用于催化气化石油焦炭组合物

申请号 CN200880123017.9 申请日 2008-12-23 公开(公告)号 CN101910374B 公开(公告)日 2015-11-25
申请人 格雷特波因特能源公司; 发明人 R·A·斯皮茨; A·S·拉帕斯;
摘要 记述了包括 石油焦 炭、 煤 和 气化 催化剂的紧密混合物的微粒组合物,其中所述气化催化剂至少负载到所述煤上以用于在有 水 蒸汽 的存在下的气化,以产生包括氢气、一 氧 化 碳 、和其它高级 烃 中的至少一或多种以及甲烷的多种气体。还提供了制备所述微粒组合物以及将所述微粒组合物转 化成 多种气体产物的方法。
权利要求

1.具有适于在流化床区域内的气化的粒径分布的微粒组合物,特征在于该微粒组合物包括由(a)石油焦炭;(b);和(c)气化催化剂组成的紧密混合物,其在有蒸汽存在和适当的温度和压下显示气化活性,从而形成包括氢气、一、二氧化碳、硫化氢气和其它高级中的一或多种以及甲烷的多种气体,其中:
(i)在微粒组合物中石油焦炭和煤的重量比为5∶95-95∶5;
(ii)气化催化剂只负载到煤上;
(iii)气化催化剂包括至少一种金属源,且其含量足以在微粒组合物中提供
0.01-0.08的碱金属原子对碳原子之比;和
(iv)微粒组合物包括基于微粒组合物的重量计小于20wt%的总灰分含量。
2.权利要求1的微粒组合物,特征在于所述碱金属包括、钠或两者。
3.权利要求1或2的微粒组合物,特征在于其粒径为25微米-2500微米。
4.权利要求1的微粒组合物,特征在于微粒组合物的灰分含量包括以灰分的重量计低于20wt%的氧化
5.权利要求1的微粒组合物,特征在于在微粒组合物中石油焦炭和煤的重量比为
40∶60-60∶40。
6.将微粒组合物转化成多种气体产物的方法,该方法的步骤包括:
(a)向气化反应器中提供微粒组合物;
(b)使微粒组合物在气化反应器中在有水蒸汽存在和适当的温度和压力下反应以形成包括氢气、一氧化碳、二氧化碳、硫化氢、氨气和其它高级烃中的一或多种以及甲烷的多种气体产物;和
(c)至少部分分离所述多种气体产物以产生包括占主要量的一种所述气体产物的流,其特征在于,所述微粒组合物如权利要求1-5中任一项所述。
7.权利要求6的方法,特征在于所述流包括占主要量的甲烷。
8.权利要求6或7的方法,特征在于在步骤(b)中形成了炭,并将所述炭从气化反应器中取出并送往催化剂回收和再循环过程。
9.权利要求8的方法,特征在于气化催化剂包括从所述催化剂回收和再循环过程再循环的气化催化剂。
10.制备如权利要求1-5中任意一项所述的微粒组合物的方法,特征在于该方法的步骤包括:
(a)提供石油焦炭微粒、煤微粒和气化催化剂;
(b)使煤微粒与包括气化催化剂的水溶液接触以形成浆料;
(c)将所述浆料脱水以形成负载了催化剂的湿煤饼;和
(d)捏和湿煤饼和石油焦炭微粒以形成微粒组合物。

说明书全文

用于催化气化石油焦炭组合物

技术领域

[0001] 本公开涉及石油焦炭和至少一种气化催化剂的微粒组合物。另外,本公开还涉及所述微粒组合物的制备方法及其在有蒸汽的情况下气化形成气体产物特别是甲烷的方法。

背景技术

[0002] 考虑到诸如高能源价格和环境问题之类的众多因素,由较低燃料值的含原料如石油焦炭和煤制备价值增加的气体产物又重新受到了重视。在例如US3828474、US3998607、US4057512、US4092125、US4094650、US4204843、US4468231、US4500323、US4541841、US4551155、US4558027、US4606105、US4617027、US4609456、US5017282、US5055181、US6187465、US6790430、US6894183、US6955695、US2003/0167961A1、US2006/0265953A1、US2007/000177A1、US2007/083072A1、US2007/0277437A1和GB1599932中公开了催化气化所述材料来制备甲烷及其它价值增加的气体。
[0003] 石油焦炭是来源于延迟焦化或流化焦化碳源如原油残渣和用于改质油砂的焦化过程的通常为固体的碳质残渣。石油焦炭,特别是在中温下,由于其高度结晶的碳和提高的来源于重油的有机硫水平而通常具有弱气化反应性。要提高石油焦炭的较低反应性必须使用催化剂;然而,某些催化剂可能会由于所述石油焦炭中的所述含硫化合物而中毒。在上面提到的US2007/0083072A1中公开了一种将石油焦炭气化成甲烷及其它价值增加的气体产物的有利催化工艺。
