与胺处理单元关联的具有改善的CO2结余的催化裂化工艺

申请号 CN201210557690.1 申请日 2012-12-20 公开(公告)号 CN103170215B 公开(公告)日 2017-09-22
申请人 IFP 新能源公司; 发明人 R.迪涅; F.弗涅; M.P.多;
摘要 本 发明 描述了用于俘获从处理 真空 馏出物或常压渣油型 烃 馏分的催化裂化(FCC)单元的再生区中排出的烟气所散发的CO2的集成工艺,该工艺使用至少一个背压式 汽轮机 来驱动 裂解气 压缩机 和/或再生鼓 风 机,其可用于通过交付二 氧 化 碳 信用来改善二氧化碳结余。
权利要求

1.用于俘获从处理真空馏出物或常压渣油型馏分的催化裂化(FCC)单元的再生区中排出的烟气所散发的CO2的集成工艺,使用用于对所述烟气进行胺处理的单元(AMN)以从中去除CO2,在该工艺中HP蒸汽过冷却从再生区中排出的烟气来产生,并用在至少一个背压式汽轮机中,其非穷举地驱动:
a)FCC单元的再生鼓机(MAB);或
b)裂解气压缩机(WGC);
所产生的LP蒸汽用于在胺处理单元(AMN)中再生胺,且盈余的HP和LP蒸汽转换成CO2信用。
2.根据权利要求1所述的集成工艺,其中主要通过冷却再生烟气产生的HP蒸汽用来通过第一背压式汽轮机驱动再生鼓风机(MAB),和通过第二背压式汽轮机驱动裂解气压缩机(WGC),所得到的LP蒸汽用来在胺处理单元(AMN)中进行胺的再生,且盈余的HP和LP蒸汽转换成CO2信用。
3.根据权利要求1所述的集成工艺,其中由电动达驱动裂解气压缩机(WGC),和主要通过冷却再生烟气产生的HP蒸汽用来通过背压式汽轮机驱动再生鼓风机(MAB),所得到的LP蒸汽用来在胺处理单元(AMN)中再生胺,盈余的HP和LP蒸汽转换成CO2信用。
4.根据权利要求1所述的集成工艺,其中由电动马达驱动再生鼓风机(MAB),和主要通过冷却再生烟气产生的HP蒸汽用来通过背压式汽轮机驱动裂解气压缩机(WGC),所得到的LP蒸汽用来在胺处理单元(AMN)中再生胺,盈余的HP和LP蒸汽转换成CO2信用。
5.根据权利要求1所述的集成工艺,其中所述催化裂化(FCC)单元借助提升管反应器在高度严苛的条件下操作,即C/O比率在2-20的范围内,且反应器出口温度在450℃至650℃的范围内。
6.根据权利要求1所述的集成工艺,其中所述催化裂化(FCC)单元借助提升管反应器在高度严苛的条件下操作,即C/O比率在4-15的范围内,且反应器出口温度在470℃至620℃的范围内。
7.根据权利要求1所述的集成工艺,其中所述催化裂化(FCC)单元借助下行床反应器在高度严苛的条件下操作,即C/O比率在10-50的范围内,且反应器出口温度在480℃至650℃的范围内。
8.根据权利要求1所述的集成工艺,其中所述催化裂化(FCC)单元借助下行床反应器在高度严苛的条件下操作,即C/O比率在10-30的范围内,且反应器出口温度在520℃至620℃的范围内。
9.根据权利要求1所述的集成工艺,其中所述胺处理单元(AMN)使用选自以下组的胺:
MEA(单乙醇胺),DEA(二乙醇胺),DMEA(二甲基乙醇胺),DIPA(二异丙基胺),DGA(二甘醇胺),二胺类,哌嗪,和羟乙基哌嗪。
10.根据权利要求1所述的集成工艺,其中所述胺处理单元(AMN)使用选自以下组的胺:
MEA(单乙醇胺),DEA(二乙醇胺)和DMEA(二甲基乙醇胺)。
11.根据权利要求1所述的集成工艺,其中所述胺处理单元(AMN)使用MEA(单乙醇胺)。
12.根据权利要求1所述的集成工艺,其中所述胺处理单元(AMN)使用吸附剂化合物四甲基-1,6-己二胺,通常称为TMHDA。
13.根据权利要求1所述的集成工艺,其中所述催化裂化(FCC)单元配备有膨胀涡轮,该膨胀涡轮接收来自所述再生区的第一再生器的烟气并将所述烟气的压化成电力。

