将过程控制传递到处理步骤94。如果为否,则执行包括条件步骤100和处理步骤102的循环,这提供了对替代操作变量测量的更新。
[0042] 图6是图5的替换过程。图6的过程提供从重置再生制动模式到正常操作的逐渐转换。再一次,如I/O步骤110所指示的,该过程通过点火键从关到开循环来开始,之后是确定车辆10是否处于重置再生制动模式中的条件步骤112。如果为否,则否分支到达正常“最大化再生制动”模式处理步骤114。从条件步骤112沿着是分支,提供指示通过最小再生制动以最初可以是零的上一已知的再生制动水平操作的处理步骤116。接着,将控制传递到测量用于确定重置模式的持续时间的度量(诸如制动周期、所行程的英里等)的算法,这些度量用作行车制动器24的垫/衬片磨合状况的替代。接着,在条件步骤120,确定是否满足作为制动垫/衬片磨合状况的状况指示符而测量的替代操作变量。如果为是,则将过程控制传递到处理步骤114。如果为否,则执行包括条件步骤120、处理步骤122、以及处理步骤124的循环,这提供了对替代操作变量测量的更新、以及总制动的再生制动分量的增加。
[0043] 图7和8提供了使用再生制动的常规混合车辆和操作以增加收回总动能的车辆10之间的比较。垂直标度是以英尺每平方秒为单位的车辆减速度,而水平标度是总的可能制动位移的百分比。作为行车制动器和再生制动所提供的制动的总减速度与曲线132和142所指示的相同。为了比较的目的,曲线130和140是常规车辆减速度曲线。曲线134和144分别示出现有混合式车辆和车辆10之间的再生制动贡献。曲线134和144的平坦化部分反映了对传动链15吸收车辆动能的能力的限制。曲线136和146分别示出两个系统中的行车制动器的贡献。本车辆10中的行车制动器的贡献减少,从而暗示在车辆10的速度超过S1的情况下针对可能位移的约20%和约50%之间的踏板行程有更多能量收回。踏板行程和车辆减速率的特定百分比只是说明性的,而不旨在是限制性的。每一车辆系列将需要特定的校准或者调谐,以增加在减速事件期间所获取的再生制动量。
QQ群二维码
意见反馈