PHOSPHOR-CONTAINING PHENOL FORMALDEHYDE RESIN AND FLAME-RETARDANT EPOXY RESIN HARDENER CONTAINING THEREOF

申请号 US14312703 申请日 2014-06-24 公开(公告)号 US20140378626A1 公开(公告)日 2014-12-25
申请人 Jiangsu Yoke Technology Co., Ltd; 发明人 Qi SHEN; Xu-Feng LI; Dong ZHAO;
摘要 The introduction of environmentally-friendly organic phosphorus group can not only maintain the original excellent properties of epoxy resins, but also meet the high flame-retarding requirements, and have the ability to improve the vitrification temperature (Tg), heat resistance and other characteristics of the material so that the curing system can be successfully applied to the electronic materials field which are light, thin, small and precise, the present disclosure provides a flame-retarding phosphor-containing phenol-formaldehyde novolac and the preparation method thereof, the use of the compound to react with the epoxy group of an epoxy resin to obtain an environmentally-friendly and high performing halogen-free cured flame retarding epoxy resin, and the compound can also be used for curing epoxy resins and gives a high flame-retarding effect.
权利要求

What is claimed is:1. A phosphorous-containing flame retarding phenol-formaldehyde novolac, comprising a compound with the general formula represented by formula (I):embedded imagewherein A and A′ are individuallyembedded imageY is —CH2— or —CH2—O—CH2—, and Y in different units are the same or different;Z is unsubstituted, —CH2—, —C(CH3)2—, —O—, —S— or —S(O)2—, and Z in different units are the same or different;R is H, a C1-C10 alkyl group, a C6-C18 aromatic group,embedded imageand R in different units are the same or different;p is 0-2;q is 0-3;a is an integer greater than or equal to 1;b is an integer greater than or equal to 1;m is 0-6;X isembedded imagewherein Ar and Ar′ are individuallyembedded imageR′ is H, a C1-C4 alkyl group or a C6-C18 aromatic group, and R′ in different units are the same or different; andn is 0-5.2. The phosphorous-containing flame retarding phenol-formaldehyde novolac of claim 1, wherein during the preparation, a phenol compound, a bisphenol compound and a formaldehyde is used to synthesize a phenol-formaldehyde novolac, the phenol-formaldehyde novolac is then mixed with an aromatic phosphate ester to undergo condensation and polymerization, the phenol compound is phenol, o-cresol, m-cresol, p-cresol, o-phenylphenol, m-phenylphenol, p-phenylphenol, 2,6-dimethylphenol, 2,4-dimethylphenol and the combination thereof; the bisphenol compound is biphenol, bisphenol F, bisphenol A, p-thiobisphenol, bisphenol S and the combination thereof; the aromatic phosphate ester is DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide), diphenyl phosphite ester, diphenyl phosphonate, C1-C4 alkyl group or C6-C18 aromatic group substituted thereof and the combination thereof.3. The phosphorous-containing flame retarding phenol-formaldehyde novolac of claim 2, wherein the mass ratio of the phenol compound and the bisphenol compound is 1:0.1 to 1:9.4. The phosphorous-containing flame retarding phenol-formaldehyde novolac of claim 1, wherein the phosphorous-containing flame retarding phenol-formaldehyde novolac is an epoxy hardener.5. A cured flame retarding epoxy resin, comprising reacting the phosphorous-containing flame retarding phenol-formaldehyde novolac of claim 1 with an epoxy resin alone under a high temperature, or reacting a mixture comprising of an epoxy resin hardener and the phosphorous-containing flame retarding phenol-formaldehyde novolac of claim 1 with an epoxy resin under a high temperature.6. The cured flame retarding epoxy resin of claim 5, wherein the weight percent of the phosphorous is 0.5% to 10%.7. The cured flame retarding epoxy resin of claim 5, wherein the epoxy resin hardener is selected from the group consisting of phenol-formaldehyde novolac, cresol-formaldehyde novolac, bisphenol A phenol-formaldehyde novolac, dicyandiamide, methylenedianiline, diaminodiphenyl sulfone and the combination thereof.8. The cured flame retarding epoxy resin of claim 5, wherein the epoxy resin is a difunctional epoxy resin or a polyfunctional epoxy resin selected from the group consisting of bisphenol A novolac epoxy, bisphenol F novolac epoxy, bisphenol S novolac epoxy, biphenol novolac epoxy, phenol novolac epoxy, cresol novolac epoxy, bisphenol A novolac epoxy and the combination thereof.9. The cured flame retarding epoxy resin of claim 5, wherein the reaction is carried out in the presence of a curing accelerator, wherein the curing accelerator is imidazole compounds comprising 2-methylimidazole, 2-phenylimidazole or 2-ethyl-4-methylimidazole, and the curing accelerator is used in a range of 0.01 to 2.5 weight percent of the total weight of the epoxy resin and the epoxy resin hardener.10. The cured flame retarding epoxy resin of claim 5, wherein the cured flame retarding epoxy resin is a resin substrate of a printed circuit board and a semiconductor packaging material.