说明书全文

与胺处理单元关联的具有改善的CO2结余的催化裂化工艺

技术领域

[0001] 本发明涉及俘获烟气散发的二(CO2)的领域,该烟气源自催化裂化单元(以下简称为FCC)的再生过程。
[0002] 在对抗温室效应的战斗中,俘获CO2是俘获重要方面,因为CO2是罪魁祸首之一。为了限制气候变暖的现象,从燃烧烟气中提取二氧化碳,目的在于将其封存在地下储藏库中。大多数二氧化碳废气来自工业活动,全球平均为60%,其中40%来自产生电的电站的烟气。
[0003] 在炼油厂,流化催化裂化(FCC)单元可以视为最大的二氧化碳排放者之一,近20%的排放是单独由它产生;其他来源是在各种再加热炉或蒸馏炉中。当减少从炼油厂排放的二氧化碳时,那么很显然FCC构成主要目标。
[0004] 本发明提出了基于已知的称为胺俘获的俘获技术的解决方案,但是开发了在来自集成的FCC/胺俘获单元工艺的HP蒸汽(高压)和LP蒸汽(低压)方面大大盈余的公用工程结余(utility balance),其通过适当选择用于所述工艺和强能量回收的两个压缩机的驱动来实现。因此,可获得具有非常低或甚至负的二氧化碳排放的集成FCC/胺俘获单元工艺。则这可以称为具有CO2信用(credit)的工艺。

背景技术

[0005] 现有技术描述了一种集成的FCC/胺处理单元工艺,其中一部分或全部的再生烟气被送至所述胺处理单元。催化裂化单元配备外部交换器,使用从再生区中移除的部分催化剂作为热流体,且胺处理单元所需的热完全地由所述外部交换器所产生的蒸汽来提供。在该现有技术中,在此工艺中产生的蒸汽量不足以处理所有的FCC烟气。
[0006] 因此,专利FR 2 939 693描述了一种用于俘获从催化裂化单元(称为FCC)再生区排出的至少一部分烟气散发的CO2的集成工艺,其使用用于对所述烟气进行胺处理的单元(称为AMN),其中催化裂化单元配备外部交换器,使用从再生区中移除的部分催化剂作为热流体,在胺处理单元中再生胺所需的热通过使用所述外部交换器所产生的蒸汽而完全地由催化裂化单元提供。
[0007] 在本发明的上下文中,这种外部交换器称为(CCE)。

