用作半导体的具有核壳结构的新型大分子化合物

申请号 CN200980108978.7 申请日 2009-02-10 公开(公告)号 CN101970542A 公开(公告)日 2011-02-09
申请人 H.C.斯达克克莱维欧斯有限公司; 发明人 T·梅耶尔-弗里德里奇森; S·基希迈尔; A·埃尔施纳; S·波诺马连科;
摘要 本 发明 涉及一种具有核-壳结构的新型大分子化合物及其在 电子 元件中的应用。
权利要求

1.具有核-壳结构的大分子化合物,其中所述核具有基于和/或的大分子基本结构并通过基于碳的连接链与至少两个具有连续共轭双键的碳基线性低聚物链相连,其中所述线性共轭链各自通过至少一个带有吸电子基团的亚甲基碳原子由至少一个不含共轭双键的其他链,特别是脂族、芳脂族或代脂族链封端。
2.根据权利要求1所述的化合物,其特征在于所述具有核-壳结构的大分子化合物是通式(Z)的化合物,
其中
K是n官能的核,
V是连接链,
L是线性共轭低聚物链,优选为含有任选被取代的噻吩或苯撑单元的那些,A是带有吸电子基团的亚甲基碳原子,所述吸电子基团选自羰基、二氰基乙烯基、氰基丙烯酸酯基、丙二酸酯基或二卤代亚甲基,
R表示直链或支链的C2-C20烷基、C3-C8环烷基、单不饱和或多不饱和的C2-C20烯基、C2-C20烷氧基、C2-C20芳烷基或C2-C20低聚醚基或C2-C20聚醚基,
q是0或1,以及
n是大于或等于2的整数,优选为2~4的数。
3.根据权利要求1或2所述的化合物,其特征在于所述大分子化合物的核具有树枝状或超支化结构。
4.根据权利要求1至3任一项所述的化合物,其特征在于所述大分子化合物的树枝状核包含硅氧烷和/或碳硅烷单元。
5.根据权利要求1至4任一项所述的化合物,其特征在于所述连接链V是线性或支化的C2-C20亚烷基链,线性或支化的聚氧亚烷基链,线性或支化的硅氧烷链和/或线性或支化的碳硅烷链。
6.根据权利要求1至5任一项所述的化合物,其特征在于所述大分子化合物的壳包含具有2至8个任选被取代的噻吩和/或3,4-亚乙基二氧噻吩单元的低聚噻吩链和/或低聚(3,4-亚乙基二氧噻吩)链作为线性共轭低聚物链。
7.根据权利要求1至6任一项所述的化合物,其特征在于所述大分子化合物的线性共轭低聚物链在各末端连接位置被相同或不同的支化或非支化烷基或烷氧基封端,优选被烷基封端。
8.权利要求1至7任一项所述的化合物作为半导体在电子元件中的应用。
9.根据权利要求8所述的应用,其特征在于所述元件是场效应晶体管,发光元件,特别是有机发光二极管或光伏电池激光器传感器
10.根据权利要求8或9所述的应用,其特征在于所述化合物以层状形式从溶液施加到所述元件上。
11.包含作为半导体的权利要求1至7任一项所述的化合物的电子元件。

说明书全文

用作半导体的具有核壳结构的新型大分子化合物

[0001] 本发明涉及具有核壳结构的新型大分子化合物及其在电子元件中的应用。
[0002] 在过去的15年中,随着有机导电和半导体化合物的发现,分子电子学领域发展迅速。在这段时间内发现了许多具有半导体或光电性质的化合物。一般认为,分子电子器件不会代替传统的基半导体集成模。相反,人们预计分子电子元件将会开启新的应用领域,在该应用中要求适于大面积涂覆、具有结构柔性、低温可加工性和低成本。目前正开发半导体有机化合物以用于如场效应晶体管(OFET)、有机发光二极管(OLED)、传感器和光电元件的应用领域。将OFET简单地结构化并集成到集成有机半导体电路中为智能卡或价格显示器提供了廉价的解决方案,而这是利用硅技术迄今为止无法实现的,因为硅集成模块价格高且缺乏柔性。OFET同样可用作大面积柔性基体显示器中的开关元件。例如,在H.Klauk(编辑),Organic Electronics,Materials,Manufacturing and Applications,Wiley-VCH 2006中综述了有机半导体、集成半导体电路及其应用。
[0003] 场效应晶体管是一种三电极元件,其中两个电极(即“源极”和“漏极”)间的薄导电沟道的电导率由第三电极(即“极”)控制,该第三电极通过薄绝缘层与导电沟道隔开。场效应晶体管最重要的特性是其载流子的迁移率,所述迁移率从根本上决定了晶体管的开关速度以及开启和闭合状态下的电流比,即“开/关比”。
[0004] 迄今为止已有两大类化合物用于有机场效应晶体管中。这两类化合物都具有扩大的共轭单元,并根据分子量和结构分为共轭聚合物和共轭低聚物。
[0005] 低聚物通常具有相同的分子结构且低于10000道尔顿的分子量。聚合物通常含有具有相同重复单元的链,并具有分子量分布。然而,在低聚物和聚合物之间存在流体转变。
[0006] 低聚物和聚合物之间的区别经常反映在如下方面:在这些化合物的加工过程中存在本质的不同。低聚物通常可气化并通过气相沉积工艺施加到基底上。术语聚合物通常用来指那些不再能气化(与其分子结构无关)因此只能用其他方法施加的化合物。在聚合物的情况下,通常寻求的是可溶于液体介质例如有机溶剂,然后能通过适当的施加方法施加的化合物。应用非常广泛的施加方法例如为旋涂。特别合适的方法是通过喷墨工艺施加半导体化合物。在该工艺中,将半导体化合物的溶液以非常细的液滴形式施加到基底上并干燥。该工艺能在施加过程中进行结构化。半导体化合物的这种施加工艺已在例如Nature,第401卷,第685页中加以描述了。
[0007] 一般认为湿法化学工艺在以简单的方式获得廉价的有机集成半导体电路方面具有更大的潜