[0004] 单独的石油焦炭反应可具有极高的理论碳转化率(例如98%),但在保持床组成、床在气化反应器中的流化、控制可能的液相和床在气化反应器中的结和炭排除方面有其自身的困难。另外,石油焦炭固有地具有低水分含量和极低的浸水容量,使得可以采用常规的催化剂浸渍法。因此,需要可以负载和为石油焦炭气化提供气化催化剂的组合物和方法。发明内容
[0005] 一方面,本公开提供一种具有适于在流化床区域内的气化的粒径分布的微粒组合物,其包括由(a)石油焦炭;(b)煤;和(c)气化催化剂组成的紧密混合物,其在有水蒸汽存在和适当的温度和压下显示气化活性,借此形成包括氢气、化碳、二氧化碳、硫化氢气和其它高级中的一或多种以及甲烷的多种气体,其中:(i)在微粒组合物中石油焦炭和煤的重量比为约5∶95-95∶5;(ii)气化催化剂被负载到至少煤上;(iii)气化催化剂包括至少一种金属源,且其含量足以在微粒组合物中提供约0.01-约0.08的碱金属原子对碳原子之比;和(iv)微粒组合物包括基于微粒组合物的重量计小于约20wt%的总灰分含量。
[0006] 在第二方面,本公开提供一种将微粒组合物转化成多种气体产物的方法,其包括:(a)向气化反应器中提供根据第一方面所述的微粒组合物;(b)使微粒组合物在气化反应器中在有水蒸汽存在和适当的温度和压力下反应以形成包括氢气、一氧化碳、二氧化碳、硫化氢、氨气和其它高级烃中的一或多种以及甲烷的多种气体;和(c)至少部分分离所述多种气体产物以产生包括占主要量的一种所述气体产物的流。
[0007] 在第三方面,本公开提供一种制备第一方面的微粒组合物的方法,其包括:(a)提供石油焦炭微粒、煤微粒和气化催化剂;(b)使煤微粒与包含气化催化剂的水溶液接触以形成浆料;(c)将所述浆料脱水以形成催化剂负载的湿煤饼;和(d)捏和湿煤饼和石油焦炭微粒以形成微粒组合物。
[0008] 详细说明
[0009] 本公开涉及微粒组合物,制备所述微粒组合物的方法,以及催化气化所述微粒组合物的方法。通常,所述微粒组合物包括混在与一或多种煤,例如高灰分和/或高水分含量煤,特别是低级煤如褐煤、次烟煤及其混合物,的各种共混物中的一或多种石油焦炭。这种微粒组合物可以提供给一种经济和商业上实用的催化气化高灰分和水分含量的煤(如褐煤或次烟煤)以作为产物产生甲烷及其他价值增加的气体的方法。这种微粒组合物还用于减少或消除与催化气化石油焦炭有关的某些技术难题。本文所述的微粒组合物和方法确认了通过将这些不同原料作为共混原料处理而在商业上实用的气化过程中有效利用它们的方法。
[0010] 在共同拥有的US2007/0000177A1、US2007/0083072A1和 US2007/0277437A1;以及美国专利申请12/178,380(2008年7月23日提交)、12/234,012(2008年9月19日提交)和12/234,018(2008年9月19日提交)中公开了催化气化技术的最新发展。此外,本发明的方法还可以结合与本申请同一日期提交的以下美国专利申请的主题来实施:名为“CONTINUOUS PROCESSES FOR CONVERTING CARBONACEOUS FEEDSTOCK INTO GASEOUS PRODUCTS”的No.12/343159(代理编号FN-0018 US NP1);名为“CATALYTIC GASIFICATION PROCESS WITH RECOVERY OF ALKALI METAL FROM CHAR”的No.12/342554(代理编号FN-0007 US NP1);名为“PETROLEUM COKE COMPOSITIONS FOR CATALYTIC GASIFICATION”的No.12/342608(代理编号FN-0011US NP1);名为“CARBONACEOUS FUELS AND PROCESSES FOR MAKING AND USING THEM”的No.12/342663(代理编号FN-0013 US NP1);名为“CATALYTIC GASIFICATION PROCESS WITH RECOVERY OF