发明内容

[0008] 本发明可以定义为用于俘获从处理真空馏出物或常压渣油型馏分的催化裂化(FCC)单元的再生区中排出的烟气所散发的CO2的集成工艺,使用用于对所述烟气进行胺处理的单元(AMN)以从中去除CO2,在该工艺中主要通过冷却再生烟气产生的HP蒸汽用来通过第一背压式汽轮机(counter-pressure turbine)提供用于FCC单元的再生鼓机(MAB)的驱动力,或者通过第二背压式汽轮机提供用于裂解气压缩机(WGC)的驱动力,所得到的LP蒸汽用来在胺处理单元(AMN)中进行胺的再生过程,且盈余的HP和LP蒸汽转换成CO2信用。
[0009] 在涉及进料的焦炭生产潜能(由康氏残炭(Conradson Carbon)法测量)的某些情况下,FCC单元配备外部交换器(CCE),主要通过冷却再生烟气产生的HP蒸汽用来通过第一背压式汽轮机提供用于FCC单元的再生鼓风机(MAB)的驱动力,或通过第二背压式汽轮机提供用于裂解气压缩机(WGC)的驱动力,所得到的LP蒸汽用来在胺处理单元(AMN)中进行胺的再生过程,且盈余的HP和LP蒸汽转换成CO2信用。
[0010] 表述“或”应从它的广义上解释,即在本发明的上下文中有三种可能的构造:
[0011] 1)HP蒸汽用于通过背压式汽轮机驱动再生鼓风机,且裂解气压缩机由电动达驱动;
[0012] 2)HP蒸汽用于通过背压式汽轮机驱动裂解气压缩机,且再生鼓风机由电动马达驱动;
[0013] 3)HP蒸汽用于通过第一背压式汽轮机驱动再生鼓风机,且通过第二背压式汽轮机驱动裂解气压缩机。
[0014] 在本发明的用于俘获从催化裂化单元(FCC)的再生区中排出的烟气所散发的CO2的集成工艺的第三变型中,主要通过冷却再生烟气产生的HP蒸汽一方面用来通过第一背压式汽轮机驱动再生鼓风机(MAB),且另一方面通过第二背压式汽轮机驱动裂解气压缩机(WGC),盈余的HP和LP蒸汽转换成CO2信用。
[0015] 与专利FR 2 939 693中描述的最接近的现有技术相比,相对它具有改进的本发明集成工艺可用于交付大得多的CO2信用,这将在以下的例子里证明。
[0016] 当FCC单元设置有依靠再生烟气工作并且能够产生电力的膨胀涡轮(也称为膨胀机)时,CO2信用仍然进一步增加。
[0017] 在本发明中,用于俘获从FCC单元的再生区中排出的烟气所散发的CO2的集成工艺因而使用优选在高度严苛的条件下操作的催化裂化单元,即:
[0018] • 对于具有提升管反应器的单元,C/O比率在2-20的范围内,优选在4-15的范围内,反应器出口温度在450℃至650℃的范围内,优选在470℃至620℃的范围内;
[0019] • 对于具有下行床反应器的单元,C/O比率在10〜50的范围内,优选在10〜30的范围内,且反应器出口温度在480℃至650℃的范围内,优选在520℃至620℃的范围内。
[0020] 本发明的用于俘获从催化裂化(FCC)单元的再生区中排出的烟气所散发的CO2的集成工艺采用胺处理单元,其使用的胺选自下组:MEA(单乙醇胺),DEA(二乙醇胺),MDEA(二甲基乙醇胺),DIPA(二异丙基胺),DGA(二甘醇胺),二胺类,哌嗪和羟乙基哌嗪。优选地,所述胺选自子组:MEA(单乙醇胺),DEA(二乙醇胺),和MDEA(二甲基乙醇胺)。更优选地,胺处理单元使用MEA(单乙醇胺)。进一步优选的替代品是使用四甲基己烷-1,6-二胺,一般称为TMHDA。附图说明
[0021] 根据现有技术,图1是使用由FCC单元产生的HP蒸汽的布局并显示了3个主要用途:
[0022] a)用于驱动裂解气压缩机转动(WGC)的汽轮机;
[0023] b)用于驱动再生鼓风机(MAB)转动的汽轮机;和
[0024] c)再生来自胺处理单元(AMN)的胺。在现有技术中,盈余的蒸汽几乎是零。在现有技术中所使用的汽轮机是完全冷凝式汽轮机。
[0025] 根据本发明,图2是使用由FCC单元产生的HP蒸汽的布局,其重申了它的应用b)至驱动再生鼓风机(MAB)转动的汽轮机,根据本发明,该汽轮机是背压汽轮机,其可用于传送用于进行来自胺处理单元(AMN)的胺再生的LP蒸汽流。在这种情况下,按照本发明,裂解气压缩机(WGC)由电动马达驱动。
[0026] 根据本发明,图3表示了在变型中使用由催化裂化单元产生的HP蒸汽的布局,其中所述的HP蒸汽使用:
[0027] a)用于驱动裂解气压缩机转动(WGC)的汽轮机;
[0028] b)用于驱动再生鼓风机(MAB)转动的汽轮机;
[0029] 这两个汽轮机是背压汽轮机,这意味着可以释放出LP蒸汽流,如在前述的情形中,该LP蒸汽流用于进行来自胺处理单元(AMN)的胺再生。