[0008] 制备高品质有机半导体电路的重要先决条件是化合物具有极高的纯度。在半导体中,有序化现象起着很大的作用。对化合物规整排列的阻碍以及明显的晶界的形成会导致半导体性能急剧下降,从而使得用不具有极高纯度的化合物构造的有机半导体电路通常无法使用。例如,残留的杂质能将电荷注入半导体化合物中(“掺杂”),从而降低了开/关比或者起到电荷捕获阱的作用,因而显著降低了迁移率。此外,杂质能引发半导体化合物与的反应,具有氧化作用的杂质能氧化半导体化合物并因此缩短了可能的贮存、加工和运行时间。
[0009] 通常对纯度的要求是如此之高,以至于一般不能通过已知的聚合物-化学工艺(如清洗、再沉淀和萃取)获得。另一方面,作为具有相同化学结构且通常是挥发性的化合物,低聚物能够通过升华或层析法相对简单地加以提纯。
[0010] 半导体聚合物的一些重要代表描述如下。在其为聚芴和芴共聚物的情况下,例如已获得聚(9,9-二辛基芴-共聚-二噻吩)(I)(Science,2000,第290卷,第2123页)的电2
荷迁移率(下文也简称为迁移率)最高为0.02cm/Vs:
[0011]
[0012] 而在其为区域规整的聚(3-己基噻吩-2,5-二基)(II)的情况下,已获得其迁移2
率最高为0.1cm/Vs(Science,1998,第280卷,第1741页):
[0013]
[0014] 聚芴、聚芴共聚物和聚(3-己基噻吩-2,5-二基)与几乎所有的长链聚合物类似,在从溶液施加后能形成良好的薄膜,因而易于加工。但是,作为具有分子量分布的高分子量聚合物,它们不能通过真空升华提纯,并且很难通过层析法处理。
[0015] 低聚半导体化合物的重要代表例如为低聚噻吩,特别是式(III)所示的具有端烷基的那些:
[0016]
[0017] 和并五苯(IV)
[0018]
[0019] 对例如α,α′-二己基四噻吩、-五噻吩和-六噻吩而言,典型的迁移率在2
0.05-0.1cm/Vs的范围内。低聚噻吩一般是空穴型半导体,即其传输的仅仅是正载流子。
[0020] 化合物最高的迁移率是在单晶中获得的,例如已报道α,α′-六噻吩单晶的2 2
迁移率为1.1cm/Vs(Science,2000,第290卷,第963页),红荧烯单晶为4.6cm/Vs(Adv.Mater.,2006,第18卷,第2320页)。如果低聚物从溶液施加,迁移率通常急剧下降。当低聚化合物从溶液进行加工时,半导体性能的下降通常归因于该低聚化合物的中度溶解度和低成膜倾向。因此,不均匀性归因于,例如在溶液干燥过程中沉淀的形成(Chem.Mater.,1998,第10卷,第633页)。
[0021] 因此,人们已致力于将半导体聚合物良好的加工性和成膜性与半导体低聚物的性能相结合。US-A 6,025,462描述了具有星形结构并包含支化的核和共轭侧基的壳的导电聚合物。然而,这些聚合物具有若干缺点。如果所述侧基是由侧边未被取代的共轭结构形成的,那么得到的化合物是微溶的或不溶的,无法进行加工。如果所述共轭单元被侧基取代,这确实能提高溶解度,但是由于其体积,所述侧基会导致内部无序和形貌缺陷的产生,而这会损害这些化合物的半导体性能。
[0022] WO 02/26859 A1描述了含有共轭骨架的聚合物,所述共轭骨架上连接有芳族共轭链。所述聚合物具有二芳基侧基,该侧基使导电成为可能。然而,因为所述二芳基氨侧基,这些化合物不适于作为半导体。
[0023] EP-A 1 398 341和EP-A 1 580 217描述了具有核-壳结构的半导体化合物,其可用作电子元件中的半导体并且可从溶液加工。然而,这些化合物在制备过程中往往形成不易结晶的薄膜,这可能妨碍其一些应用,因为结晶的薄膜是获得高载流子迁移率的先决条件。尽管已知的是,有机半导体薄膜可通过随后的热处理有序化(deLeeuw等,WO2005104265),但是所述化合物的大分子特性也会妨碍随后通过热处理进行组装的彻底性。
[0024] 在Applied Physics Letters 90,053504(2007)中,Jang等描述了通过喷墨印刷工艺制备晶体管。将α,α′-二己基四噻吩用作有机半导体。该文发现其迁移率为2
0.043cm/Vs,相当于该材料气相沉积层的迁移率。但是,在晶体管中,选择了为6μm的非常小的电极间距。这种小结构无法在卷到卷(roll-to-roll)大规模印刷工艺中生产。目前,现代印刷工艺能获得的分辨率约为20-50μm。在这样间距下,半导体层中的均匀性和相界起着明显更重要的作用。
[0025] Appl.Phys.Lett.87,222109(2005),Russel等描述了将聚(3-己基噻吩-2,5-二基)和α,α′-二己基四噻吩的混合物用于有机场效应管中的半导体层。在该文中,所述α,α′-二己基四噻吩形成由所述聚合物连接的晶体岛。但发现,所述半导体层的迁移率受到聚(3-己基噻吩-2,5-二基)的低迁移率(相对于α,α′-二己基四噻吩)的限制。在Jap.J.Appl.Phys.(2005),第44卷,第L1567页中,将聚(3-己基噻吩-2,5-二基)和α,α′-二己基六噻吩的混合物用于制备场效应晶体管。但是,为使该化合物获得足够的溶解度,必须将其溶液加热至190℃,这不适于工业应用。Adv.Funct.Mater.2007,17,1617-1622描述了从饱和溶液中结晶的环己基取代的四噻吩。但是,这种工艺无法大规模生产。另外,在电极结构中必须采用小的沟道长度,以确保微晶能充分覆盖这些结构。制备这种小的电极结构再一次要求采用复杂的光刻工艺,而该工艺不能用于大规模生产的快速印刷工艺中。
