树脂组合物及其应用

申请号 CN201410802301.6 申请日 2014-12-22 公开(公告)号 CN104744892A 公开(公告)日 2015-07-01
申请人 台燿科技股份有限公司; 发明人 刘淑芬; 陈孟晖; 吴信和;
摘要 一种 树脂 组合物,包含一热固性树脂成份及一填料,其中,该热固性树脂成份在1吉赫兹(GHz)时的散逸因子(Df)≤0.006,且该填料通过1300°C至低于1400°C的高温 烧结 所制得的陶瓷粉体,且每100重量份该热固性树脂成份中该填料的含量为10重量份至600重量份。
权利要求

1.一种树脂组合物,其特征在于,包含:
一热固性树脂成份,其于1吉赫兹(GHz)时的散逸因子(Df)≤0.006;以及一填料,其通过1300°C至低于1400°C的高温烧结所制得的陶瓷粉体,
其中,每100重量份该热固性树脂成份中该填料的含量为10重量份至600重量份。
2.如权利要求1所述的树脂组合物,其特征在于,该填料通过1350°C至低于1400°C的高温烧结所制得的陶瓷粉体。
3.如权利要求1所述的树脂组合物,其特征在于,该陶瓷粉体选自以下群组:二、钛酸锶、钛酸、钛酸钡、钛酸镁、NPO陶瓷粉体、前述二者或多者的共烧结物、及前述的组合。
4.如权利要求3所述的树脂组合物,其特征在于,该陶瓷粉体选自以下群组:钛酸锶、钛酸锶钡、钛酸锶钙、NPO陶瓷粉体、前述二者或多者的共烧结物、及前述的组合。
5.如权利要求1所述的树脂组合物,其特征在于,该填料的含量为每100重量份该热固性树脂成份50重量份至400重量份。
6.如权利要求1所述的树脂组合物,其特征在于,该填料的平均粒径为0.1微米至10微米。
7.如权利要求1所述的树脂组合物,其特征在于,该热固性树脂成份包含选自以下群组的热固性树脂:具有反应性官能基团的聚苯醚树脂、具有反应性官能基团的苯乙烯的共聚物或寡聚物、具有反应性官能基团的丁二烯的共聚物或寡聚物、及前述的任意组合。
8.如权利要求7所述的树脂组合物,其特征在于,该热固性树脂成份包含具有反应性官能基团的聚苯醚树脂及选自以下群组的热固性树脂:具有反应性官能基团的苯乙烯的共聚物或寡聚物、具有反应性官能基团的丁二烯的共聚物或寡聚物、及前述的任意组合。
9.如权利要求7所述的树脂组合物,其特征在于,该热固性树脂成份另包含环氧树脂
10.如权利要求7所述的树脂组合物,其特征在于,该反应性官能基团选自以下群组:
羟基、羧基、烯基、胺基、酸酐基团、及来酸酐(maleic anhydride)基团。
11.如权利要求1至10中任一项所述的树脂组合物,其特征在于,还包含选自以下群组的添加剂:硬化促进剂、分散剂、增韧剂、阻燃剂、脱模剂、以及前述的组合。
12.如权利要求11所述的树脂组合物,其特征在于,该阻燃剂含溴阻燃剂、含磷阻燃剂、或其组合;该硬化促进剂选自以下群组:过氧化苯甲酰、咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、及前述的组合。
13.一种半固化片,其特征在于,借由将一基材含浸如权利要求1至12中任一项所述的树脂组合物,并进行干燥而制得。
14.一种积层板,包含一合成层及一金属层,该合成层由如权利要求13的半固化片所提供。

说明书全文

树脂组合物及其应用

技术领域

[0001] 本发明有关于一种树脂组合物及使用该组合物所提供的半固化片(prepreg)及积层板(laminate),尤其关于一种适合用于制备具有高抗撕强度、高介电常数(Dk)及低介电损失的积层板的树脂组合物。