ALKALI METAL FROM CHAR”的No.12/342715(代理编号FN-0014 US NP1);名为“COAL COMPOSITIONS FOR CATALYTIC GASIFICATION”的No.12/342578(代理编号FN-0009 US NP1);名为“PROCESSES FOR MAKING SYNTHESIS GAS AND SYNGAS-DERIVED PRODUCTS”的No.12/342596(代理编号FN-0010US NP1);名为“CATALYTIC GASIFICATION PROCESS WITH RECOVERY OF ALKALI METAL FROM CHAR”的No.12/342736(代理编号FN-0015 US NP1);名为“CATALYTIC GASIFICATION PROCESS WITH RECOVERY OF ALKALI METAL FROM CHAR”的No.12/343143(代理编号FN-0016 US NP1);名 为“STEAM GENERATING SLURRY GASIFIER FOR THE CATALYTIC GASIFICATION OF A CARBONACEOUS FEEDSTOCK”的No.12/343149(代理编号FN-0017US NP1);和名为“PROCESSES FOR MAKING SYNGAS-DERIVED PRODUCTS”的No.12/342628(代理编号FN-0012 US NP1)。上述所有参考文献都通过引用并入本文用于一切目的,就如同完全陈述了一样。
[0011] 本文提到的所有出版物、专利申请、专利和其它参考文献,如果没有另外指明,都完全明确地通过引用并入本文以用于任何目的,就如同完全陈述一样。
[0012] 除非另外定义,本文所用的所有技术和科学术语都具有与所属领域普通技术人员通常所理解的相同的含义。在有冲突的情况下,以本说明书(包括定义)为准。
[0013] 除非明确标明,商标用大写字体表示。
[0014] 尽管与本文所述类似或等价的方法和材料也可用于实施或测试本公开,本文记述了适合的方法和材料。
[0015] 除非另有说明,所有百分比、份数、比例等都是以重量计的。
[0016] 当数量、浓度或其它值或参数以某一范围或一列上下值给出时,应当理解为明确公开了由任何一对任间上下范围界限构成的所有范围,而不管是否单独公开的范围。当在本文中提到某一数值范围时,除非另有说明,该范围应当包括其端点,以及该范围之内的所有整数和小数。本公开的范围不应被限于定义某一范围时所给出的具体值。
[0017] 当在记述某一范围的值或某一范围的端点时使用了术语″约″时,应当理解为本公开包括涉及的该具体值或端点。
[0018] 在本文中,术语″包括″、″包含″、″具有″或其任何其它变体都是指非排他性的包含。例如,包括一列单元的工艺、方法、制品或装置并不一定只限于这些单元,而是可能还包括未明确列出或属于该工艺、方法、制品或装置所固有的其它单元。另外,除非另外指出,″或″是指同或而非异或。例如,以下任何一种情况都满足条件A或B:A为真(或存在)且B为假(或不存在),A为假(或不存在)且B为真(或存在),以及A和B都为真(或存在)。
[0019] 在本文中使用″一″或″一个″来描述各个单元和组分只是为了方便起见和为本公开赋予一般含义。此说明书应解释为包括一个或至少一个,且所述单数还包括复数的情形,除非其明显是其它含义。
[0020] 本文给出的材料、方法和实施例仅仅是说明性的,除非特别指出,并不用于限制。
[0021] 石油焦炭
[0022] 本文所用术语″石油焦炭″既包括(i)石油加工中获得的高沸点烃馏分的固体热解产物(重质残余-″残油焦炭(resid petcoke)″);又包括(ii)加工焦油砂的固体热解产物(沥青质砂或油砂-″焦油砂焦炭″)。这类碳化产物包括,例如,生的、煅烧过的、针状和流化床石油焦炭。
[0023] 残油焦炭可源自于原油,例如,通过用于改质重质残余原油的焦化过程,这种石油焦炭包含作为微量组分的灰分,典型地为基于焦炭重量的约1.0wt%或更少,更典型地约0.5wt%或更少。典型地,这种低灰分焦炭中的灰分主要包括金属如镍和