说明书全文

RELATED APPLICATIONS

This application claims priority to China Application Serial Number 201310255770.6, filed Jun. 25, 2013, which is herein incorporated by reference.

BACKGROUND

1. Field of Invention

The present disclosure relates to a phosphorous-containing phenol-formaldehyde novolac structure and the preparation method thereof, and the use of the compound to react with the epoxy group of an epoxy resin to obtain an environmentally-friendly and high performing halogen-free cured flame retarding epoxy resin.

2. Description of Related Art

The chemical structure of epoxy resin features its desirable properties, e.g., reactivity, toughness, flexibility, good mechanical properties, electrical properties, dimensional stability, and superior bonding properties for different substrates. The cured epoxy resin can not only maintain the original features of the substrate, but also further block out water, gas and chemicals, and it is also lightweight and low cost. Therefore, epoxy resin is widely used in electronics and aerospace industries, especially in the field of semiconductor packaging material, printed circuit board substrate material and so on. However, when the epoxy resin is applied to a printed circuit board, there is a lack of flame retarding. In the past, halogen based flame-retardant was added to the epoxy resin to meet the flame-retarding requirements. The halogen based flame-retardant will produce dioxin, benzofuran and other irritating and corrosive harmful gases when burnt, and the small molecules of the flame-retardant often cause a reduction in the mechanical properties and will photodecompose, thus causing material deterioration. At the same time, there will be migration and volatility issues, resulting in a reduction of the material performance and the flame-retarding effect is not ideal. Therefore, the use of organic phosphorus compound flame-retardants in thermosetting epoxy resin compositions instead of halogenated flame-retardants is constantly emerging, for example, in patents such as EP A 0384939, EP A 0384940, EP A 0408990, DE A 4308184, DE A 4308185, DE A 4308187, WO A 96/07685, and WO A 96/07686. In addition, for the printed circuit laminates, with the rise of environmental awareness, the current international norms require lead free processes, therefore the processing of the substrate are now more demanding, especially regarding the vitrification temperature (Tg) of the material and the heat resistance of the substrate in a tin furnace has become an important issue that researchers in this field must overcome.

SUMMARY

The present disclosure provides a new type of phosphorous-containing phenol-formaldehyde novolac that can be used for curing epoxy resins, and gives a high flame-retarding effect. The introduction of environmentally-friendly organic phosphorus group can not only maintain the original excellent properties of epoxy resins, but also meet the high flame-retarding requirements, and have the ability to improve the vitrification temperature (Tg), heat resistance and other characteristics of the material, so that the curing system can be successfully applied to the electronic materials field which are light, thin, small and precise.

One aspect of the present disclosure is to provide a new type of phosphorous-containing flame retarding phenol-formaldehyde novolac, a compound with the general formula represented by Formula (I):

embedded image

wherein, A and A′ are individually

embedded image

Y is —CH2— or —CH2—O—CH2—, and Y in different units are the same or different;



Z is unsubstituted, —CH2—, —C(CH3)2—, —O—, —S— or —S(O)2—, and Z in different units are the same or different;



R is H, a C1-C10 alkyl group, a C6-C18 aromatic group,

embedded image

and R in different units are the same or different;



p is 0-2;



q is 0-3;



a is an integer greater than or equal to 1;



b is an integer greater than or equal to 1;



m is 0-6;

X is

embedded image

wherein Ar and Ar′ are individually

embedded image

R′ is H, a C1-C4 alkyl group or a C6-C18 aromatic group, and R′ in different units are the same or different;



and n is 0-5.

The above mentioned phosphorous-containing flame retarding phenol-formaldehyde novolac compound have a suitable reactivity, wide range of lamination processing period, high vitrification temperature, excellent heat resistance, low water absorption, good electrical properties and can be used as an epoxy resin hardener, by reacting the epoxy group of the epoxy resin with the phenolic hydroxyl group of the compound, an environmentally-friendly halogen-free cured flame retarding epoxy resin may be formed, which can be used in packaging materials for integrated circuit boards and semiconductors.