背景技术

[0002] 印刷电路板(printed circuit board,PCB)为电子装置的电路基板,其搭载其它电子构件并将该等构件电性连通,以提供安稳的电路工作环境。常见的印刷电路板基板为箔披覆的积层板(copper clad laminate,CCL),其主要是由树脂、补强材与铜箔所组成。常见的树脂如环树脂、树脂、聚胺甲醛、氟龙等;常用的补强材则如玻璃纤维布、玻璃纤维席、绝缘纸、亚麻布等。
[0003] 一般而言,PCB可借由如下方法制得。将一如玻璃织物的补强材含浸于一树脂(如环氧树脂)中,并将经含浸树脂的玻璃织物固化至半硬化状态,以获得一半固化片(prepreg)。将预定层数的半固化片层叠并于该层叠半固化片的至少一外侧层叠一金属箔以提供一层叠物,接着对该层叠物进行一热压操作,而得到一金属披覆积层板。蚀刻该金属披覆积层板表面的金属箔以形成特定的电路图案(circuit pattern)。而后,在该金属披覆积层板上凿出两个以上孔洞,并在此等孔洞中覆导电材料以形成通孔(via holes),完成PCB的制备。
[0004] 随着电子仪器的小型化,PCB也存在薄型化及高密度化的需求,因此PCB中的被动组件与主动组件数量也随之大幅增加,在此情况下,便需要在积层板内部形成具有组件功能的区,以实现更佳的电路设计自由度。射频(RF)通讯领域对于高密度化的需求尤其明显,因为若能于传统PCB中整合使用电性性质优良的积层板(介电常数高且介电损失低),来达到使积层板内含被动组件的目的,将可以把一般射频模块及数字系统整合于同一PCB上。然而,传统使用环氧树脂配方制备的积层板,其介电损失仍高(Df值偏高),且介电常数(Dk)值也不符合作为电容材料的需求。因此,目前业界均致于开发一种具优异电气性质(高Dk及低Df)的介电材料。
[0005] US 2004147658揭露一种适用于电路板内埋电容的组成物,其中添加粒径0.1微米至2微米的介电粉体,例如BaTiO3、SrTiO3,然而,其所提出的组成物整体仍是以环氧树脂系统去制备,介电耗损值(Df)仍偏高。
[0006] US 7700185另揭露一种绝缘复合材料,其由高介电常数填料及主要为环氧树脂的绝缘性树脂所组成,其中该高介电常数填料必须为粒度分布呈现二尖峰的陶瓷粉体,且该绝缘复合材料必须通过分散剂来强化粉体在材料中的分散性。由其实施例结果可知,该绝缘复合材料虽具有较高的介电常数,但其介电损失仍高(Df值达0.02)。
[0007] 鉴于此,本发明提供一种树脂组合物,该树脂组合物所制积层板除各项物化性质皆可达到令人满意的程度外,更具有高抗撕强度(>5磅/英寸)、高Dk值及低Df值的优异性能。

发明内容

[0008] 针对现有技术中存在的不足,本发明的目的在于提供一种树脂组合物,及使用该组合物所提供的半固化片(prepreg)及积层板(laminate),其中,树脂组合物具有高抗撕强度、高介电常数(Dk)及低介电损失。
[0009] 本发明的技术方案如下:
[0010] 一种树脂组合物,包含:一热固性树脂成份,其于1吉赫兹(GHz)时的散逸因子(Df)≤0.006;以及一填料,其通过1300℃至低于1400℃的高温烧结所制得的陶瓷粉体;以及该填料的含量为每100重量份该热固性树脂成份10重量份至600重量份。
[0011] 本发明的另一目的为提供一种半固化片,其借由将一基材含浸如前述的树脂组合物,并进行干燥而制得。
[0012] 本发明的再一目的为提供一种积层板,包含一合成层及一金属层,该合成层由如前述的半固化片所提供。
[0013] 本发明的有益效果为:具有高抗撕强度、高介电常数(Dk)及低介电损失。

