将刚性载体暂时连接至基材的方法 |
|||||||
申请号 | CN200780025286.7 | 申请日 | 2007-07-03 | 公开(公告)号 | CN101484988B | 公开(公告)日 | 2012-08-08 |
申请人 | 亚利桑那董事会; 代理并代表亚利桑那州立大学的法人团体; | 发明人 | S·奥罗克; | ||||
摘要 | 描述了将基材暂时连接至刚性载体的方法,其包括形成可 热分解 的 聚合物 (例如聚( 碳 酸亚烷基酯))的牺牲层,以及采用位于它们之间的牺牲层将挠性基材与刚性载体粘结。然后可以在连接的基材上装配 电子 元件和/或电子 电路 或者实施其它 半导体 加工步骤(例如背磨)。一旦装配完成,可以通过加热该组合体分解牺牲层而将该基材与刚性载体分离。 | ||||||
权利要求 | 1.用于在挠性基材上装配电子电路的方法,该方法包括: |
||||||
说明书全文 | 将刚性载体暂时连接至基材的方法[0001] 相关申请的交插参考 [0002] 根据U.S.的35U.S.C.§119(e),本申请要求于2006年7月5日提交的临时申请No.60/818,631的权益,因此其全部引入本文作为参考。 [0004] 本发明至少部分由美国陆军研究所(ARL)支持,授予编号W911NF-04-2-005。美国政府对本发明具有某些权利。 技术领域[0005] 本发明总体上涉及加工挠性基材以及更特别涉及将刚性载体暂时连接至用于进一步加工的挠性基材的方法。 背景技术[0006] 在电子工业,较薄和/或更具挠性的基材作为用于电子电路的基底正快速流行。挠性基材可以包括广泛多样的材料,包括诸如不锈钢之类的金属、任何种类塑料的非常薄的层,等等。一旦所需的电子元件、电路(一种或多种)在挠性基材表面上形成,该电路能够连接到最终产品上或者结合到其它结构中。上述产品或者结构的典型实例是平板显示器上的有源矩阵、零售店中各种商品上的RFID标签、各种传感器,等等。 [0007] 所出现的一个主要问题是使较薄和/或更具挠性的基材在加工过程中稳定。例如,在基材上装配薄膜晶体管或者薄膜晶体管电路的过程中实施很多工序步骤,在这些工序步骤实施期间基材可以通过数个机械装置、烘箱、清洗步骤,等等。移动挠性基材通过所述过程,该挠性基材必须暂时安装在某种载体或者刚性载体上且必须是可拆卸地连接,以致该挠性载体能够在各工序步骤之间无挠曲地移动并且当该工序步骤完成后能够拆卸该载体。另一方面,通过背磨(backgrinding)较厚半导体基材制备的薄化基材在背磨(backside grinding)工序和诸如光刻、沉积等之类的整个后续工序期间需要得到支撑。 发明内容[0008] 第一个方面,本发明提供用于在挠性基材上装配电子元件和/或电子电路的方法,包括:将挠性基材暂时连接至刚性载体;和在挠性基材的暴露表面上装配电子元件和/或电子电路。 [0009] 第二个方面,本发明提供用于在半导体基材上装配电子元件和/或电子电路的方法,包括采用不稳定物质薄膜将半导体基材暂时连接至刚性载体,该半导体基材包含第一层面、第二层面和厚度,其中第一层面包含至少一种电子元件和/或电子电路;其中,不稳定物质薄膜在半导体基材的第一层面和刚性载体之间;和不稳定物质包括聚(碳酸亚烷基酯)。附图说明 [0010] 图1是简化剖视图,举例说明根据本发明的将刚性载体暂时连接至挠性基材的方法中的起始工序; [0011] 图2是简化剖视图,举例说明用于将刚性载体暂时连接至挠性基材的进一步工序; [0012] 图3是简化剖视图,举例说明根据本发明将刚性载体暂时连接至挠性基材的另一种方法;以及 [0014] 定义 [0015] 本文所用术语“不稳定物质”指可热分解的物质。