The preparation method of the above mentioned phosphorous-containing flame retarding phenol-formaldehyde novolac is carried out by synthesizing a phenol-formaldehyde novolac by using a phenol compound, bisphenol compound and formaldehyde, the phenol-formaldehyde novolac is then mixed with an aromatic phosphate ester (i.e., the X in Formula I) to undergo a condensation polymerization reaction to produce the product.

The above mentioned phosphorous-containing flame retarding phenol-formaldehyde novolac includes a phenol compound and a bisphenol compound, wherein the mass ratio of the phenol compound and the bisphenol compound is between 1:0.1 to 1:9.

The phenol compounds used in the preparation method of the present disclosure may be phenol, o-cresol, m-cresol, p-cresol, o-phenylphenol, m-phenylphenol, p-phenylphenol, 2,6-dimethylphenol, 2,4-dimethylphenol and the combination thereof; the bisphenol compound may be biphenol, bisphenol F, bisphenol A, p-thiobisphenol, bisphenol S and the combination thereof; the aromatic phosphate ester may be DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide), diphenyl phosphite ester, diphenyl phosphonate, and C1-C4 alkyl group or C6-C18 aromatic group substituted thereof and the combination thereof.

The above mentioned phosphorous-containing phenol-formaldehyde novolac can be used as the epoxy resin hardener. In the chemical structure, since the phosphorous-containing phenol-formaldehyde novolac, in addition to having a phenol compound, has an bisphenol compound with excellent heat resistance, high vitrification temperature (Tg), low water absorption and good electrical properties, examples of the bisphenol compound include biphenol, bisphenol F, bisphenol A and bisphenol S, etc. Therefore, the drawbacks of lack of flexibility and insufficient heat resistance when the phenol compound is used alone can be compensated. On the other hand, through mixing of the bisphenol compound and the phenol compound, the drawbacks of the high coefficient of expansion when the temperature is greater than the vitrification temperature (Tg) of the cured product can be effectively improved (compared to using the bisphenol A alone), this can help improve the dimensional stability of the product, which can be applied to the electronic materials field which are light, thin, small and precise.

The present disclosure also provides a cured flame retarding epoxy resin, which is prepared by reacting the above-mentioned phosphorous-containing flame retarding phenol-formaldehyde novolac, which can be used alone or mixed with conventional epoxy resin hardeners, with epoxy resin at high temperatures. The halogen-free flame retarding epoxy resin composition was impregnated in glass fiber, and then after thermosetting, forms a flame retarding copper-clad laminate, which can be used as a packaging material in integrated circuit boards and semiconductors, the cured flame retarding epoxy resin that is formed can be used as a resin substrate of a printed circuit board and semiconductor packaging material.

The conventional epoxy resin hardener mentioned above can be selected from the group consisting of phenol-formaldehyde novolac, cresol-formaldehyde novolac, bisphenol A phenol-formaldehyde novolac, dicyandiamide, methylenedianiline, diaminodiphenyl sulfone and the combination thereof.

The above mentioned epoxy resin refers to a difunctional epoxy resin or a polyfunctional epoxy resin, for example, bisphenol A novolac epoxy, bisphenol F novolac epoxy, bisphenol S novolac epoxy, biphenol novolac epoxy, phenol novolac epoxy, cresol novolac epoxy, bisphenol A novolac epoxy and the combination thereof.

The cured phosphorous-containing flame retarding epoxy resin in the present disclosure, wherein the epoxy resin and the hardener are used in same equivalents, and prepared by a curing reaction at a temperature higher than 150° C.

In order to achieve a UL94 V-0 grade flame-retardant, the cured phosphorous-containing flame retarding epoxy resin (epoxy resin+phosphorous-containing hardener+other additives) of the present disclosure, although the formulation of the compositions and the specific structure of each component have many variations, but as long as the phosphorus content of the final cured product is controlled to be within 0.5 to 10% mass range it is acceptable.

To carry out the reaction effectively, the cured phosphorous-containing flame retarding epoxy resin of the present disclosure can be carried out in the presence of a curing accelerator, a curing accelerator can be used in a range of 0.01 to 2.5 weight percent of the total weight of the epoxy resin and the hardener, and the suitable curing accelerators include imidazole compounds, for example, 2-methylimidazole (2-MI), 2-phenylimidazole (2-PI) or 2-ethyl-4-methylimidazole (2E4MZ) and the like.

These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description and appended claims.

It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.