具体实施方式

[0014] 以下将具体地描述根据本发明的部分具体实施方式;但是,在不背离本发明的精神下,本发明尚可以多种不同形式的方式来实践,不应将本发明保护范围解释为限于说明书所陈述者。此外,除非文中有另外说明,于本说明书中(尤其是在后述专利申请范围中)所使用的「一」、「该」及类似用语应理解为包含单数及复数形式。且除非文中有另外说明,于本说明书中描述溶液、混合物或组合物中所含的成份时,以该成份所含的固形物计算,即,未纳入溶剂的重量。
[0015] 本发明提供一种用于积层板制备领域的树脂组合物,其包含一热固性树脂成份以及一填料。该树脂组合物所制得的积层板的抗撕强度优异,同时具备高介电常数(Dk值高)及低介电耗损(Df值低)的特性,其高介电常数的性质,能提供较佳的极化效果,而其于高频时的低介电耗损特性,特别适用于高频印刷电路板领域(如射频领域)中供形成被动组件(如电容组件)之用。
[0016] 具体而言,本发明提供一种树脂组合物,其包含一热固性树脂成份及一填料,该热固性树脂成份于1吉赫兹(GHz)时的Df≤0.006,且该填料通过1300℃至低于1400℃的高温烧结所制得的陶瓷粉体。热固性树脂成份与填料的含量比例并无特殊限制,可视使用者的需要而搭配。一般而言,填料的含量为每100重量份热固性树脂成份10重量份至600重量份,较佳为每100重量份热固性树脂成份50重量份至400重量份。
[0017] 本发明的一技术特点在于,该填料通过1300℃至低于1400℃的高温烧结所制得的陶瓷粉体,较佳为通过1350℃至低于1400℃的高温烧结所制得的陶瓷粉体。除上述指定烧结温度条件外,具体陶瓷粉体的制作方法一般陶瓷材料并无二致。由于一般陶瓷材料的制法乃本领域技术人员所熟知者,故在此不加赘述,仅于后附实施例中提供相关实例说明。于所述指定烧结温度条件下,本发明树脂组合物可制得整体物化性质良好、尤其具有高抗撕强度(>5磅/英寸)、高Dk值及低Df值的积层板材。若烧结温度低于指定范围(低于1300℃)则无法获致具低Df值的积层板;反之,若烧结温度高于指定范围(等于或高于1400℃),烧结后的陶瓷材料本身将产生结块而难以研磨,且研磨所得粉体的质地将过于光滑,与树脂组合物其它成份兼容性不佳,此外,所制得的积层板也存在抗撕强度不佳、Dk值低且外观不良等缺点。所述陶瓷粉体的具体实例包含具有矿(Perovskite)或类钙钛矿的晶格结构的陶瓷粉体,例如但不限于二氧化钛(TiO2)、钛酸锶(SrTiO3)、钛酸钙(CaTiO3)、钛酸钡(BaTiO3)、钛酸镁(MgTiO3)、前述二或多者的共烧结物、及前述的组合。所述烧结物如钛酸锶钡(Sr(Ba)TiO3)、钛酸锶钙(Sr(Ca)TiO3)等。另外,如本领域技术人员所熟知,NPO陶瓷粉体经例如硅(Si)、钴(Co)、镍(Ni)、锰(Mn)、稀土元素等元素掺杂的陶瓷粉体。于本发明的后附实施例中,采用经1350℃或1300℃的高温烧结的钛酸锶(SrTiO3)、钛酸锶钡(Sr(Ba)TiO3)、钛酸锶钙(Sr(Ca)TiO3)、NPO陶瓷粉体、或其组合作为树脂组合物的填料。
[0018] 此外,于不受理论限制下,咸信粒径过小(如小于0.1微米)的填料无法提供显著的Dk改良效果,因此,树脂组合物中的填料的平均粒径较佳为0.1微米至10微米、更佳2微米至6微米。又,填料的平均粒径较佳呈单一尖峰分布,俾提供所得产品均匀的电气性质。
[0019] 「热固性树脂」指在受热后能够形成网状结构而逐渐固化的高分子。于本发明树脂组合物中,热固性树脂成份可由单一种热固性树脂来提供、或可通过混合多种热固性树脂来提供。不论在使用单一种热固性树脂或混合多种热固性树脂的情况下,最终所制得的热固性树脂成份必须符合Df值≤0.006的条件。