[0026] 因此,需要从溶液加工后具有改进性能的半导体。
[0027] 本发明的目的是提供有机化合物,所述化合物可由常规溶剂加工,从而获得具有良好性能的半导体薄膜,并在空气中贮存时足够稳定。这种化合物非常适于有机半导体层的大面积应用。
[0028] 特别地,期望所述化合物形成具有均匀厚度和形貌的高质量层,并且适于电子应用。
[0029] 令人惊讶地发现,当有机化合物具有核-壳结构时,它们具有所期望的性能,所述核-壳结构包含由多官能单元构成的核和由连接链和线性共轭低聚物链构成的壳,所述线性共轭低聚物链在各末端连接点处通过至少一个带有吸电子基团的亚甲基原子由至少一个柔性非共轭的链封端。
[0030] 特别地,与由纯线性单体化合物或具有核-壳结构的纯大分子化合物构成的半导体相比,由低聚有机化合物及其与具有核-壳结构的大分子化合物和/或具有线性单体化合物的化合物的混合物构成的薄膜的膜形貌和得到的宏观电性能改善了。
[0031] 本发明提供了具有核-壳结构的大分子化合物,其中所述核具有基于硅和/或碳的大分子基本结构并通过基于碳的连接链与至少两个具有连续共轭双键的碳基线性低聚物链相连,所述线性共轭链各自通过至少一个带有吸电子基团的亚甲基碳原子由至少一个不含共轭双键的其他链,特别是脂族、芳脂族或氧代脂族(oxyaliphatic)链封端封端。
[0032] 在优选的实施方案中,所述具有核-壳结构的有机大分子化合物可为低聚物或聚合物。对本发明的目的而言,低聚物是分子量低于1000道尔顿的化合物,聚合物是平均分子量为1000道尔顿或更高的化合物。取决于测试方法,平均分子量可为数均分子量(Mn)或重均分子量(MW)。本文的平均分子量是指数均分子量(Mn)。
[0033] 对本发明的目的而言,所述核-壳结构是分子平上的结构,即其涉及一个分子的结构。
[0034] 对本发明的目的而言,所述线性共轭低聚物链的末端连接点是具有共轭双键的线性低聚物链末端单元中的点,通过该点没有与另外的这种链进一步连接。末端意味着离核最远。所述具有连续共轭双键的线性低聚物链在下文中也简称为线性共轭低聚物链。
[0035] 所述具有核-壳结构的大分子化合物优选具有通式(Z)的核-壳结构:
[0036]
[0037] 其中
[0038] K是n官能的核,
[0039] V是连接链,
[0040] L是线性共轭低聚物链,优选为含有任选被取代的噻吩或苯撑单元的那些,[0041] A是带有吸电子基团的亚甲基碳原子,所述吸电子基团选自羰基、二氰基乙烯基、氰基丙烯酸酯基、丙二酸酯基或二卤代亚甲基,
[0042] R表示直链或支链的C2-C20烷基、C3-C8环烷基(cycloalkylenreste)、单不饱和或多不饱和的C2-C20烯基、C2-C20烷氧基、C2-C20芳烷基或C2-C20低聚醚基或C2-C20聚醚基,[0043] q是0或1,以及
[0044] n是大于或等于2的整数,优选为2~4的数。
[0045] 当A上的吸电子基团形成氰基丙烯酸酯基或丙二酸酯基时,相应的烷基是直链或支链的C1-C12烷基,优选为直链或支链的C1-C8烷基。当A上的吸电子基团形成二卤代亚甲基时,其为二溴代亚甲基、二氯代亚甲基、二碘代亚甲基或二氟代亚甲基,优选为二氟代亚甲基。
[0046] 优选化合物的壳是由各自连接到核上的n个-V-(A)q-L-A-R构成单元形成的。
[0047] 例如,在n等于3、4或6的情况下,这些结构是式(Z-3)、(Z-4)或(Z-6)所示的结构:
[0048]
[0049] 其中,K、V、L和R的定义如上。
[0050] 这种化合物以使得由多官能单元构成的核(即支化的核)、连接链、一个或多个带有吸电子基团的亚甲基碳原子、线性共轭低聚物链和非共轭链彼此相连的方式加以构建。
[0051] 所述由多官能单元构成的核优选具有树枝状或超支化的结构。
[0052] 超支化结构及其制备是本领域技术人员本来就已知的。超支化的聚合物或低聚物具有由所采用的单体结构预先确定的特定结构。所用的单体是ABn型单体,即带有两种不同的官能团A和B的单体。其中,一种官能团(A)在每分子中只出现一次,而另一种官能团(B)则出现多次(n次)。这两种官能团A和B可相互反应形成化学键,例如聚合。由于所述单体结构,在聚合时能形成具有树状的结构的聚合物,称为超支化的聚合物。超支化聚合物不具有规则的支化点,没有环,并且在其链末端几乎仅仅具有B官能团。超支化聚合物、它们的结构、关于支化的问题以及它们的命名法例如在L.J.Mathias,T.W.Carothers,Adv.Dendritic Macromol.(1995),2,101-121及其引用的研究文献中,对基于硅的超支化聚合物中已有描述。
[0053] 对本发明的目的而言,所述超支化结构优选为树枝状聚合物。
[0054] 对本发明的目的而言,树枝状的结构是通过如下方式逐步构建的合成大分子结构:将两种或更多种单体连接在事先已各自键接的单体上,从而使得单体末端基团的数量随各步骤呈指数增长,最终形成球形树状结构。以这种方式形成具有带支化点的基团的三维大分子结构,并以规则的方式从中心向外围延续。这种结构通常是通过本领域技术人员已知的方法,一层一层地构建的。层的数量通常被称为代数。各层中分枝的数量和末端基团的数量随着代的增长而增大。由于其规则的结构,树枝状结构可具有特别的优点。树枝状结构,其制备方法和命名法对本领域技术人员而言是已知的,并已在例如G.R.Newkome等,Dendrimers and Dendrons,Wiley-VCH,Weinheim,2001中描述。