具体实施方式

[0030] 因此,本发明可以视为对专利FR 2 939 693中所述的集成FCC/通过胺单元处理再生烟气的工艺的改进,这基于以下事实,本发明的集成FCC/胺单元工艺还产生盈余的蒸汽和/或电力,同时在胺单元中处理了来自FCC单元的所有烟气。
[0031] 在最接近的现有技术(由以上引用的专利所代表)中,只有一部分的再生烟气可以由胺处理单元处理,其蒸汽结余刚好足以进行胺的再生。
[0032] 换句话说,本发明的集成FCC/胺单元可以用于处理所有来自FCC单元的再生烟气,由此释放盈余的蒸汽,其会产生CO2信用。
[0033] 集成的FCC/胺处理单元需要大量的电能热能
[0034] •以在CO2吸收后再生胺;
[0035] •以驱动鼓风机(MAB),其将再生催化剂所必须的空气从大气压压缩直至再生器或多个再生器的压力(2-5巴绝压);
[0036] •以驱动裂解气压缩机(WGC),其将主分馏塔塔顶的气体流出物从大约1-2巴绝压压缩直至大约15-20巴绝压(1巴=105帕斯卡);
[0037] •用于将蒸汽注入提升管中和用于汽提反应区中的所述催化剂。
[0038] 胺通常借助低压蒸汽(称为LP)加热再生。
[0039] FCC单元的两个压缩机,即裂解气压缩机(WGC)和再生鼓风机(MAB),可以由完全冷凝式汽轮机或电动马达驱动。在现有技术中,这两个压缩机通过完全冷凝式蒸汽轮机机械驱动。
[0040] 完全冷凝式汽轮机通常接收HP蒸汽并排出压力低于大气压的蒸汽,真空通过冷凝器产生。在冷凝器的出口处,可获得温度低于大约50℃的冷凝物。当使用完全冷凝式汽轮机时,汽化在冷凝器中一定程度上“损失了”。
[0041] 同样存在称为背压汽轮机的汽轮机;它们一般接收HP蒸汽并排出中压蒸汽(MP),或LP蒸汽(LP)。
[0042] 从背压式汽轮机流出的MP或LP蒸汽可随后在蒸汽冷凝时再加热或汽化其他流体。与完全冷凝式汽轮机相反,水的汽化焓没有损失而是用来再加热或汽化流体。
[0043] 最后,上述两台压缩机也可以由电动马达驱动。在本发明的上下文中,意图优化可用的MP或LP的使用,且使用至少一个背压式汽轮机来驱动裂解气压缩机(WGC)和/或驱动再生鼓风机(MAB)。
[0044] 在仅使用一个背压式汽轮机来驱动两个压缩机中的一个的情况下,另一压缩机由电动马达驱动。
[0045] 集成的FCC/胺处理单元工艺可用来以多种方式产生HP蒸汽和电能:
[0046] • 通过冷却源自再生器(或多个再生器)和CO焚化炉(当存在时)的烟气,产生各种压力的蒸汽,但主要是高压蒸汽;
[0047] • 通过循环的回流物在主分馏段产生蒸汽或热水;
[0048] • 在外部交换器(CCE)中产生蒸汽,通常为HP蒸汽,热量由从FCC单元的再生区的一个或多个点移除的催化剂供给;
[0049] • 当使用膨胀涡轮时,以产生电力为目的,由从第一再生段排出的烟气在膨胀涡轮中产生电力。如下面将要看到的,这种电力生产可以转换成二氧化碳信用。
[0050] 本发明工艺具有公用工程结余,特别是LP蒸汽,由于对工艺中的两个压缩机的驱动力的适当选择和膨胀涡轮的存在,其是大量盈余的。
[0051] 本发明的工艺使用第一背压式汽轮机来驱动鼓风机(汽轮机接收HP蒸汽并释放LP蒸汽),且在优选的变型中,使用第二背压式汽轮机来驱动裂解气压缩机(WGC)。
[0052] 因此,对于集成的FCC/胺再生烟气处理单元得到了大量盈余的整体公用工程结余(电力和蒸汽),其最终产生二氧化碳信用。
[0053] 裂解气压缩机(背压式汽轮机或电动马达)的驱动力的选择取决于大量盈余的公用工程(例如高压或低压蒸汽)的性质。
[0054] 实际上由膨胀涡轮产生的电力通常超过驱动裂解气压缩机的电动机的需求,且超过工艺中和空气冷凝器的电力消耗。
[0055] 同样地,通过再生烟气的冷却、热催化剂上的外部交换器(称为CCE)和流出物的主分馏产生的蒸汽大于本发明工艺的蒸汽需求。
[0056] 这是由于以下事实,送到用于驱动鼓风机(MAB)的背压式汽轮机的HP蒸汽转化为LP蒸汽,其可以直接用于再生胺。