DETAILED DESCRIPTION

Reference will now be made in detail to the present embodiments of the invention. Wherever possible, the same reference numbers are used in the description to refer to the same or like parts.

Preparation of the Phosphorous-Containing Phenol-Formaldehyde Novolac Compound

Embodiment 1

260 grams of phenol, 260 grams of bisphenol A, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-1 is then obtained.

Embodiment 2

52 grams of phenol, 468 grams of bisphenol A, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 45° C. and maintained for 3 hours. The temperature is then raised to 68° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 15 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 130° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 140° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-2 is then obtained.

Embodiment 3

400 grams of phenol, 68 grams of o-cresol, 52 grams of bisphenol A, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 50° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 15 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 120° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-3 is then obtained.

Embodiment 4

157.6 grams of phenol, 362.4 grams of bisphenol S, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 50° C. and maintained for 3 hours. The temperature is then raised to 85° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 130° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-4 is then obtained.

Embodiment 5

59 grams of phenol, 461 grams of bisphenol S, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 50° C. and maintained for 3 hours. The temperature is then raised to 85° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-5 is then obtained.

Embodiment 6

400 grams of phenol, 61 grams of o-cresol, 59 grams of bisphenol S, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 50° C. and maintained for 3 hours. The temperature is then raised to 85° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 135 t, about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-6 is then obtained.

Embodiment 7

245 grams of phenol, 245 grams of bisphenol F, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 50° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 2 hours, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-7 is then obtained.

Embodiment 8

49 grams of phenol, 441 grams of p-thiobisphenol, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 50° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 175° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 175° C. for 2 hours, the reaction temperature is then lowered to 140° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-8 is then obtained.

Embodiment 9

400 grams of phenol, 72.7 grams of 2,6-dimethylphenol, 47.3 grams of bisphenol F, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 50° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 150° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-9 is then obtained.

Embodiment 10

184 grams of phenol, 184 grams of bisphenol A, 184 grams of bisphenol S, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-10 is then obtained.

Embodiment 11

91.2 grams of phenol, 214.4 grams of bisphenol A, 214.4 grams of bisphenol F, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 175° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 175° C. for 2 hours, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-11 is then obtained.

Embodiment 12

133.5 grams of phenol, 133.5 grams of bisphenol S, 267 grams of bisphenol F, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 135° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-12 is then obtained.

Embodiment 13

468 grams of phenol, 52 grams of bisphenol A, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1040 grams of diphenyl phosphonate were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-13 is then obtained.

Embodiment 14

260 grams of phenol, 260 grams of biphenol, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1010 grams of diphenyl phosphonate were added to the intermediate product, the reaction temperature was raised from 80° C. to 190° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 135° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-14 is then obtained.

Embodiment 16

148.6 grams of phenol, 371.4 grams of bisphenol F, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1010 grams of diphenyl phosphonate were added to the intermediate product, the reaction temperature was raised from 80° C. to 190° C. within a 2 hour period, when the temperature reaches 150° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-15 is then obtained.

Embodiment 16

120.9 grams of phenol, 399.1 grams of bisphenol S, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1010 grams of diphenyl phosphonate were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-16 is then obtained.

Embodiment 17

468 grams of phenol, 52 grams of bisphenol A, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1170 grams of diphenyl phosphite ester were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-17 is then obtained.

Embodiment 18

52 grams of phenol, 260 grams of bisphenol A, 104 grams of bisphenol F, 104 grams of biphenol, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1170 grams of bis-p-methylphenyl phosphite ester were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-18 is then obtained.

Embodiment 19

76.5 grams of phenol, 443.5 grams of bisphenol F, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1170 grams of diphenyl phosphite ester were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-19 is then obtained.

Embodiment 20

74.3 grams of phenol, 445.7 grams of bisphenol S, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 45° C. and maintained for 2 hours. The temperature is then raised to 60° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 14 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

500 grams of DOPO, 300 grams of diphenyl phosphite ester, 370 grams of diphenyl phosphonate were added to the intermediate product, the reaction temperature was raised from 80° C. to 190° C. within a 2 hour period, when the temperature reaches 150° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 2 hours, the reaction temperature is then lowered to 135° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-20 is then obtained.

Comparative Example 1

470 grams of phenol, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-21 is then obtained.

Comparative Example 2

570 grams of bisphenol A, 648 grams of formaldehyde aqueous solution (37% mass concentration) and 24 grams of sodium hydroxide were added to a reactor, the mixing is then started and the temperature is heated to 40° C. and maintained for 3 hours. The temperature is then raised to 65° C., after maintaining the temperature for 3 hours, 1480 grams of n-butanol were added and refluxed for 12 hours. The reaction temperature is then lowered to 55-60° C., and distilled under a reduced pressure to remove about 1000 grams of n-butanol, and an intermediate product is obtained.