[0055] 可用于形成树枝状或超支化结构的核(下文也简称为树枝状或超支化核)中的结构例如为US-A 6,025,462中描述的那些。这些是,例如如下超支化结构:例如US-A5,183,862、US-A 5,225,522和US-A 5,270,402中描述的聚苯撑、聚醚酮、聚酯,例如US-A
5,264,543中描述的芳族聚酰胺;US-A5,346,984中描述的聚酰胺,例如US 6,384,172中描述的聚碳硅烷或聚碳硅氧烷,或者例如US-A 5,070,183或US-A 5,145,930中描述的聚芳;或者如下树枝状结构:例如US-A 4,435,548和US-A 4,507,466中描述的诸如聚芳烃、聚芳醚或聚酰胺胺的树枝状结构以及例如US-A 4,631,337中描述的聚乙烯亚胺。
[0056] 树枝状核优选由硅氧烷或碳硅烷单元形成。作为硅氧烷单元,优选使用二硅氧烷和四甲基二硅氧烷单元;优选的碳硅烷单元是四丙烯硅烷、四乙烯硅烷、甲基三丙烯硅烷、乙基三丙烯硅烷、丙基三丙烯硅烷、己基三丙烯硅烷、二甲基二丙烯硅烷、二乙基二丙烯硅烷、二丙基二丙烯硅烷、二己基二丙烯硅烷、己基甲基二丙烯硅烷单元。但是,也可使用其他结构单元构建所述树枝状或超支化核。在获得一系列功能,从而形成基体时,所述树枝状或超支化核起着主导作用,所述基体上可连接具有线性共轭低聚物链并因而被置于核-壳结构中的连接链。所述线性共轭低聚物链通过与基体相连而预先有序化了,因而可提高其效果。
[0057] 就连接点的意义而言,所述树枝状或超支化核具有大量的前沿基团(官能团),其适于与具有线性共轭低聚物链的连接链连接。特别地,与由超支化结构构建的核类似,树枝状核具有至少两个,优选至少三个,特别优选至少四个官能团。
[0058] 树枝状或超支化核中的优选结构是1,3,5-次苯基(phenylen)单元(式V-a)以及式(V-b)至(V-e)的单元,其中多个相同或不同的式(V-a)至(V-e)单元相互连接:
[0059]
[0060] 其中,式(V-c)和(V-d)单元中的a、b、c和d各自相互独立地是0、1、2或3。
[0061] 在式(V-a)至(V-e)和下文所用的其他式中,由*指示的位置表示连接点。通过这些连接点,(V-a)至(V-e)单元相互连接,或通过连接链以及如果合适的话,通过带有吸电子基团的亚甲基碳原子与线性共轭低聚物链(L)连接。
[0062] 由式(V-a)单元形成的树枝状核(K)的例子如下:
[0063]
[0064] 在*表示的位置处,通过连接链(V)以及如果合适的话的带有吸电子基团的亚甲基碳原子(A),与线性共轭低聚物链(L)连接。
[0065] 具有核-壳结构的大分子化合物的壳由连接链(V)、带有吸电子基团的至少一个亚甲基碳原子(A)、线性共轭低聚物链(L)和非共轭链(R)形成。连接链(V)优选为具有高度柔性,即高的分子(内)运动性的那些,以这种方式使-L-R链段围绕着核K几何排列。对本发明的目的而言,柔性的含义是指可在分子(内)运动。
[0066] 合适的连接链原则上为具有如下结构特征的线性或支化的链:
[0067] ●碳原子通过单键与碳原子键接,
[0068] ●氢原子与碳原子键接,
[0069] ●氧原子通过单键与碳原子键接,
[0070] ●硅原子通过单键与碳原子键接和/或
[0071] ●硅原子通过单键与氧原子键接,
[0072] 其优选地由总共6至60个原子构成,并且优选不含任何环状结构。
[0073] 合适的连接链特别优选为线性或支化的C2-C20亚烷基链,如亚乙基、亚正丁基、亚正己基、亚正辛基和亚十二烷基链,线性或支化的聚氧亚烷基链,如含-OCH2-、-OCH(CH3)-或-O-(CH2)4-片段的低聚醚链,线性或支化的硅氧烷链,如具有二甲基硅氧烷结构的单元的那些,和/或直链或支化的碳硅烷链,即含硅-碳单键的链,在该链中,硅原子和碳原子可交替、随机或嵌段排列,如带有-SiR2-CH2-CH2-CH2-SiR2-结构单元的链。
[0074] 通式(Z)的合适的线性共轭低聚物链(L)原则上是所有具有能形成导电或半导体低聚物或聚合物的结构的链。这些如取代的或未取代的聚苯胺、聚噻吩、聚亚乙基二氧噻吩、聚苯撑、聚吡咯、聚乙炔、聚异环烷(polyisonaphthene)、聚苯撑-乙烯、聚芴,其可以以均聚物或均聚低聚物或共聚物或共聚低聚物的形式使用。可优选用作线性共轭低聚链的这种结构的例子是由2至10个,特别优选由2至8个通式(VI-a)至(VI-f)的单元构成的链:
[0075]
[0076] 其中,
[0077] R1、R2和R3可相同或不同,各自为氢或直链或支链的C1-C20烷基或C1-C20烷氧基,优选是相同的且各自为是氢,
[0078] 基团R4可相同或不同,各自为氢或直链或支链的C1-C20烷基或C1-C20烷氧基,优选为氢或C6-C12烷基,和
[0079] R5是氢或甲基或乙基,优选为氢,和
[0080] s、t各自相互独立地为0至4的整数,且s+t≥3,优选地s+t=4。
[0081] 在式(V-a)至(V-f)中,由*指示的位置表示连接点,通过它们,(V-a)至(V-f)单元与线性共轭低聚物链连接或者通过它们,在各链的末端具有非共轭的链(R)。
[0082] 特别优选为含有取代的或未取代的2,5-噻吩(VI-a)或(VI-b),或取代的或未取代的1,4-苯撑(VI-c)单元的线性共轭低聚物链。前缀数字2,5-或1,4-表示单元中键接的位置。