[0024] 焦油砂焦炭可源自于油砂,例如通过用于改质油砂的焦化过程。焦油砂焦炭包含作为微量组分的灰分,典型地基于焦油砂焦炭总重在约2wt%-约12wt%的范围内,更典型地在约4wt%-约12wt%的范围内。典型地,这种较高灰分的焦炭中的灰分主要包括诸如二氧化和/或氧化之类的材料。
[0025] 石油焦炭一般具有通常在约0.2-约2wt%范围内的固有低水分含量(基于石油焦炭总重);其一般还具有极低的浸水容量,从而使得可以采用常规的催化剂浸渍法。本公开的微粒组合物消除了此问题,利用石油焦炭中的低水分含量在石油焦炭-煤共混物中实现有利的效果。所得微粒组合物包含,例如,更低的平均含水量,这提高了下游的干燥操作相对于常规的干燥操作的效率。
[0026] 石油焦炭中可包括基于石油焦炭的总重计至少约70wt%的碳,至少约80wt%的碳,或至少约90wt%碳。典型地,石油焦炭中包括基于石油焦炭的重量计小于约20wt%的无机化合物。
[0027] 煤
[0028] 术语″煤″在本文中是指泥煤、褐煤、次烟煤、烟煤、无烟煤或其混合物。在某些实施方案中,煤中的碳含量基于煤的总重计小于约85wt%,或小于约80wt%,或小于约75wt%,或小于约70wt%,或小于约65wt%,或小于约60wt%,或小于约55wt%,或小于约50wt%。在其它实施方案中,煤中的碳含量基于煤的总重计为最高约85wt%,或最高约80wt%,或最高约75wt%。可用的煤的例子包括但不限于Illinois#6,Pittsburgh#8,Beulah(ND),Utah Blind Canyon和Powder River Basin(PRB)煤。按干物质计算,无烟煤、烟煤、次烟煤和褐煤可分别包含基于煤总重约10wt%、约5-约7wt%、约4-约
8wt%和约9-约11wt%的灰分。不过,如所属领域技术人员所熟知的,任何具体煤源的灰分含量都将取决于煤的等级和来源。例如参见″Coal Data:A Reference”,Energy Information Administration,Office of Coal,Nuclear,Electric and Alternate Fuels,U.S.Department of Energy,DOE/EIA-0064(93),1995年2月。
[0029] 如所属领域技术人员所知,煤产生的灰分一般既包括飞灰又包括炉底灰。烟煤产生的飞灰可包括基于飞灰的总重计约20-约60wt%的二氧化硅和约5-约35wt%的氧化铝。次烟煤产生的飞灰可包括基于飞灰的总重计约40-约60wt%的二氧化硅和约20-约30wt%的氧化铝。褐煤产生的飞灰可包括基于飞灰的总重计约15-约45wt%的二氧化硅和约20-约25wt%的氧化铝。例如参见Meyers等人,“Fly Ash.A Highway ConstructionMaterial”,Federal Highway Administration,Report No.FHWA-IP-76-16,Washington,DC,1976。
[0030] 烟煤产生的炉底灰可包括基于炉底灰的总重计约40-约60wt%的二氧化硅和约20-约30wt%的氧化铝。次烟煤产生的炉底灰可包括基于炉底灰的总重计约40-约50wt%的二氧化硅和约15-约25wt%的氧化铝。褐煤产生的炉底灰可包括基于炉底灰的总重计约
30-约80wt%的二氧化硅和约10-约20wt%的氧化铝。例如参见,Moulton,Lyle K,“Bottom Ash and BoilerSlag”,Proceedings of the Third International Ash Utilization Symposium,U.S.Bureau of Mines,Information Circular No.8640,Washington,DC,1973。
[0031] 催化剂组分
[0032] 本公开的微粒组合物基于上述石油焦炭和煤,并进一步包括一定量的呈碱金属和/或含碱金属的化合物形式的碱金属组分。
[0033] 所述碱金属组分通常负载到微粒组合物的至少所述煤组分上,以实现按质量计为石油焦炭和煤的综合灰分含量的大约3-大约10倍的碱金属含量。
[0034] 适合的碱金属有锂、钠、、铷、铯及其混合物。特别有用的是钾源。适合的碱金属化合物包括碱金属碳酸盐、碳酸氢盐、甲酸盐、草酸盐、酰胺、氢氧化物、醋酸盐或类似的化合物。例如,催化剂可以包括碳酸钠、碳酸钾、碳酸铷、碳酸锂、碳酸铯、氢氧化钠、氢氧化钾、氢氧化铷或氢氧化铯中的一或多种,特别是碳酸钾和/或氢氧化钾。