1080 grams of DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) were added to the intermediate product, the reaction temperature was raised from 80° C. to 180° C. within a 2 hour period, when the temperature reaches 120° C., the pressure of the reaction system was reduced to ensure that the n-butanol can be discharged out of the reaction system in time. The temperature is maintained at 180° C. for 1 hour, the reaction temperature is then lowered to 130° C., about 900 grams of propylene glycol methyl ether were added and mixed for another 0.5 hours, a phosphorus based hardener P-22 is then obtained.

Table of the reactant ratio:

Aromatic

Phosphorus

phosphate ester

based

Phenol

Bisphenol

(i.e., the X in

hardener

Phenol:bisphenol

compound

compound

Formula I)

product

Embodiment 1

1:1

phenol

bisphenol A

DOPO

P-1

Embodiment 2

1:9

phenol

bisphenol A

DOPO

P-2

Embodiment 3

  1:0.1

phenol +

bisphenol A

DOPO

P-3

o-cresol

Embodiment 4

  1:2.3

phenol

bisphenol S

DOPO

P-4

Embodiment 5

  1:7.8

phenol

bisphenol S

DOPO

P-5

Embodiment 6

  1:0.13

phenol +

bisphenol S

DOPO

P-6

o-phenyl

phenol

Embodiment 7

1:1

phenol

bisphenol F

DOPO

P-7

Embodiment 8

1:9

phenol

p-thiobisphenol

DOPO

P-8

Embodiment 9

  1:0.1

phenol +

bisphenol F

DOPO

P-9

2,6-

dimethyl

phenol

Embodiment 10

1:2

phenol

bisphenol A +

DOPO

P-10

bisphenol S

Embodiment 11

  1:4.7

phenol

bisphenol A +

DOPO

P-11

bisphenol F

Embodiment 12

1:3

phenol

bisphenol S +

DOPO

P-12

bisphenol F

Embodiment 13

  1:0.1

phenol

bisphenol A

diphenyl

P-13

phosphonate

Embodiment 14

1:1

phenol

biphenol

diphenyl

P-14

phosphonate

Embodiment 15

  1:2.5

phenol

bisphenol F

diphenyl

P-15

phosphonate

Embodiment 16

  1:3.3

phenol

bisphenol S

Diphenyl

P-16

phosphonate

Embodiment 17

  1:0.1

m-cresol

bisphenol A

diphenyl

P-17

phosphite ester

Embodiment 18

1:9

phenol

bisphenol A +

di-p-methyl

P-18

bisphenol F +

phenyl phosphate

biphenol

ester

Embodiment 19

  1:5.8

phenol

bisphenol F

DOPO +

P-19

diphenyl phosphite

ester

Embodiment 20

1:6

m-phenyl

bisphenol S

DOPO + diphenyl

P-20

phenol

phosphonate +

diphenyl phosphite

ester

Comparative

phenol

DOPO

P-21

Example 1

Comparative

bisphenol A

DOPO

P-22

Example 2

Complete Curing of Epoxy Resin with Phosphorous-Containing Hardener

Embodiment 21-40

Using different phosphorous-containing hardeners (P-1 to P-20) as hardeners for bisphenol A novolac epoxy resin (BNE). The bisphenol A novolac epoxy resin (BNE) is mixed with the hardeners (P-1 to P-20) homogeneously, the equivalent ratio the epoxy group and the phenol group is 1:1, and 0.5 PHR of 2-phenylimidazole of the total weight of the hardener and epoxy resin was added as a curing accelerator, grounded into a powder in a mortar and mixed uniformly, and then the mold was filled with this powder, heated at a temperature of 150° C. and at a pressure of 50 kg/cm2 for 1 hour, then heated at 170° C. for 2 hours, and then heated at 200° C. for 3 hours to obtain the cured product.

Comparative Example 3

Using the phosphorous-containing hardener in comparative example 1 (P-21) as the hardener for bisphenol A novolac epoxy resin (BNE). The bisphenol A novolac epoxy resin (BNE) is mixed with the hardener (P-21) homogeneously, the equivalent ratio the epoxy group and the phenol group is 1:1, and 0.5 PHR of 2-phenylimidazole of the total weight of the hardener and epoxy resin was added as a curing accelerator, grounded into a powder in a mortar and mixed uniformly, and then the mold was filled with this powder, heated at a temperature of 150° C. and at a pressure of 50 kg/cm2 for 1 hour, then heated at 170° C. for 2 hours, and then heated at 200° C. for 3 hours to obtain the cured product.