[0083] 在此处和下文中,除非另有说明,取代的表示被烷基,尤其是C1-C20烷基取代,或被烷氧基基团,尤其是C1-C20烷氧基取代。
[0084] 非常特别优选地为含有取代或未取代的2,5-噻吩(VI-a)或2,5-(3,4-亚乙基二氧噻吩)(VI-b)单元的线性共轭低聚物链。
[0085] 通式(Z)中L表示的线性共轭低聚物链在各末端连接点处被非共轭链(R)封端。非共轭链优选为具有高度柔性的,即高的分子(内)运动性,因此易与溶剂分子相互作用从而使溶解度提高的那些。对本发明的目的而言,术语柔性的以具有分子(内)运动性的含义加以使用。所述非共轭链(R)是具有2至20个碳原子,优选为6至20个碳原子并可任选插入氧的直链或支链的脂族、不饱和的或芳脂族链,或C3-C8环烷基。优选为脂族和氧代脂族基团,即烷氧基或插入有氧的直链或支链脂族基团(如低聚醚或聚醚基团)或C3-C8环烷基。特别优选地为非支化的C2-C20烷基或C2-C20烷氧基或C3-C8环烷基。合适的链的例子是烷基如正己基、正庚基、正辛基、正壬基、正癸基和正十二烷基,以及烷氧基如正己氧基、正庚氧基、正辛氧基、正壬氧基、正癸氧基和正十二烷氧基,或C3-C8环烷基如环戊基、环己基或环庚基。
[0086] 作为通式(Z)中含有在各末端连接点处被非共轭链封端的线性共轭低聚物链的结构要素-(A)q-L-A-R的例子,可提及通式(VI-a-R)和(VI-b-R)所示的结构要素:
[0087]
[0088] 其中A、R和q的定义如上述通式(Z)中的定义,和
[0089] p是2至10的整数,优选为2至8,特别优选为2至7。
[0090] 具有核-壳结构的大分子化合物的优选实施方案是含有如下构成要素的核-壳结构:树枝状核中的硅氧烷和/或碳硅烷单元、作为连接链的线性非支化的亚烷基、作为所述具有吸电子基团的至少一个亚甲基碳原子的吸电子基团的羰基、二氰基乙烯基、氰基丙烯酸酯基、丙二酸酯基或二卤代亚甲基,作为线性共轭低聚物链的含有2至8个,优选4至6个取代或未取代的噻吩或3,4-亚乙基二氧噻吩单元的未取代的低聚噻吩链和/或低聚(3,4-亚乙基二氧噻吩)链,以及作为柔性非共轭链的C6-C12烷基。
[0091] 这些的例子是式(Z-2-a)至(Z-2-i)所示的如下化合物:
[0092]
[0093]
[0094] 作为其它例子,可提及下列化合物(Z-4-a)至(Z-4-h):
[0095]
[0096]
[0097] 根据本发明,通式(Z)的大分子化合物的层优选是导电的或半导电的。具有半导-4 2体性质的化合物或混合物的层是本发明特别优选的主题。特别优选为具有至少10 cm/Vs的载流子迁移率的化合物的层。载流子例如为空穴。
[0098] 本发明的化合物典型地易溶于常规有机溶剂中,因此非常适于从溶液加工。特别合适的溶剂是芳烃、醚或卤代脂族烃,例如氯仿、甲苯、苯、二甲苯、乙醚、二氯甲烷、氯苯、二氯苯或四氢呋喃,或这些的混合物。本发明的化合物可由各种工艺路线制备。
[0099] 对本发明化合物的性能而言,其制备路线并不重要。
[0100] 本发明的化合物在常规溶剂,如芳烃、醚或卤代脂族烃,例如在氯仿、甲苯、苯、二甲苯、乙醚、二氯甲烷、氯苯、二氯苯或四氢呋喃中的溶解度至少为0.1wt%,优选至少为1wt%,特别优选地至少为5wt%。
[0101] 本发明的化合物可通过蒸发溶液形成具有均匀厚度和形貌的高质量层,因此它们适于电子应用。
[0102] 最后,本发明还提供了本发明的化合物作为半导体在电子元件中的应用,所述电子元件如场效应晶体管,发光元件如有机发光二极管或光伏电池激光器和传感器。
[0103] 本发明的化合物优选以层状形式用于这些目的。
[0104] 为能够确保作为半导体的有效功能,本发明的化合物和混合物具有足够的迁移-4 2率,例如至少10 cm/Vs。电荷迁移率例如可按照M.Pope和C.E.Swenberg,Electronic Processes in Organic Crystals and Polymers, 第 2 版, 第 709-713 页 (Oxford University Press,New York Oxford 1999)中描述的方法测定。
[0105] 在应用时,将本发明的化合物施加到适当的基底如具有电器或电子结构的硅晶片、聚合物薄膜或玻璃板上。原则上所有施加方法都能用于施加。本发明的化合物和混合物优选从液相,即从溶液施加,然后蒸发溶剂。从溶液施加可通过已知的方法进行,例如通过旋涂、蘸涂、印刷和刮刀涂覆。特别优选通过旋涂和喷墨印刷施加。
[0106] 由本发明的化合物制备的层可在施加后进一步改性,例如通过热处理(如包括瞬态液相-晶相转变)或通过结构化(如通过激光消融)。
[0107] 本发明还提供了含有作为半导体的本发明的化合物和混合物的电子元件。
[0108] 下文的实施例用于说明本发明,并不对本发明构成限制。实施例
[0109] 本发明的式(Z)的化合物例如可通过与下文描述的合成类似的方法制备。
[0110] 所有的反应容器采用常规保护气体技术进行烘焙并在使用前充入氮气。
[0111] OFET的制备:
[0112] a)OFET的基底和清洁
[0113] 将一侧已抛光并具有厚度为300nm的热生成氧化层的p-掺杂硅晶片(Sil-Chem)切割成25mm×25mm的基底。首先将该基底仔细清洁。在流动的蒸馏水下用无尘布(Bemot M-3,Ashaih Kasei Corp.)擦拭,除去粘附的硅碎片,然后在60℃下,将基底在超声浴中,在2%浓度的水/Mucasol溶液中清洁15分钟。然后将该基底用蒸馏水清洗并在离心机中甩干。在即将涂覆前,将抛光面在UV/臭氧反应器(PR-100,UVP Inc.,Cambridge,GB)中清洁10分钟。