[0020] 具体而言,本发明树脂组合物中的热固性树脂成份可通过使用选自以下群组的热固性树脂来提供:具有反应性官能基团的聚苯醚树脂、具有反应性官能基团的苯乙烯的共聚物或寡聚物、及具有反应性官能基团的丁二烯的共聚物或寡聚物;或者,可通过前述树脂的任意组合来提供;又或者,也可通过将上述热固性树脂的至少一者进一步与其它已知热固性树脂(如环氧树脂)混合使用来提供,但是,在此情况下须注意维持所得热固性树脂成份的Df值必须≤0.006。具有反应性官能基的聚苯醚树脂的实例包括但不限于具有丙烯酸基的聚苯醚树脂、具有乙烯基的聚苯醚树脂、具有羟基的聚苯醚树脂等;具有反应性官能基的苯乙烯共聚物或寡聚物的实例包括但不限于苯乙烯-来酸酐(styrene maleic anhydride,SMA)共聚物;具有反应性官能基的丁二烯共聚物或寡聚物的实例包括但不限于聚丁二烯、丁二烯-苯乙烯等;环氧树脂的实例包括但不限于双酚A型酚醛环氧树脂、双酚F型酚醛环氧树脂、溴化环氧树脂、环脂肪族环氧树脂、含环氧树脂、双亚苯环氧树脂。此外,本文所称「反应性官能基团」可为任何可供反应固化的基团,例如羟基、羧基、烯基、胺基、酸酐基团、马来酸酐(maleic anhydride)基团等,但不以此为限。
[0021] 本发明树脂组合物中可视需要进一步包含其它添加剂,如硬化促进剂、分散剂、增韧剂、阻燃剂、脱模剂等,且该等添加剂可单独或组合使用。举例言之,含磷阻燃剂或含溴阻燃剂(如十溴二苯乙烷),提高所制材料的难燃性,但不以此为限。或者,也可添加如过氧化苯甲酰(benzoyl peroxide,BPO)、咪唑(imidazole,MI)、2-甲基咪唑(2-methylimidazole,2MI)、2-乙基-4-甲基咪唑(2-ethyl-4-methylimidazole,2E4MI)、2-苯基咪唑(2-phenylimidazole,2PI)等硬化促进剂,以改良硬化效果。至于所述添加剂的用量,则乃本领域具有通常知识者于观得本说明书的揭露内容后,可依其通常知识视需要调整,并无特殊限制。
[0022] 可借由将本发明树脂组合物的热固性树脂成份及填料以搅拌器均匀混合,并溶解或分散于溶剂中制成清漆状,供后续加工利用。该溶剂可为任何可溶解或分散本发明树脂组合物的各成份、但不与该等成份反应的惰性溶剂。举例言之,可用以溶解或分散本发明树脂组合物的溶剂包含但不限于:甲乙酮(methyl ethyl ketone,MEK)、γ-丁内酯、甲苯、环己酮、丙酮、二甲苯、甲基异丁基酮、N,N-二甲基甲酰胺(N,N-dimethyl formamide,DMF)、N,N-二甲基乙酰胺(N,N-dimethyl acetamide,DMAc)、N-甲基吡咯烷酮(N-methyl-pyrolidone,NMP)及前述的混合物。溶剂的用量并无特殊限制,只要能使树脂组合物各成份均匀混合即可。在本发明的后附实施例中,系使用甲乙酮及γ-丁内酯的混合物作为溶剂。
[0023] 本发明另提供一种半固化片,使一基材(补强材)表面含浸前述的树脂组合物,并进行干燥而获得。常用的补强材包括:玻璃纤维布(例如玻璃织物、玻璃纸、玻璃毡等)、皮纸、短绒纸、天然纤维布、有机纤维布等。于本发明的部分具体实施方式中,使用2116强化玻璃纤维布作为补强材,将树脂组合物涂布于其上,并在175℃下加热干燥2至15分钟,从而制得半硬化状态的半固化片。
[0024] 前述半固化片,可用于制造积层板。因此,本发明另提供一种积层板,其包含一合成层及一金属层,该合成层由上述半固化片所提供。其中,例如可层叠复数层的上述半固化片,且于层叠该半固化片所构成的合成层的至少一外侧表面层叠一金属箔(如铜箔)以提供一层叠物,并对该层叠物进行一热压操作而得到该积层板。此外,可经由进一步图案化该积层板的外侧金属箔,而制得印刷电路板。
[0025] 兹以下列具体实施方式进一步例示说明本发明,其中,所采用的量测仪器及方法分别如下:
[0026] [耐浸焊性测试]:将干燥过的积层板在288℃的焊浴中浸泡一定时间后,观察是否出现外观异常情形,例如观察积层板是否产生分层或胀泡情形。