[0057] 当使用第二背压式汽轮机驱动裂解气压缩机(WGC)时,这种为了再生胺的HP蒸汽向LP蒸汽的转变被进一步加强,它是本发明的优选变型。
[0058] 来自与从FCC烟气中俘获CO2用于封存相关联的本发明工艺的盈余能量使得该集成工艺的CO2结余可以为负数。这被称为CO2信用,而不是工艺的CO2排放。
[0059] 集成的FCC/胺俘获单元工艺的二氧化碳结余可以不仅包括存在于排放到大气的烟气中的CO2,而且包括由该工艺中公用工程,如电力或蒸汽,的消耗和生产而产生的CO2。
[0060] 事实上,如果该工艺需要电力,那么CO2结余必须包括产生该电力所造成的排放,即使这些排放发生在另一地点。
[0061] 相反,当该工艺中产生盈余的电力时,则该盈余的电力转换成CO2信用。
[0062] 考虑了三种温室气体(GHG):CO2,CH4和N2O,它们是温室效应加剧的主要贡献者,并且它们对于所研究的系统是最相关的。这些温室气体各自的流量合计为CO2当量(用于指示表征温室系统贡献的影响的参考气体),以二氧化碳的等效质量(以下记为CO2eq)表示。
[0063] 三种气体的每一个到CO2eq的转换是基于称为全球变暖潜能值(GWP)的系数,其给出了排放1g每种温室气体与排放1g CO2相比在预定时间段内(最常用的时间段通常为100年)对气候变暖的相对贡献。
[0064] 公用工程的消费(或生产)采用下文说明的排放因子的概念来转化为CO2排放(或信用)。
[0065] 例如,对于电力的100克CO2eq/MJ的排放因子意味着生产1 MJ电力导致排放100克CO2eq。
[0066] 重要的是要注意,这些系数是地域和时间的具体情况的代表,作为地理区域和考量日期的函数,它们可能会差别很大(因为生产模式或不同的传输距离或在考量期间的技术变化)。
[0067] 下面的对比例将使这些概念更易理解。
[0068] 对比例
[0069] 在这个例子中,我们将考虑加氢处理常压渣油的催化裂化(FCC)的单元,其关联有用于对从FCC中排出的再生烟气进行胺处理以俘获CO2的单元。
[0070] 该实例是对比例,它对比了专利FR 2 939 693中所描述的集成现有技术工艺和本发明的集成工艺的公用工程结余(蒸汽和电力)。
[0071] 接着,使用上述排放因子方法将该公用工程结余转化为CO2信用。
[0072] FCC单元和胺处理单元(AMN)的操作特性和主要收率表示在下面的表1中。
[0073]
[0074] 下表2列出了公用工程结余(电力MW和蒸汽t/h):
[0075] • 根据现有技术;
[0076] • 根据本发明,其中再生鼓风机(MAB)由背压式汽轮机驱动(裂解气压缩机(WGC)由电动马达提供驱动力)。
[0077] • 根据本发明的变型,其中裂解气压缩机(WGC)本身由背压式汽轮机驱动。
[0078] 在公用工程量前的符号“-”对应公用工程的产出,和符号“+”表示公用工程的消耗。
[0079]
[0080] 在现有技术中,在于胺单元中用作LP蒸汽之前,将结余的HP蒸汽减压和冷却。
[0081] 根据表2,现有技术的蒸汽结余几乎为零(-6 t/h),而本发明是大量盈余(-145 t/h)。
[0082] 为了获得这些值,总HP蒸汽和LP蒸汽已经加和到一起;可以看出,在本发明的两个变型中,-145 t/h的值是相同的。
[0083] 下表3可用于将表2的公用工程结余转换成CO2结余。在CO2量前的符号“-”对应CO2信用,和符号“+”对应CO2排放。
[0084]
[0085] 在现有技术中和在本发明中从胺单元的出口处排放到大气中的二氧化碳是相同的。然而,本发明的最终的二氧化碳结余(-9.5 tCO2eq/h)低于现有技术的工艺。
[0086] 在本发明的优选的变型中,这更加突出,其中CO2信用是-11.6 tCO2eq/h。
[0087] 事实上,通过使用用于蒸汽的称为排放因子的系数进行盈余蒸汽的转化,得到了由于盈余的HP和LP蒸汽产生的CO2信用。
[0088] 这种蒸汽排放因子转换了用于生产和运输蒸汽的温室气体排放。通过选择背压式汽轮机作为用于FCC单元的压缩机的驱动,可以解释本发明中蒸汽的大量盈余。它在使用两个背压式汽轮机的变型中甚至更高。
QQ群二维码
意见反馈