[0114] b)介电层
[0115] i.将辛基二甲基氯硅烷(ODMC)(Aldrich,246859)用作介电中间层。将ODMC以使得正好覆盖底部的方式倒入培养皿中。然后,将装有清洁的Si基底的盒子置于其上,在盒中,所述清洁的Si基底垂直立于其边缘的方式放置。用倒置的玻璃烧杯将其全部盖住,将培养皿加热至70℃。将基底在富含辛基二甲基氯硅烷的气氛中保持15分钟。
[0116] ii.六甲基二硅氮烷(HMDS):将用作介电中间层的六甲基二硅氮烷(Aldrich,37921-2)倒入玻璃烧杯中,在所述烧杯中放置装有清洁的Si基底的盒子,所述Si基底垂直立于其边缘。该硅氮烷完全覆盖基底。将玻璃烧杯盖住并在热板上加热至70℃。将该基底在硅氮烷中保持24小时。然后将基底在干燥的氮气流中干燥。
[0117] c)有机半导体
[0118] 为了施加有机半导体层,制备化合物在适当溶剂中的溶液。为了使组分完全溶解,将该溶液在60℃下,置于超声浴中约1分钟。溶液的浓度为0.3wt%。
[0119] 将具有介电中间层的基底以抛光面朝上的方式置于旋涂设备(Carl Süss,RC8 mit Gyrset )的夹具中,采用吹机将其加热至约70℃。将约1ml的仍然温热的溶液滴2
加到表面上,打开Gyrset 以500转/秒 的加速度在1200rpm下甩30秒,将含有有机半导体的溶液从基底上甩掉。
[0120] d)电极的施加
[0121] 随后将源极和漏极气相沉积到该层上。这是通过采用包括电化学法制备的Ni片的掩模进行的,所述Ni片带有四个凹槽,所述凹槽包含两个相互啮合的梳。各梳的齿宽度为100μm,长度为4.7mm。将该掩模置于涂覆的基底表面上,通过磁由背面固定。
[0122] 在气相沉积装置(Univex 350,Leybold)中,将金气相沉积到该基底上。
[0123] e)电容的测量
[0124] 装置的电容是按照如下方式确定的:将用相同方法制备但不具有有机半导体层的基底进行气相沉积,平行置于相同的掩模后面。用万用表(MetraHit 18S,Gossen Metrawatt GmbH)测量p-掺杂的硅晶片和气相沉积的电极之间的电容。测得的该装置的电2
容为C=0.7nF,基于电极几何尺寸,这相当于单位装置面积的电容为C=6.8nF/cm。
[0125] f)电气特征
[0126] 采用双电流-电压源(Keithley 238)测量特性曲线。一个电压源向源极和漏极施加电势,并测定流过的电流;而第二电压源向门极和源极施加电势。用印刷有金的带将源极和漏极连接;高度掺杂的Si晶片形成门极,并通过刮掉氧化物的背面连接。采用已知的方法记录特征曲线和及其评价,所述方法例如“Organic thin-film transistors:A review of recent advances”,C.D.Dimitrakopoulos,D.J.Mascaro,IBM J.Res.& Dev.第45卷第1期,2001年1月描述的方法。
[0127] 实施例
[0128] 在保护气体下进行合成。为此目的,将所有的玻璃仪器在150℃下,在烘箱中干燥2小时,趁热装配,抽真空然后充满保护气体。采用标准方法将所用的溶剂干燥并脱气。
[0129] 实施例1
[0130] 1-(2,2′-二噻吩-5-基)庚-1-酮
[0131]
[0132] 将处于110ml无水THF中的5-溴-2,2’-二噻吩(10.5g,42.8mmol)溶液滴加到处于10ml无水THF中的镁(1.04g,43.7mmol)悬浮液中。随后将该混合物回流2小时。然后将冷却的溶液在0℃下滴加到庚酰氯(6.34g,34mmol)和新制备的Li2MgCl4(1.07mmol,由135mg(1.07mmol)MnCl2和95mg(2.24mmol)的LiCl在15ml无水THF中制得)的溶液中。随后将该混合物在2小时内加热到室温,再搅拌1小时。将该溶液倒入400ml水和600ml乙醚中。分离出有机相,用水洗涤,用硫酸钠干燥,过滤并减压蒸发溶剂。这得到了12.1g粗产物,将其用硅胶层析法提纯(洗脱液为甲苯-己烷1∶1),从而得到了10.70g(94%)产物。
1
[0133] H NMR(250MHz,CDCl3,δ,ppm):0.88(t,3H,J=6.7Hz,-CH2-CH3),1.20-1.45(重叠峰,6H,-CH2-CH2-CH2-),1.73(m,2H,M=5,J=7.3Hz,-CH2-CH2-CH2-CO-),2.85(t,2H,J=7.3Hz,-CH2-CH2-CO-),7.15(d,1H,J=3.7Hz),7.30(s,1H),7.28-7.33(重叠峰,2H),7.58(d,1H,J=4.3Hz)。
[0134] 实施例2
[0135] 2-(2,2′-二噻吩-5-基)-2-己基-1,3-二氧戊环
[0136]
[0137] 将1-(2,2′-二噻吩-5-基)庚-1-酮(10.0g,35.9mmol)溶于热的苯(350ml)中,并与对甲苯磺酸(1.37g,7.2mmol)和乙二醇(80ml,89g,1.44mol)混合。将该溶液在水分离器上,在115℃下沸腾18小时。然后将该溶液用饱和碳酸氢钠溶液洗涤,分离出有机相,用硫酸钠干燥,过滤并减压蒸发溶剂。这得到了11.79g粗产物,将其用硅胶层析法提纯(洗脱液为甲苯)并从己烷中重结晶。这得到了8.35g(72%)产物。