[0035] 还可使用辅助催化剂或其它催化剂添加剂,如先前并入的参考文献中所公开的。
[0036] 微粒组合物
[0037] 通常,石油焦炭和煤源各自都可以以平均粒径从约25微米、或从约45微米直至约2500微米、或直至约500微米的细小微粒提供。所属领域技术人员很容易确定单独微粒和微粒组合物的合适粒径。例如,当使用流化床气化反应器时,微粒组合物可以具有使得能在流化床气化反应器中采用的气体速度下实现微粒组合物的初始流化的平均粒径。
[0038] 微粒组合物中至少所述煤微粒如上所述包括气化催化剂和任选地辅助催化剂/催化剂添加剂。通常,所述气化催化剂可包括至少一种碱金属源,且其含量足以在微粒组合物中提供从约0.01、或约0.02、或约0.03、或约0.04,到约0.08、或约0.07或约0.06的碱金属原子对碳原子比。
[0039] 在微粒组合物中石油焦炭微粒与煤微粒的比例可以根据技术考虑、过程经济学、可用性以及与煤和石油焦炭源的接近度来选择。这些共混物的两个源的可用性和接近度影响着原料的价格,由此影响着催化气化工艺的总生产成本。例如,根据加工条件,石油焦炭和煤可以以基于湿或干物质计约5∶95、约10∶90、约15∶85、约20∶80、约25∶75、约30∶70、约35∶65、约40∶60、约45∶55、约50∶50、约55∶45、约60∶40、约65∶35、约70∶20、约75∶25、约80∶20、约85∶15、约90∶10或约95∶5的比例共混。
[0040] 更重要的是,石油焦炭和煤源,以及石油焦炭微粒对煤微粒的比例,可用于控制原料共混物的其它材料特性。
[0041] 通常,煤和其它含碳物质包括大量的包括、氧化铝和二氧化硅在内的无机物,所述无机物在气化反应器中形成无机氧化物("灰分″)。在约500-600℃以上的温度,钾及其它碱金属会与灰分中的氧化铝和二氧化硅反应形成不可溶的碱金属铝硅酸盐。在此形式下,碱金属基本上不溶于水且作为催化剂是不活泼的。为防止煤的气化反应器中的残渣堆积,定期进行炭(char),即由灰分、未反应的含碳物质和各种碱金属化合物(溶于水的和不溶于水的)组成的固体,的固体清除。优选地,从所述炭中回收碱金属,并通常用催化剂补充流来补偿任何未回收的催化剂。原料中的氧化铝和二氧化硅越多,获得更高碱金属回收率的成本就越高。
[0042] 通过制备本发明的微粒组合物,可以根据煤源中的微粒和/或起始灰分的比例选择微粒组合物的灰分含量为,例如,约20wt%或更低,或约15wt%或更低、或约10wt%或更低。在其它实施方案中,最后所得微粒组合物中可以包括基于微粒组合物重量计从约5wt%、或从约10wt%,到 约20wt%,或到约15wt%的灰分含量。在其它实施方案中,微粒组合物的灰分含量可包括基于灰分重量计低于约20wt%,或低于约15wt%、或低于约10wt%、或低于约8wt%、或低于约6wt%的氧化铝。在某些实施方案中,最后所得微粒组合物中可包括基于微粒组合物重量计低于约20wt%的灰分含量,其中微粒组合物的所述灰分含量包括基于灰分重量计低于约20wt%,或低于约15wt%的氧化铝。
[0043] 微粒组合物中这样的较低氧化铝值使得在气化过程中碱金属催化剂(alkali catalyst)的损失减少。一般,氧化铝会与碱金属源(alkali source)反应产生包括例如碱金属铝酸盐或铝硅酸盐在内的不可溶的炭。如后面所将讨论的,这种不可溶的炭会导致减少的催化剂回收(即提高的催化剂损失),并由此需要额外的在整个气化过程补充催化剂的费用
[0044] 另外,最终所得微粒组合物中可具有高得多的碳百分比,和由此高得多的btu/lb值以及每单位微粒组合物重量的甲烷产物。在某些实施方案中,最后所得微粒组合物具有基于煤和焦炭的总重计从约75wt%、或从约80wt%、或从约85wt%、或从约90wt%,直至约95wt%的碳含量。
[0045] 制造微粒组合物的方法
[0046] 用于制备微粒组合物的石油焦炭和煤源可能需要进行初步处理来制备用于气化的微粒组合物。例如,当使用包括两种或两种以上含碳物质(如石油焦炭和煤)的混合物的微粒组合物时,可以对石油焦炭和煤分别进行处理以向至少所述煤部分中加入催化剂,并接下来进行混合。