[0027] [抗撕强度测试]:抗撕强度指金属箔对经层合的半固化片的附着力而言,此处为以1/8英寸宽度的铜箔自板面上垂直撕起,以其所需力量的大小来表达附着力的强弱。
[0028] [玻璃转移温度测试]:利用动态机械分析仪(Differential Scanning Calorimeter,DSC)量测玻璃转移温度(Tg)。玻璃转移温度的测试规范为电子电路互联与封装学会(The Institute for Interconnecting and Packaging Electronic Circuits,IPC)的IPC-TM-650.2.4.25C及24C号检测方法。
[0029] [难燃性测试]:利用UL94V:垂直燃烧测试方法,将印刷电路板以垂直位置固定,以本生灯燃烧,比较其自燃熄灭与助燃特性。
[0030] [介电常数和散逸因子量测]:根据ASTM D150规范,在工作频率1吉赫兹(GHz)下,计算介电常数(Dk)和散逸因子(Df)。
[0031] [积层板外观测试]
[0032] 以电荷耦合侦检器(CCD)观察积层板外观有无异物,若有则判定为不良。
[0033] [填料的制备]
[0034] SrTiO3:
[0035] 将SrCO3、TiO2等莫数混合并研磨均匀,将所得混合物分别于1250℃(比较例用)、1350℃(实施例用)、及1400℃(比较例用)的温度下进行煅烧(高温烧结),历时2小时,将所得产物冷却至室温,并进行粗磨及砂磨,以获得平均粒径小于10微米的SrTiO3填料。
[0036] Sr(Ba)TiO3:
[0037] 将SrCO3、TiO2及BaO2等莫耳数混合并研磨均匀,将所得混合物分别于1250℃(比较例用)、及1350℃(实施例用)的温度下进行煅烧(高温烧结),历时2小时,将所得产物冷却至室温,并进行粗磨及砂磨,以获得平均粒径小于10微米的Sr(Ba)TiO3填料。
[0038] Sr(Ca)TiO3:
[0039] 将SrCO3、TiO2及CaO2等莫耳数混合并研磨均匀,将所得混合物分别于1250℃(比较例用)及1350℃(实施例用)的温度下进行煅烧(高温烧结),历时2小时,将所得产物冷却至室温,并进行粗磨及砂磨,以获得平均粒径小于10微米的Sr(Ca)TiO3填料。
[0040] NPO陶瓷粉体:
[0041] 购自信昌陶瓷公司,其在1300℃下烧结而成。
[0042] [树脂组合物的制备]
[0043] <实施例1>
[0044] 以表1所示的比例,将作为热固性树脂成份的环氧树脂(购自长春树脂公司)与SMA树脂(购自CRAY VALLEY公司)、作为催化剂的咪唑(购自四国化成公司)、作为阻燃剂的十溴二苯乙烷(型号SAYTEX 8010,购自Albemarle公司)、及作为填料的SrTiO3(1350℃下烧结)粉体于室温下使用搅拌器混合60分钟,随后再加入甲乙酮及γ-丁内酯(皆购自Fluka公司)。将所得混合物于室温下搅拌120分钟后,制得树脂组合物1。
[0045] <实施例2>
[0046] 以与实施例1相同的方式制备树脂组合物2,但是混合SrTiO3(1350℃下烧结)粉体与NPO陶瓷粉体作为填料,并调整环氧树脂与SMA树脂的用量,如表1所示。
[0047] <实施例3>
[0048] 以表1所示的比例,将作为热固性树脂成份的环氧树脂(购自长春树脂公司)与具丙烯酸基的聚苯醚树脂(购自Sabic公司)、作为催化剂的过氧化苯甲酰(购自Fluka公司)与咪唑、作为阻燃剂的十溴二苯乙烷、及作为填料的Sr(Ca)TiO3(1350℃下烧结)粉体于室温下使用搅拌器混合60分钟,随后再加入甲乙酮及γ-丁内酯。将所得混合物于室温下搅拌120分钟后,制得树脂组合物3。
[0049] <实施例4>
[0050] 以与实施例3相同的方式制备树脂组合物4,但是改以环氧树脂与具羟基的聚苯醚树脂(购自Sabic公司)的混合物作为热固性树脂成份、以含磷阻燃剂SPB-100(购自大冢化学公司)作为阻燃剂,并调整Sr(Ca)TiO3粉体用量,如表1所示。