[0138] 1H NMR(250MHz,CDCl3,δ,ppm):0.87(t,3H,J=6.7Hz,-CH2-CH3),1.20-1.48(重叠峰,6H,-CH2-CH2-CH2-),1.40(m,2H,M=5,J=7.3Hz,-CH2-CH2-CH2-C(O-CH2-CH2-O)-),1.99(t,2H,J = 7.3Hz,-CH2-CH2-C(O-CH2-CH2-O)-),4.00(m,4H,CH2-C(O-CH2-CH2-O)-T),
6.88(d,1H,J=3.7Hz),6.99(dd,1H,J1=4.9Hz,J2=3.7Hz),7.00(d,1H,J=3.7Hz),
7.12(dd,1H,J1=3.7Hz,J2=1.2Hz),7.19(dd,1H,J1=5.4Hz,J2=1.2Hz)。
[0139] 实施例3
[0140] 1-[5′-(4,4,5,5-四甲基-1,3,2-二氧杂环戊烷-2-基)-2,2′-二噻吩-5-基]-2-己基-1,3-二氧戊环
[0141]
[0142] 将1.6M的丁基锂(15.70ml,25.1mmol)己烷溶液在-70到-75℃下滴加到处于250ml无水THF中的2-(2,2′-二噻吩-5-基)-2-己基-1,3-二氧戊环(8.10g,25.1mmol)溶液中。将该反应溶液在-75℃下再搅拌60分钟,然后一次全部加入2-异丙氧基-4,4,5,
5-四甲基-1,3,2-二氧杂环戊硼烷(5.124ml,25.1mmol)。将该溶液在-78℃下再搅拌1小时,在室温再搅拌1小时。加入600ml新蒸馏的乙醚和300ml脱气的水。在搅拌的同时滴加25ml的1MHCl。分离出有机相,用水洗涤,用硫酸钠干燥,过滤并减压蒸发溶剂。这得到了11.26g(95%)产物。
[0143] 1H NMR(250MHz,CDCl3,δ,ppm):0.84(t,3H,J=6.7Hz,-CH2-CH3),1.20-1.48(在1.33ppm处具有最大值的重叠峰,20H,-CH2-CH2-CH2-和O-C(CH3)2),1.99(t,2H,J=
7.3Hz,-CH2-CH2-C(O-CH2-CH2-O)-),4.00(m,4H,CH2-C(O-CH2-CH2-O)-T),6.88(d,1H,J =
3.7Hz),7.06(d,3H,J=3.7Hz),7.18(d,1H,J=3.7Hz),7.49(d,1H,J=3.7Hz)。
[0144] 实施例4
[0145] 1-[5′-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)-2,2′-二噻吩-5-基]庚-1-酮
[0146]
[0147] 将1-[5′-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)-2,2′-二噻吩-5-基]-2-己基-1,3-二氧戊环(5.1g,11.40mmol)溶于无水THF(50ml)中,并与1.14ml(1.1mmol)浓HCl混合。将该溶液在室温下搅拌7小时。然后加入400ml新蒸馏的乙醚和200ml脱气的水。分离出有机相,用饱和NaHCO3水溶液洗涤,用硫酸钠干燥,过滤并减压蒸发溶剂。这得到了4.2g(96%)产物。
[0148] 1H NMR(250MHz,CDCl3,δ,ppm):0.88(t,3H,J=6.7Hz,-CH2-CH3),1.20-1.45(在1.34ppm处具有最大值的重叠峰,18H,-CH2-CH2-CH2-和O-C(CH3)2),1.73(m,2H,M=5,J=
7.3Hz,-CH2-CH2-CH2-CO-),2.85(t,2H,J=7.3Hz,-CH2-CH2-CO-),7.20(d,1H,J=3.7Hz),
7.35(d,1H,J=3.7Hz),7.53(d,1H,J=3.7Hz),7.59(d,1H,J=4.3Hz)。
[0149] 实施例5
[0150] 1-(5′-溴-2,2′-二噻吩-5-基)十一碳-10-烯-1-酮
[0151]
[0152] 步骤1.溴化镁-乙醚络合物的合成
[0153] 将处于15ml无水THF中的镁(969mg,38.6mmol)悬浮液滴加到处于25ml乙醚中的1,2-二溴乙烷(3.18ml,36.7mmol)溶液中。将该反应混合物回流30分钟,然后冷却至室温,进一步用于步骤2。
[0154] 步骤2.(5′-溴-2,2′-二噻吩-5-基)溴化镁的制备
[0155] 将1.6M的丁基锂(19.3ml,30.9mmol)己烷溶液在-40℃下滴加到处于450ml无水THF中的5,5’-二溴-2,2′-二噻吩(10.00g,30.9mmol)溶液中。然后将该反应混合物在-40℃下搅拌30分钟。然后一次全部加入由步骤1获得的溴化镁-乙醚络合物。将该反应溶液在-40℃下再搅拌30分钟,随后在室温下搅拌2小时。
[0156] 步骤3.1-(5′-溴-2,2′-二噻吩-5-基)十一碳-10-烯-1-酮的制备
[0157] 将由步骤2获得的格氏溶液在-5℃下滴加到十一碳烯酰氯(6.26g,30.9mmol)溶液和新制备的Li2MgCl4(1.54mmol)的无水THF的溶液中(Li2MgCl4是由MnCl2(194mg,15.4mmol)和LiCl(137mg,32.4mmol),通过将这些反应物在室温下,在50ml无水THF中搅拌2小时而制备的)。将该混合物在2小时内加热至室温,再搅拌1小时。随后,将该反应溶液倒入400ml水中,与600ml乙醚一起搅拌。分离出有机相,用水洗涤,用硫酸钠干燥,过滤并减压除去溶剂。这得到了12.06g粗产物,通过反复从甲苯重结晶以及硅胶层析法(洗脱液:甲苯-己烷1∶1,60℃),将其提纯。这得到了8.89g(63%)橙色晶体形式的产物。