[0047] 可根据本领域已知的任何方法如冲击粉碎和湿式或干式研磨分别粉碎和/或研磨用于微粒组合物的石油焦炭和煤,以产生它们各自的微粒。根据用于粉碎和/或研磨石油焦炭和煤材料的方法,可能需要对所得微粒进行分级(即,根据尺寸加以分离)以提供适合的原料。
[0048] 可以使用所属领域技术人员已知的任何方法来对微粒进行分级。例如,可通过筛选或使微粒通过筛子或多个筛子来进行分级。筛分设备可包括栅筛、格筛和金属网筛。筛子可以是静态的,也可以结合机械装置来摇动或震动筛子。或者,也可采用分类(classification)来分离石油焦炭和煤微粒。分类设备可包括矿石分类机、旋气分离器、旋液分离器、耙式分类机、旋转滚筒筛或流化分类器。也可在研磨和/或粉碎之前对石油焦炭和煤进行分级和分类。
[0049] 根据石油焦炭和煤源的品质,可能需要额外的原料处理步骤。高水分煤在粉碎之前可能需要干燥。某些粘结煤可能需要部分氧化来简化气化反应器操作。离子交换位置不足的煤原料可以加以预处理以产生额外的离子交换位置,从而促进催化剂负载和/或缔合(association)。这种预处理可以通过所属领域已知的能产生可进行离子交换的位置和/或提高原料孔隙度的任何方法(例如参见先前并入的US4468231和GB 1599932)来完成。预处理往往是使用所属领域已知的任何氧化剂以氧化的方式完成的。
[0050] 通常,将煤湿磨和分级(例如到25-2500微米的粒径分布),然后排去其自由水(即脱水)至湿滤饼的坚实度。湿磨、分级和脱水的适合方法的例子对于所属领域技术人员来说是已知的,如先前并入的美国专利申请12/178,380(2008年7月23日提交)中所公开的。
[0051] 根据本公开的一个实施方案通过湿磨形成的煤微粒滤饼的水分含量可为约40%-约60%,约40%-约55%,或低于50%。本领域普通技术人员将可理解,脱水的湿磨煤的水分含量取决于煤的具体类型、粒径分布以及所用的具体脱水设备。
[0052] 接着对煤微粒进行处理以使至少一种第一催化剂(例如气化催化剂)与其缔合。在某些情形下,可以向煤微粒提供第二催化组分(例如,辅助催化剂);在这种情况下,可以在单独的处理步骤中对煤微粒进行处理以提供第一催化剂和第二催化剂。例如,可向煤微粒提供第一气化催化剂(例如钾和/或钠源),继之以单独的处理以向所述煤提供钙气化辅助催化剂源。或者,可以在单个处理中以混合物的形式提供第一和第二催化剂(参见先前并入的US2007/0000177A1)。
[0053] 可以使用所属领域技术人员已知的任何方法来将一或多种气化催化剂与煤微粒缔合。这类方法包括但并不限于与固体催化剂源掺合和将所述催化剂浸渗到煤微粒上。可以采用所属领域技术人员已知的几种浸渍方法来并入气化催化剂。这些方法包括但不限于初湿含浸法、蒸发浸渍、真空浸渍、浸泡浸渍、离子交换以及这些方法的组合。可以通过用催化剂的溶液(例如水溶液)制浆将气化催化剂浸渍到煤微粒中。
[0054] 当使用催化剂和/或辅助催化剂的溶液对煤微粒制浆时,可对所得浆料脱水以提供催化煤微粒,同样典型地以湿滤饼的形式。可以由本发明方法中的任何催化剂源,包括新的或补充催化剂以及再循环的催化剂或 催化剂溶液(见下文)在内,来制备所述用于对煤微粒制浆的催化剂溶液。用于浆料脱水以提供催化煤微粒湿滤饼的方法包括过滤(重力或真空)、离心分离和液压。
[0055] 在先前并入的美国专利申请12/178,380(2008年7月23日提交)中记述了一种适于将煤微粒与气化催化剂结合以提供催化含碳原料(其中催化剂已与煤微粒通过离子交换相缔合)的具体方法。最大化通过离子交换机制进行的催化剂负载(根据特别为煤开发的吸附等温线),控制包括孔内的那些催化剂在内的保留在湿滤饼(wet)上的额外催化剂从而以控制的方式获得总的催化剂目标值。所述负载提供了湿滤饼形式的催化煤微粒。负载了催化剂和脱水过的湿煤饼通常包含例如约50%的水分。负载的催化剂总量通过控制溶液中的催化剂组分浓度以及接触时间、温度和方法来控制,这些都很容易由相关领域技术人员根据起始煤的特性来确定。
[0056] 或者,可以用流化床淤浆干燥机干燥制浆的煤微粒(即用过热蒸汽处理以蒸发掉液体),或者蒸发溶液,以提供干的催化煤微粒。
[0057] 负载了催化剂的煤组合物通常包括大于约50%、大于约70%、大于约85%、或大于约90%的与煤基体缔合的负载催化剂(例如,作为位于煤的酸性官能团上的离子交换催化剂)总量。与煤微粒缔合的负载催化剂的总百分比可以根据所属领域技术人员已知的方法来确定。