一旦加热到高于本申请定义的临界分解温度,则所述物质分解成更小和/或更具挥发性的分子。可热分解的物质的非限制性实例包括聚(碳酸亚烷基酯)、硝化纤维素、乙基纤维素、聚(甲基丙烯酸甲酯)(PMMA)、聚(乙烯醇)、聚(乙烯醇缩丁醛)(poly(vinyl butyryl))、聚(异丁烯)、聚(乙烯基吡咯烷酮)、微晶纤维素、蜡、聚(乳酸)、聚(二氧环己酮)(poly(dioxanone))、聚(羟基丁酸酯)(poly(hydroxybutyrate))、聚(丙烯酸酯)和聚(苯并环丁烯)。 [0016] 本文所用术语″预成形挠性基材″指如本申请所定义的挠性基材在与刚性载体粘结之前为自支撑(free-standing)基材。 [0017] 本文所用术语″双面粘合剂″指任何粘合剂,该粘合剂包含支撑性背衬,在该背衬两个相对层面的每个层面上具有粘合剂材料。相对层面上的粘合剂可以相同或者不同,以及包括但不局限于例如弹性体、热塑性、热固性、压敏性、和/或光-固化粘合剂(例如可见光或者UV)。 [0018] 本文所用术语″挠性基材″指包含挠性物质的自支撑基材,该挠性物质容易调整它的形状。挠性基材的非限制性实例包括但不局限于金属薄膜以及聚合物薄膜,例如金属箔,比如铝箔和不锈钢箔,以及聚合物片材,比如聚酰亚胺、聚乙烯、聚碳酸酯、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜(PES),以及包含两种或更多种金属和/或聚合物物质的多层堆叠体,条件是该整个堆叠体组合体保持挠性。上述基材优选为薄的,例如厚度小于2毫米,以及优选厚度小于1毫米;更优选该基材厚度小于500μm,以及优选厚度约50-200μm。 [0020] 术语″分解温度″指以下温度:在该温度下包含至少一种可热分解的物质的组合物开始分解成更小和/或更具挥发性的分子。 [0022] 本文所用术语″平的″指该表面上的各点距离由该基材中心定义的线都小于约100μm;优选该表面上的各点距离由该基材中心定义的线都小于约75μm;更优选该表面上的各点距离由该基材中心定义的线都小于约60μm。 具体实施方案 [0023] 第一个方面,本发明提供用于在挠性基材上装配电子元件和/或电子电路的方法,包括将挠性基材暂时连接至刚性载体和在该基材的暴露表面上装配电子元件和/或电子电路。 [0024] 在第一个方面的一个实施方案中,本发明提供方法,其中将挠性基材暂时连接至刚性载体包括在刚性载体或者挠性基材上形成包含不稳定物质的薄膜;和通过位于挠性基材和刚性载体之间的薄膜将挠性基材与刚性载体粘结。 [0025] 在第一个方面的优选实施方案中,本发明提供方法,其中在刚性载体或者挠性基材上形成不稳定物质的薄膜包括在刚性载体或者挠性基材上形成在溶剂中包含不稳定物质的溶液层;和干燥该层以形成薄膜。 [0026] 在一个实施方案中,如图1举例说明的,刚性载体10涂敷有本发明的不稳定物质薄膜12。该不稳定物质的溶液包含诸如聚(碳酸亚烷基酯)之类的不稳定物质,该不稳定物质溶于合适的溶剂中。将该不稳定物质和溶剂(一种或多种)分批处理(batched),和伴随摇动或以其它方式搅动(或者混合)以延长的时间使其溶解。可以施加热量以溶解该不稳定物质,条件是温度保持在低于该不稳定物质的临界分解温度。该不稳定物质的溶液可以进一步包含添加剂,比如硝化纤维素或者乙基纤维素,以调节该不稳定物质薄膜(下文)的分解温度。 [0027] 可以使用不稳定物质的溶液按照任何为本领域技术人员已知的用于从溶液制备薄膜的方法制备在刚性载体或者挠性基材之上的不稳定物质薄膜。