Comparative Example 4

Using the phosphorous-containing hardener in comparative example 2 (P-22) as the hardener for bisphenol A novolac epoxy resin (BNE). The bisphenol A novolac epoxy resin (BNE) is mixed with the hardener (P-22) homogeneously, the equivalent ratio the epoxy group and the phenol group is 1:1, and 0.5 PHR of 2-phenylimidazole of the total weight of the hardener and epoxy resin was added as a curing accelerator, grounded into a powder in a mortar and mixed uniformly, and then the mold was filled with this powder, heated at a temperature of 150° C. and at a pressure of 50 kg/cm2 for 1 hour, then heated at 170° C. for 2 hours, and then heated at 200° C. for 3 hours to obtain the cured product.

Embodiment 41-74

The phosphorous-containing hardener (P-1 to P-22), conventional hardener, bisphenol A novolac epoxy resin (BNE), cresol formaldehyde novolac epoxy resin (CNE), and phenol novolac epoxy (PNE) are in weight proportions shown in table 3, and aluminum hydroxide, silicon dioxide, and imidazole based curing accelerator are mixed homogeneously in a suitable solvent, impregnated with glass fiber cloth in a impregnation machine, after heating at 170 t for 150 seconds, a small heat press was used to cut at 185° C., 25 kg/cm2 and cure for 2 hours to obtain a halogen free copper clad laminate.

Comparative Example 5-6

The hardener (P-21 to P-22), bisphenol A novolac epoxy resin (BNE), cresol formaldehyde novolac epoxy resin (CNE), and phenol novolac epoxy (PNE) are in weight proportions shown in table 3, and aluminum hydroxide, silicon dioxide, and imidazole based curing accelerator are mixed homogeneously in a suitable solvent, impregnated with glass fiber cloth in a impregnation machine, after heating at 170° C. for 150 seconds, a small heat press was used to cut at 185° C., 25 kg/cm2 and cure for 2 hours to obtain a halogen free copper dad laminate.

Test Description

(1) Varnish Gel Time (Sec)

0.3 ml of resin varnish was placed on a 170° C. hot plate, and the gel time was measured.

(2) Vitrification Temperature (° C.)

A heating rate of 20° C./min was used in differential scanning calorimetry (DSC) tests.

(3) Flame-Retarding:

Test pieces were cut into 0.5 in×4.7 in rectangles, a blue flame with a flame height of 2 cm was used to burn for 10 seconds and then removed, after burning twice, the flame is removed and the self-extinguishing time is recorded.

(4) Water Absorption Rate (%):

The sample was heated in a pressure boiler at 120° C. and 2 atm for 30 minutes.

(5) Dielectric Loss (1 GHz):

The test piece was cut into 5×5 squares, and the thickness were measured by measuring three points and then sandwiched into a dielectric analysis instrument for measurements, after completion, the mean value was recorded.

(6) Dielectric Constant (1 GHz):

The substrate after etching was cut into 5 cm2 square test pieces, after baking at 105 t for 2 hours in the oven, the substrate was removed and the thickness were measured by measuring three points. Then the test piece was sandwiched into a dielectric analysis instrument, after measuring three points, the mean value was recorded.

Although the present invention has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.

Table 1 is a comparison of the vitrification temperature (Tg) of the hardeners; Table 2 is an analysis of the thermal cracking of the hardeners; Table 3 gives the test results of the copper-clad laminate substrates.

TABLE 1

vitrification temperature of the cured product.

Vitrification

Sample

Hardener

temperature (Tg, ° C.)

Embodiment 21

P-1

169

Embodiment 22

P-2

175

Embodiment 23

P-3

162

Embodiment 24

P-4

175

Embodiment 25

P-5

186

Embodiment 26

P-6

165

Embodiment 27

P-7

168

Embodiment 28

P-8

174

Embodiment 29

P-9

161

Embodiment 30

P-10

180

Embodiment 31

P-11

170

Embodiment 32

P-12

175

Embodiment 33

P-13

160

Embodiment 34

P-14

166

Embodiment 35

P-15

165

Embodiment 36

P-16

170

Embodiment 37

P-17

159

Embodiment 38

P-18

165

Embodiment 39

P-19

163

Embodiment 40

P-20

169

Comparative

P-21

161

Example 3

Comparative

P-22

176

Example 4

TABLE 2

analysis of the thermal cracking of the cured product.