[0058] 如上所述,可以适当地结合所述分离的石油焦炭微粒和催化的煤微粒以控制例如总催化剂负载或微粒组合物的其它特性。所述分离的微粒的适合比例将取决于原料的品质以及微粒组合物的期望性能。例如,如上所述,石油焦炭微粒和催化煤微粒可以以一定比例结合以产生具有预定灰分含量的微粒组合物。
[0059] 分离的石油焦炭微粒和催化煤微粒可以通过所属领域技术人员已知的任何方法来结合,这些方法包括但不限于捏和、以及立式或卧式混合机,例如单或双螺杆、螺旋带式或鼓式混合机。微粒组合物可以储存备用,也可以转移到进料操作以引入气化反应器中。可以按照所属领域技术人员已知的任何方法例如螺旋输送机动输送将微粒组合物输送到储存或进料操作。
[0060] 催化气化方法
[0061] 本公开的微粒组合物特别是可用于将石油焦炭和煤转化成可燃气体如甲烷的综合气化工艺中。用于所述工艺的气化反应器通常在高压和高温下工作,要求在将微粒组合物引入气化反应器反应区的同时保持所需的温度、压力和原料流速。所属领域技术人员熟悉用于向高压和/或高温环境提供原料的给料系统,其包括星形进料器、螺杆给料机、旋转活塞和闭料斗。应当清楚,给料系统可以包括两个或两个以上将被轮流使用的压力平衡的单元,如闭锁料斗。
[0062] 在有些情况下,可以在高于气化反应器工作压力的压力条件下制备微粒组合物。由此,可以不经进一步加压就将微粒组合物直接送入气化反应器中。
[0063] 适合的气化反应器包括逆流固定床、并流固定床、流化床、携带流和移动床反应器。
[0064] 所述微粒组合物特别可用于在至少约450℃、或至少约600℃或以上,到约900℃、或到约750℃、或到约700℃的中温;和在至少约50psig、或至少约200psig、或至少约400psig,到约1000psig、或到约700psig、或到约600psig的压力下的气化。
[0065] 气化反应器中用于加压和微粒组合物的反应的气体通常包括水蒸汽,和任选地包括氧气或空气,并通过所属领域技术人员已知的方法提供给反应器。例如所属领域技术人员已知的任何蒸汽锅炉都能向反应器提供水蒸汽。这类锅炉可以例如通过使用任何含碳物质如煤粉生物燃料等以及包括但不限于从微粒组合物制备操作中舍弃的含碳物质(例如,粉末,如上文)来提供能量。还可以通过与燃气涡轮联在一起的第二气化反应器来提供水蒸汽,其中所述反应器的废气与水源进行热交换从而产生水蒸汽。
[0066] 也可使用来自其它工艺操作的再循环水蒸汽来向反应器提供水蒸汽。例如,当如上所述使用流化床淤浆干燥机干燥制浆的微粒组合物时,可将通过蒸发产生的水蒸汽提供给气化反应器。
[0067] 催化煤气化反应需要的少量热量输入可以通过所属领域技术人员已知的任何方法使供给到气化反应器的水蒸汽与再循环气体的气体混合物过热来提供。在一种方法中,可将压缩的CO和H2再循环气体与水蒸汽混合,通过与气化反应器流出物热交换继之以在循环气体炉中过度加热而进一步过度加热所得水蒸汽/再循环气体混合物。
[0068] 在该工艺中可以将甲烷转化器包括在内,以补充供应给反应器的再循环一氧化碳和氢气,从而确保反应在热中性(绝热)条件下进行。在这种情况下,可以如下所述由甲烷产物向转化器提供甲烷。
[0069] 微粒组合物在上述条件下的反应通常提供粗产物气体和炭。通常将在本发明的方法过程中于气化反应器内产生的炭从气化反应器中取出以用于取样、吹扫和/或催化剂回收。取出炭的方法是所属领域技术人员所熟知的。可以采用EP-A-0102828所教导一种方法。可通过闭锁料斗系统周期性地从气化反应器中取出炭,不过所属领域技术人员已知还有其它方法。人们已经开发了从固体吹扫中回收碱金属的方法以降低原材料成本和最小化催化气化工艺的环境影响。