例如,该溶液可以喷涂、滴铸(drop cast)、旋涂、网涂(webcoated)、刮涂、或者浸涂以在该载体或者基材上制备溶液的层。当在刚性载体上形成该层时,优选该溶液通过使该溶液分配于刚性载体的表面上和旋转该载体以均匀分布该溶液来旋涂。本领域的技术人员理解通过旋涂制备的层、以及最终薄膜的厚度可以通过选择溶剂中不稳定物质的浓度、溶液粘度、旋转速率(spinning rate)、以及旋转速度(spinning speed)来控制。 [0028] 在挠性基材或者刚性载体的粘结之前可以干燥该溶液层以基本上去除任何残留溶剂以及制备不稳定物质的薄膜。此干燥可以根据本领域技术人员已知的任何方法,条件是该方法不会导致基材、载体、和/或不稳定物质的劣化。例如,可以通过在大约80℃-180℃、且优选约100℃-130℃的温度下加热该层来干燥该层。在另一个实施例中,可以通过在真空中温度为约100℃-180℃下加热该层来干燥该层。而在另一个实施例中,可以通过在温度为约80℃-180℃下加热该层,随后在真空中(例如小于约1torr)在温度为约100℃-180℃下加热该层来干燥该层。在任何加热工序中,该层可以加热约10-120分钟直到基本上去除所有溶剂。本领域的技术人员会认识到更高温度(例如高达300℃)可以用于任何加热步骤,条件是该不稳定物质在加热期间保持稳定。 [0029] 最终,优选该不稳定物质薄膜12厚度为1μm-40μm、且更优选厚度为2μm-20μm。 [0030] 可选择的是,该不稳定物质溶液的层可以涂敷于挠性基材14的背面,随后通过如上所述的干燥和/或真空干燥工艺,在挠性基材14上制备不稳定物质薄膜12。优选,当在挠性基材上形成不稳定物质薄膜时,则通过旋涂该溶液制备该溶液层和随后干燥该层以得到薄膜,正如上所述。 [0031] 如图2举例说明的,在本发明的简便方法中,将自支撑的挠性基材14粘结到不稳定物质薄膜12的上表面。可以使用数种不同工序将挠性基材14粘结在不稳定物质薄膜12上。 [0032] 在一个实施方案中,粘结挠性基材包括加热不稳定物质薄膜(在挠性基材或刚性载体上)至软化状态,即高于不稳定物质的玻璃化转变温度(Tg),和将该基材直接连接至该载体。适用于本发明的具体软化温度能够基于本申请的教导凭经验确定,而且取决于不稳定物质薄膜12所用的具体物质。举例来说,测定Tg可以利用的技术是比如但不局限于热重分析法(TGA)、热力学分析法(TMA)、差示扫描量热法(DSC)、和/或动态力学分析法(DMA)。因此,在这个实施方案中,不稳定物质薄膜12用作粘合剂物质以及不稳定物质。 [0033] 在另一个实施方案中,如图3举例说明的,粘结该挠性基材包括在位于刚性载体上的不稳定物质薄膜上沉积金属层或者绝缘层15;在层15上放置双面粘合剂17;和在双面粘合剂上放置基材14。优选的金属包括但不局限于可以通过喷镀沉积的金属,例如铝、金、以及银。优选的绝缘层包括可以通过等离子体增强化学气相沉积法(PECVD)沉积的那些,比如SiN和SiO2。优选的双面粘合剂包括但不局限于双面粉末涂覆的(double sided powder coated)硅酮粘合剂(Argon PC500族)、或者高性能硅酮粘合剂(Adhesive Research Arcare 7876)或者相似物。 [0034] 通过将挠性基材14暂时连接至刚性载体10,能够在挠性基材14上实施所有所需的加工步骤以装配电子电路。由于根据第一个方面制得的最终系统可以与半导体晶片的尺寸大致一样,因此可以使用标准加工工具实施上述装配。一旦所需的电子装配或者加工步骤完成,去除不稳定物质薄膜以实施挠性基材与刚性载体的分离。 [0035] 在第一个方面的另一个实施方案中,本发明提供方法,其中装配之后,该挠性基材与刚性载体分离,优选,通过加热该不稳定物质薄膜将该挠性基材分离。优选地,将该不稳定物质加热到且保持在使不稳定物质薄膜分解的温度。所述加热优选在空气或者惰性气氛(例如氮气)中实施。更优选,所述加热在空气中实施。 [0036] 基于本申请的教导,利用本领域技术人员已知的方法能够容易地测定本发明的不稳定物质及其薄膜适用的分解温度和加热持续时间,例如使用热重分析法(TGA)。如前文提到的,在不稳定物质薄膜12中可以使用其它物质以调节分解温度。也就是说,可以根据需要提高或者降低去除不稳定物质薄膜的温度以保持挠性基材物质的稳定性和/或与各种电子加工步骤和物质间的相容性。 [0037] 可以使用其它方法来实施不稳定物质薄膜的去除。例如闪光灯(flash lamp)、使用卤素灯的RTA(快速热退火,Rapid Thermal Anneal)方法、或者激光可以用来使不稳定物质薄膜12燃烧。 [0038] 当在不稳定物质薄膜12中使用聚(碳酸亚烷基酯),优选聚(碳酸亚丙酯)时,上述物质在如图4示意图所举例说明的空气或者惰性气氛中表现出超洁净的和迅速的分解。该分解可以是热解或燃烧。举例来说,当在不稳定物质薄膜12中使用聚(碳酸亚烷基酯),且特别是聚(碳酸亚丙酯)时,可以在至少240℃温度下去除该不稳定物质薄膜,且优选温度为240℃-300℃、更优选240℃-260℃。 [0039] 在每个前述的实施方案中,该不稳定物质薄膜优选包含可热分解的聚合物。更优选,该不稳定物质薄膜包含至少一种物质,该物质选自聚(碳酸亚烷基酯)、硝化纤维素、乙基纤维素、聚(甲基丙烯酸甲酯)、聚(乙烯醇)、聚(乙烯醇缩丁醛)、聚(异丁烯)、聚(乙烯基吡咯烷酮)、微晶纤维素、蜡、聚(乳酸)、聚(二氧环己酮)、聚(羟基丁酸酯)、聚(丙烯酸酯)、聚(苯并环丁烯),及其混合物。更优选,该不稳定物质薄膜包含聚(碳酸亚烷基酯),例如聚(碳酸亚乙酯)[ 25]、聚(碳酸亚丙酯)[ 40]、聚(碳酸亚丁酯)或其混合物。更优选,该不稳定物质薄膜包含聚(碳酸亚丙酯)。由于聚(碳酸亚烷基酯)具有超洁净的分解,因此所述材料在本发明中有利于降低污染半导体器件的风险。 [0040] 在每个前述实施方案中,挠性基材优选为预成形挠性基材。更优选,该挠性基材为预成形挠性塑性基材或者预成形挠性金属基材。优选的挠性金属基材包括FeNi合金(例如INVARTM,FeNi,或者FeNi36;INVARTM是铁(64%)和镍(36%)合金(按重量计算,同时含有一些碳和铬)、FeNiCo合金(例如KOVARTM,KOVARTM一般由29%镍、17%钴、0.2%硅、0.3%锰、以及53.5%铁组成(按重量计算))、钛、钽、钼、铬化剂(aluchrome)、铝、以及不锈钢。优选的挠性塑性基材包括聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚醚砜(PES)、聚酰亚胺、聚碳酸酯,以及环状烯烃共聚物。所述挠性基材优选为薄的;优选厚度约1μm-1mm。更优选地,该挠性基材为约50μm-500μm;再更优选,约50μm-250μm。 [0041] 在每个前述实施方案中,该刚性载体包括任何能够耐受装配电子元件或电路所用的加工处理的材料。优选地,该刚性载体包括半导体材料。在其它优选的方面和实施方案中,优选该刚性载体具有至少一个基本上平的表面。更优选,该刚性载体是半导体晶片。再更优选,该刚性载体是硅晶片(优选具有平的表面)。 [0042] 在第二个方面,本发明提供用于在半导体基材上装配电子元件和/或电子电路的方法,包括: [0043] 采用不稳定物质薄膜将半导体基材暂时连接至刚性载体,该半导体基材包含第一层面、第二层面和厚度,其中第一层面包含至少一种电子元件和/或电子电路;其中,[0044] 不稳定物质薄膜在半导体基材的第一层面和刚性载体之间;和不稳定物质包括聚(碳酸亚烷基酯)。 [0046] 在第二个方面的又一个实施方案中,该方法进一步包括背磨该半导体基材的第二层面以减少该半导体基材的厚度;和加热该不稳定层以使该半导体基材与刚性载体分离。优选根据本发明第一个方面所提及的任何条件加热该不稳定层。 [0047] 在第二个方面的任何实施方案中,该不稳定物质置于半导体基材的第一层面上或者刚性载体上,和可以根据之前本发明第一个方面所提及的任何方法制备。 [0048] 另外,在第二个方面的任何实施方案中,该刚性载体可以包括半导体基材或玻璃;优选地,该刚性载体包括Si或者Si(100)。任何第二个方面的方法中所用的半导体基材可以独立地包括Si,SiGe,Ge,SiGeSn,GeSn,GaAs,InP,等等。优选地,任何本方法所用的半导体基材可以独立地包括Si或者Si(100)。该不稳定物质优选包括聚(碳酸亚丙酯)或者聚(碳酸亚乙酯),以及更优选,该不稳定物质是聚(碳酸亚丙酯)。该不稳定物质薄膜可以包含添加剂,比如硝化纤维素或者乙基纤维素,以调节该不稳定物质薄膜(上文)的分解温度。 [0049] 不稳定物质薄膜中所用的聚(碳酸亚烷基酯)在空气或者惰性气氛中表现出超洁净的和迅速的分解。特别有利的是聚(碳酸亚烷基酯)不稳定物质的洁净和迅速的分解。另外,不稳定物质薄膜可以在温度至少为240℃,且优选240℃-300℃去除;更优选,在240℃-260℃。在低于300℃下分解以及在空气气氛中不稳定物质的洁净和迅速的分解在半导体器件的处理和装配中提供出乎意料的优势。 [0050] 实施例 [0051] 实施例1 [0052] 在刚性载体上制备聚(碳酸亚丙酯)薄膜 [0053] 将72克聚(碳酸亚丙酯)( 40)与150克乙酸乙酯和528克二甘醇单乙基醚乙酸酯(Eastman DE Acetate)混合。该材料分批处理,和使得在温和摇动下溶解24小时。在溶液制得后,将20mL分配于硅晶片上表面,和在400rpm下旋转20秒。然后该被旋转的物质在120℃下干燥40分钟以便在硅晶片上表面形成聚(碳酸亚丙酯)薄膜。为了确保从聚(碳酸亚丙酯)薄膜基本上完全地去除该溶剂,该系统在100℃下真空烘焙16小时,以及然后在180℃下真空烘焙最后一小时。 [0054] 实施例2 [0055] 在刚性载体上组装挠性不锈钢基材 [0056] 硅晶片刚性载体上的聚(碳酸亚丙酯)薄膜根据实施例1制备。将挠性的不锈钢基材置于聚(碳酸亚丙酯)薄膜的表面上以致与硅晶片对准。然后加热该组合体直到聚(碳酸亚丙酯)层轻微软化,大约120℃-140℃,以实现不锈钢基材与刚性载体之间的暂时粘结。 [0057] 实施例3 [0058] 在刚性载体上组装挠性不锈钢基材的另一种方式 [0059] 硅晶片刚性载体上的聚(碳酸亚丙酯)薄膜根据实施例1制备。将铝层(厚度大约5000埃)喷镀在聚(碳酸亚丙酯)薄膜的表面上。接着,将双面粘合剂层置于铝层的上表面,而且将不锈钢箔(Sumitomo,类型304;厚度125μm)置于该双面粘合剂层的上侧。 [0060] 对于本方法和本申请中用于例证说明的目的而选用的方法和实施方案,本领域技术人员将容易想到各种的改变和改良。上述改变和改良在程度上不背离本发明的精神,它们被要求应包括在仅由下面的权利要求书的合理解释而确定的范围之内。 |