Thermal cracking (5%

Sample

Hardener

weight loss) Temp. (° C.)

Embodiment 21

P-1

366

Embodiment 22

P-2

376

Embodiment 23

P-3

351

Embodiment 24

P-4

386

Embodiment 25

P-5

425

Embodiment 26

P-6

362

Embodiment 27

P-7

366

Embodiment 28

P-8

375

Embodiment 29

P-9

352

Embodiment 30

P-10

378

Embodiment 31

P-11

372

Embodiment 32

P-12

373

Embodiment 33

P-13

345

Embodiment 34

P-14

341

Embodiment 35

P-15

335

Embodiment 36

P-16

380

Embodiment 37

P-17

345

Embodiment 38

P-18

347

Embodiment 39

P-19

337

Embodiment 40

P-20

380

Comparative

P-21

338

Example 3

Comparative

P-22

353

Example 4

TABLE 3

resin composition formulation and physical properties.

Embodiment

41

42

43

44

45

46

47

48

49

50

51

52

BNE

35

35

35

20

20

20

30

30

25

20

20

20

PNE

10

10

10

10

10

10

0

0

5

10

10

10

CNE

55

55

55

70

70

70

70

70

70

70

70

70

P-1

17

P-2

18

P-3

18

P-4

16

P-5

16

P-6

17

P-7

19

P-8

17

P-9

19

P-10

17

P-11

18

P-12

19

Conventional

epoxy resin

hardener

Flame

20

20

20

20

20

20

20

20

20

20

20

20

retardant

(Aluminum

hydroxide)

Filler

10

10

10

10

10

10

10

10

10

10

10

10

(silicon

dioxide)

Accelerator

1.1

1.2

1.4

1.1

1.2

1.2

2MI (PHR)

Accelerator

0.2

0.2

0.3

0.5

0.6

0.7

2PI (PHR)

Phosphorus

1.20

1.30

1.30

1.16

1.16

1.20

1.35

1.24

1.33

1.25

1.35

1.41

content (%)

Gel Time

360

354

350

360

355

348

365

355

361

340

362

360

(sec)

Vitrification

170

175

161

180

192

172

168

174

160

178

170

173

temperature

(° C.)

Flame

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

resistance

Thermal

40/238

48/243

42/235

38/213

31/201

38/218

40/232

43/235

41/232

35/220

40/225

37/224

coefficient

of

expansion

(α1/α2)

Water

0.12

0.15

0.16

0.13

0.16

0.18

0.15

0.17

0.18

0.15

0.17

0.18

absorption

rate (%)

Dielectric

4.21

4.20

4.23

4.00

4.05

4.02

4.15

4.15

4.15

4.13

4.19

4.11

constant

(1 GHz)

Dielectric

0.011

0.012

0.012

0.009

0.009

0.011

0.011

0.012

0.011

0.013

0.014

0.013

loss (1 GHz)

Embodiment

53

54

55

56

57

58

59

60

61

62

63

64

BNE

10

10

10

10

15

15

15

15

100

0

35

35

PNE

20

20

20

20

15

15

15

15

0

0

10

10

CNE

70

70

70

70

70

70

70

70

0

100

55

55

P-13

18

P-14

17

P-15

18

P-16

19

P-17

20

P-18

20

P-19

21

P-20

20

P-1

17

P-4

18

P-6

17

P-10

17

Conventional

epoxy resin

hardener

Flame

20

20

20

20

20

20

20

20

20

20

20

20

retardant

(Aluminum

hydroxide)

Filler

10

10

10

10

10

10

10

10

10

10

10

10

(silicon

dioxide)

Accelerator

1.9

2.0

2.0

2.1

1.0

2E4MZ(PHR)

Accelerator

1.5

1.8

1.8

1.8

0.5

0.01

0.03

2PI(PHR)

Phosphorus

1.42

1.45

1.45

1.42

1.44

1.43

1.44

1.45

1.20

1.25

1.20

1.20

content (%)

Gel Time

340

335

333

331

321

320

315

312

365

355

347

364

(sec)

Vitrification

163

168

165

176

162

166

164

176

175

188

156

174

temperature

(° C.)