[0070] 可以用再循环气体和水熄灭所述炭并送往催化剂再循环操作以提取和再次使用碱金属催化剂。在US4459138以及先前并入的US4057512、US2007/0277437A1、名为″CATALYTIC GASIFICATION PROCESS WITH RECOVERY OF ALKALI METAL FROM CHAR″的美国专利申请No.12/342554(代理编号FN-0007 US NP1)、名为″CATALYTIC GASIFICATION PROCESS WITH RECOVERY OF ALKALI METAL FROM CHAR″的美国专利申请No.12/342715(代理编号FN-0014 US NP1)、名为″CATALYTIC GASIFICATION PROCESS WITH RECOVERY OF ALKALI METAL FROM CHAR″的美国专利申请No.12/342736(代理编号FN-0015 US NP1)和名为″CATALYTIC GASIFICATION PROCESS WITH RECOVERY OF ALKALI METAL FROM CHAR″的美国专利申请No.12/343143(代理编号FN-0016 US NP1)中记述了特别可用的回收和再循环工艺。进一步的工艺细节可以参照这些文献。
[0071] 离开气化反应器的粗产物气体排出流可以通过充当分离区的一部分气化反应器,其中过重从而不能被离开气化反应器的气体携带的颗粒(即粉末(fines))被返回到流化床中。所述分离区可以包括一或多个内旋风分离器或类似装置来从气体中除去粉末和微粒。穿过分离区离开气化反应器的气体排出流通常包含CH4、CO2、H2和CO、H2S、NH3、未反应的水蒸汽、携带的粉末及其他杂质如COS。
[0072] 然后可以使所述已经除去了粉末的气体流穿过热交换器以冷却该气体,且回收的热量可用于预热再循环气体和产生高压蒸汽。也可以通过任何合适的装置如外置式旋风分离器接文丘里洗涤器除去残余的携带粉末。可以对回收的粉末加以处理以回收碱金属催化剂。
[0073] 可以将离开文丘里洗涤器的气体流输入COS水解反应器以进行COS去除(酸法)并在热交换器中进一步冷却以在进入水洗塔回收氨之前回收余热,产生至少包括H2S、CO2、CO、H2和CH4的洗涤后的气体。COS水解的方法对于所属领域技术人员来说是已知的,例如参见US4100256。
[0074] 来自洗涤后的气体的余热可用于产生低压蒸汽。可对洗涤水和酸法冷凝物加以处理以汽提和回收H2S、CO2和NH3;这类方法是所属领域技术人员所熟知的。通常可以以水溶液(例如20wt%)的形式回收NH3。
[0075] 随后可以使用一个通过包括溶剂处理洗涤后的气体流以产生净化的气体流的物理吸附方法进行的脱酸性气过程来从所述气流中除去H2S和CO2。所述方法包括使洗涤后的气体与溶剂如单乙醇胺、二乙醇胺、甲基二乙醇胺、二异丙胺、二甘醇胺、氨基酸的钠盐溶液、甲醇、热碳酸钾等等接触。一种方法可包括使用具有两个链的 (UOP LLC,Des Plaines,IL USA)或 (Lurgi AG,Frankfurt am Main,Germany)溶剂;每个链由H2S吸收器和CO2吸收器构成。包含H2S、CO2及其它杂质的用过的溶剂可通过所属领域技术人员已知的任何方法再生,包括使所述用过的溶剂与水蒸汽或其它汽提气接触以除去所述杂质或通过使所述用过的溶剂通过反萃取塔。回收的酸气体可被送去进行硫回收处理。所得净化气体流主要包含CH4、H2和CO,以及通常少量CO2和H2O。任何从脱酸气和含硫水汽提回收的H2S都可通过包括克劳斯法在内的所属领域技术人员已知的任何方法转化成单质硫。可以以熔融液的形式回收硫。
[0076] 可进一步处理净化气体流以通过所属领域技术人员已知的包括但不限于低温蒸馏和使用分子筛或陶瓷膜在内的任何适合的气体分离方法来分离和回收CH4。一种从净化气体流中回收CH4的方法包括结合使用分子筛吸收器去除残余H2O和CO2以及低温蒸馏分馏和回收CH4。通常,所述气体分离过程可以产生两个气体流,即甲烷产物流和合成气流(H2和CO)。所述合成气流可被压缩和再循环到气化反应器。必要时,可如上所述将一部分甲烷产物导向转化器和/或将一部分甲烷产物用作装置燃料。
[0077] 本文所述的方法可有利地使用例如用其它方法在技术上难以处理和不经济的高灰分的褐煤。单独处理褐煤将具有极低的比(即每单位重量 值)碳转化率和极高的催化剂剂量以及低催化剂回收率。单独处理石油焦炭可能具有极高的理论碳转化率(例如98%),但在保持床组成、床在气化处理器中的流化、控制可能的液相和床在气化处理器中的结块和炭取出方面有其自身的困难。本文所述的方法和微粒组合物避免了以上缺陷并使得经济的和由此在商业上可行的处理高灰分褐煤和高硫焦炭的方法成为可能。实施例
QQ群二维码
意见反馈