[0051] <实施例5>
[0052] 以表1所示的比例,将作为热固性树脂成份的具丙烯酸基的聚苯醚树脂、作为催化剂的过氧化苯甲酰、作为阻燃剂的十溴二苯乙烷、及作为填料的SrTiO3(1350℃下烧结)粉体于室温下使用搅拌器混合60分钟,随后再加入甲乙酮及γ-丁内酯。将所得混合物于室温下搅拌120分钟后,制得树脂组合物5。
[0053] <实施例6>
[0054] 以与实施例5相同的方式制备树脂组合物6,但是以具丙烯酸基的聚苯醚树脂与SMA树脂混合作为热固性树脂成份,并以SrTiO3(1350℃下烧结)粉体与Sr(Ca)TiO3(1350℃下烧结)粉体的混合物作为填料,并调整催化剂与阻燃剂的用量,如表1所示。
[0055] <实施例7>
[0056] 以与实施例5相同的方式制备树脂组合物7,但是以具丙烯酸基的聚苯醚树脂与含丁二烯的树脂(Ricon 购自CRAY VALLEY公司)的混合物作为热固性树脂成份,并以Sr(Ba)TiO3(1350℃下烧结)粉体作为填料,并调整催化剂与阻燃剂的用量,如表1所示。
[0057] <实施例8>
[0058] 以与实施例7相同的方式制备树脂组合物8,但是改以SrTiO3(1350℃下烧结)粉体作为填料,如表1所示。
[0059] <实施例9>
[0060] 以与实施例5相同的方式制备树脂组合物9,但是改以具乙烯基的聚苯醚树脂(购自Sabic公司)作为热固性树脂成份,并以NPO陶瓷粉体作为填料,并调整催化剂的用量,如表1所示。
[0061] <比较实施例1>
[0062] 以与实施例1相同的方式制备比较树脂组合物1,但是改仅以环氧树脂作为热固性树脂成份,并以Sr(Ba)TiO3(1350℃下烧结)粉体作为填料,如表1所示。
[0063] <比较实施例2>
[0064] 以与比较实施例1相同的方式制备比较树脂组合物2,但是以SrTiO3(1350℃下烧结)粉体与Sr(Ba)TiO3(1350℃下烧结)粉体的混合物作为填料,如表1所示。
[0065] <比较实施例3>
[0066] 以与实施例1相同的方式制备比较树脂组合物3,但是改以SrTiO3(1250℃下烧结)粉体作为填料,如表1所示。
[0067] <比较实施例4>
[0068] 以与实施例7相同的方式制备比较树脂组合物4,但是改以Sr(Ba)TiO3(1250℃下烧结)粉体作为填料,如表1所示。
[0069] <比较实施例5>
[0070] 以与实施例4相同的方式制备比较树脂组合物5,但是改以Sr(Ca)TiO3(1250℃下烧结)粉体作为填料,如表1所示。
[0071] <比较实施例6>
[0072] 以与实施例1相同的方式制备比较树脂组合物6,但是改以SrTiO3(1400℃下烧结)粉体作为填料,如表1所示。
[0073]
[0074]
[0075] [积层板的制备]
[0076] 分别使用树脂组合物1至9及比较树脂组合物1至6来制备积层板。利用辊式涂布机,分别将该等树脂组合物涂布在2116强化玻璃纤维布上,接着,将其置于一干燥机中,并在175℃下加热干燥2至15分钟,借此制作出半硬化状态的半固化片。然后将四片半固化片层合,并在其二侧的最外层各层合一张0.5盎司的铜箔。接着对其进行热压,借此获得积层板1至9(分别对应树脂组合物1至9)及比较积层板1至6(分别对应比较树脂组合物1至6)。其中热压条件为:以1.0至3.0℃/分钟的升温速度升温至200℃至220℃,并在该温度下,以全压15千克/平方厘米(初压8千克/平方厘米)的压力热压180分钟。
[0077] 测量积层板1至9及比较积层板1至6的耐浸焊性、抗撕强度、玻璃转移温度(Tg)、难燃性、介电常数(Dk)及散逸因子(Df),并将结果纪录于表2中。
[0078]
[0079] 如表2所示,采用本发明树脂组合物所制得的积层板1至9,在各种物化性质及耐热性质(如难燃性、Tg)上均可达到令人满意的程度,尤其具有良好抗撕强度、高介电常数
QQ群二维码
意见反馈