Flame

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

resistance

Thermal

49/220

48/221

49/220

48/240

49/245

50/252

50/244

51/240

45/240

34/218

42/232

52/236

coefficient

of

expansion

(α1/α2)

Water

0.17

0.18

0.17

0.16

0.17

0.17

0.16

0.16

0.12

0.10

0.12

0.13

absorption

rate (%)

Dielectric

4.31

4.32

4.31

4.32

4.42

4.45

4.51

4.46

4.18

4.00

4.21

4.22

constant

(1 GHz)

Dielectric

0.015

0.015

0.014

0.014

0.018

0.018

0.017

0.018

0.011

0.009

0.009

0.012

loss (1 GHz)

Comp.

Comp.

Embodiment

65

66

67

68

69

70

71

72

73

74

Ex. 5

Ex. 6

BNE

10

10

10

10

15

15

15

15

100

0

35

35

PNE

20

20

20

20

15

15

15

15

0

0

10

10

CNE

70

70

70

70

70

70

70

70

0

100

55

55

P-13

18

P-14

17

P-15

18

P-16

19

P-17

17

P-18

17

P-19

18

P-20

19

P-1

17

P-4

18

P-21

17

P-22

17

Conventional

3-

3-

2-

1-

epoxy resin

(phenol-

(methylene

(cresol-

(diamine

hardener

formal-

dianiline)

formal-

diphenyl

dehyde

dehyde

sulfone)

novolac)

novolac) +

1-

(bisphenol A

phenol

formal-

dehyde

novolac)

Flame

20

20

20

20

20

20

20

20

20

20

20

20

retardant

(Aluminum

hydroxide)

Filler

10

10

10

10

10

10

10

10

10

10

10

10

(silicon

dioxide)

Accelerator

0.02

0.5

1.2

1.8

2.5

2E4MZ(PHR)

Accelerator

0.6

1.1

1.9

2.1

2.5

0.2

0.2

2PI(PHR)

Phosphorus

1.41

1.44

1.45

1.43

1.44

1.42

1.43

1.45

1.21

1.24

1.20

1.20

content (%)

Gel Time

339

338

332

334

323

321

315

311

363

354

350

365

(sec)

Vitrification

162

167

166

177

164

163

168

175

173

187

155

176

temperature

(° C.)

Flame

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

94 V-0

resistance

Thermal

49/221

48/222

49/220

48/239

49/243

50/253

50/246

51/242

45/240

34/219

42/238

52/255

coefficient

of

expansion

(α1/α2)

Water

0.16

0.18

0.18

0.17

0.16

0.17

0.17

0.18

0.13

0.11

0.12

0.12

absorption

rate (%)

Dielectric

4.32

4.33

4.33

4.32

4.41

4.43

4.49

4.44

4.19

4.04

4.25

4.21

constant

(1 GHz)

Dielectric

0.014

0.015

0.016

0.015

0.018

0.017

0.017

0.019

0.012

0.010

0.011

0.011

loss (1 GHz)

Comparing the Tg (Table 1) of the cured products obtained in embodiments 21-40 and comparative example 3-4, we can see that the cured phosphorous-containing epoxy resin of the present disclosure, especially the cured phosphorous-containing epoxy resin prepared by using a hardener obtained by using bisphenol S and phenol as the raw materials (embodiment 5; hardener P-5) and then reacting with epoxy resin, the Tg is higher than the cured phosphorous-containing epoxy resin prepared by using phenol, and even 10° C. higher than the cured epoxy resin prepared by using bisphenol A based phosphorous-containing hardener, and the thermal stability is better than the other embodiments. The use of other phosphate ester compounds in the preparation, and DOPO based hardener also showed good results.

From Table 2 we can see the differences in the degree of crosslinking of the phosphorus based hardener and the epoxy resin, wherein in the TGA tests of the bisphenol S based phosphorous-containing epoxy resin hardener (embodiment 5; hardener P-5), the thermal cracking (5% weight loss) temperature can exceed 400° C., and can be used as high-end electronic packaging materials.

From Table 3 we can seen that the Tg of the cured phosphorous-containing epoxy resin of the present disclosure is higher than the phosphorous-containing hardener prepared by using only phenol (comparative example 1; P-21), and the cured phosphorous-containing epoxy resin containing bisphenol S (embodiment 44-46) showed better electrical properties than comparative example 5 and comparative example 6, the DK can reach 4.0 and the Df can reach 0.009. In terms of the performance of the coefficient of expansion, the al in embodiments 44-46 are between 30 and 40, and α2 is between 200 and 220. In embodiment 41-74, as long as a phosphorus content of 1.1-1.5% is in the formulation, the copper-clad laminate can meet the requirement of flame-retarding effect, therefore making it ideal to be used in the field of manufacturing high-end phosphor-containing copper-clad laminate materials.

It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.

QQ群二维码
意见反馈