[0158] 1H NMR(250MHz,CDCl3,δ,ppm):1.20-1.45(重叠峰,10H,-CH2-CH2-CH2-),1.72(m,2H,M=5,J=7.3Hz,-CH2-CH2-CH2-CO-),2.02(dt,2H,J1=7.3Hz,J2=7.1Hz,-CH2-CH2-CH= CH2),2.82(t,2H,J = 7.5Hz,-CH2-CH2-CO-),4.95(m,2H,-CH2-CH = CH2),5.78(m,
1H,-CH2-CH = CH2),7.00(d,1H,J = 3.7Hz),7.05(d,1H,J = 3.7Hz),7.09(d,1H,J =
4.3Hz),7.30(s,1H),7.57(d,1H,J=4.3Hz)。
[0159] 实施例6
[0160] 1-(5″′-庚酰基-2,2′:5′,2″:5″,2″′-四噻吩-5-基)十一碳-10-烯-1-酮
[0161]
[0162] 将处于120ml甲苯中的3.26g(8.07mmol)1-[5′-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)-2,2′-二噻吩-5-基]庚-1-酮和2.79g(6.78mmol)1-(5′-溴-2,2′-二噻吩-5-基)十一碳-10-烯-1-酮溶液脱气,并与466mg Pd(PPh3)4混合。然后加入24ml脱气的2M Na2CO3水溶液,将该反应混合物在回流下搅拌12小时。加入300ml甲苯和300ml水,分离出有机相,用水洗涤直至pH值呈中性,干燥,过滤并减压除去溶剂。将粗产物从甲苯重结晶。这得到了4.07g(99%)产物。
[0163] 1H NMR(250MHz,CDCl3,δ,ppm):0.90(t,3H,J=6.7Hz,-CH2-CH3),1.22-1.45(重叠峰,16H,-CH2-CH2-CH2-),1.78(m,4H,M=5,J=7.3Hz,-CH2-CH2-CH2-CO-),2.01(m,2H,M=4,J=6.7Hz,-CH2-C=CH2),2.85(t,4H,J=7.3Hz,-CH2-CH2-CO-),4.95(m,2H,-CH2-CH=CH2),5.78(m,1H,-CH2-CH=CH2),7.14(d,2H,J=3.7Hz),7.17(d,2H,J=4.3),7.22(d,2H,J=3.7Hz),7.58(d,2H,J=4.3Hz)。
[0164] 实施例7
[0165] {1-[5″′-(2,2-二氰基-1-己基乙烯基)-2,2′:5′,2″:5″,2″′-四噻吩-5-基]十一碳-10-烯-1-亚基}丙二腈
[0166]
[0167] 将2.5g(4.1mmol)1-(5″′-庚酰基-2,2′:5′,2″:5″,2″′-四噻吩-5-基)十一碳-10-烯-1-酮、1.08g(16.4mmol)丙二腈和120ml无水吡啶在90℃下搅拌25小时。随后减压除去溶剂,得到的粗产物用层析法(硅胶,洗脱液:甲苯-THF10∶1)提纯。这得到了1.48g(51%)纯净的产物。
[0168] 1H NMR(250MHz,CDCl3,δ,ppm):0.89(t,3H,J=6.7Hz),1.22-1.42(重叠峰,12H,-CH2-CH2-CH2-),1.46(m,4H,M=5,J=7.3Hz,-CH2-CH2-CH2-C(CN)2-),l.70(m,4H,M=5,J=7.3Hz,-CH2-CH2-C(CN)2-),2.02(m,2H,M=4,J=6.7Hz,-CH2-C=CH2),2.93(t,
4H,J=7.3Hz,-CH2-C(CN)2-),4.95(m,2H,-CH2-CH=CH2),5.78(m,1H,-CH2-CH=CH2),
7.20(d,2H,J=4.3),7.28(d,2H,J=4.3),7.31(d,2H,J=4.3),7.95(d,2H,J=3.7)。
[0169] 实施例8
[0170] [1-[5″′-(2,2-二氰基-1-己基乙烯基)-2,2′:5′,2″:5″,2″′-四噻吩-5-基]-11-(1,1,3,3-四甲基二硅氧烷基)十一亚烷基]丙二腈
[0171]
[0172] 将0.24g(0.34mmol){1-[5″′-(2,2-二氰基-1-己基乙烯基)-2,2′:5′,2″:5″,2″′-四噻吩-5-基]十一碳-10-烯-1-亚基}丙二腈和10ml的1,1,3,3-四甲基二硅氧烷在40℃下溶于20ml甲苯中。然后加入30μL的Karstedt催化剂的0.1M二甲苯溶液。将该反应溶液在40℃下搅拌2小时。随后将过量的1,1,3,3-四甲基二硅氧烷与甲苯一起减压除去。得到的粗产物(0.27g)含有72%的产物、8.5%的二聚体和19%的具有移动双键的起始物质,不进行提纯就将其进一步反应。
[0173]
[0174] 实施例8粗产物的GPC分析
[0175] (二聚体:位于7.3分钟处的峰,产物:位于7.8分钟处的峰,具有移动双键的起始物质:位于8.1分钟处的峰)
[0176] 实施例9
[0177] 1,3-双{3-[5″′-(2,2-二氰基-1-己基乙烯基)-2,2′:5′,2″:5″,2″′-四噻吩-5-基]十一亚烷基]丙二腈}-1,1,3,3-四甲基二硅氧烷
[0178]
QQ群二维码
意见反馈