신규 중합체 및 이의 제조 방법

申请号 KR1020177016429 申请日 2015-11-17 公开(公告)号 KR1020170095867A 公开(公告)日 2017-08-23
申请人 렌슬러 폴리테크닉 인스티튜트; 发明人 이우형;
摘要 본발명의실시예는공지된중합체와비교하여우수한기계적특성및 화학적안정성을갖는신규중합체에관한것이다. 이러한중합체는특히연료전지에사용되는것을포함하여음이온교환막에사용하기에매우적합하다. 또한, 이러한중합체의새로운제조방법을제공한다.
权利要求
  • 하기의 단계를 포함하는 폴리아닐렌을 형성하는 방법:
    브로모알킬화된 전구중합체를 형성하기 위하여 방향족 화합물과 트리플루오로알킬 케톤을 강산의 존재 하에서 반응시키는 단계; 및
    에테르 결합이 없는 주쇄를 갖는 폴리아릴렌을 형성하기 위해 상기 브로모알킬화된 전구중합체를 트리알킬아민 및 수산화나트륨과 반응시키는 단계.
  • 제1항에 있어서,
    상기 트리플루오로알킬 케톤은 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-bromo-1,1,1-trifluoroheptan-2-one) 및 메틸트리플루오로메틸 케톤(methyl trifluoromethyl ketone)으로 이루어진 군에서 선택되는 어느 하나 이상의 트리플루오로알킬 케톤을 포함하는 폴리아닐렌을 형성하는 방법.
  • 제1항에 있어서,
    상기 방향족 화합물은 , , , , , , 및 으로 이루어진 군에서 선택되는 어느 하나인 폴리아닐렌을 형성하는 방법.
  • 제3항에 있어서,
    상기 방향족 화합물은 인 폴리아닐렌을 형성하는 방법.
  • 제1항에 있어서,
    상기 방향족 화합물은 , , , , , 으로 이루어진 군에서 선택되는 어느 하나인 폴리아닐렌을 형성하는 방법.
  • 제1항의 방법에 따라 제조된 하기 화학식 Ⅰ의 중합체:
    (화학식 Ⅰ)
    상기 화학식 Ⅰ에서, Ar은 방향족 화합물이고, r은 100 내지 1,000,000이고, R 2 는 이고, R은 알킬기이고, n은 1 내지 20이다.
  • 제6항에 있어서,
    상기 Ar은 인 중합체.
  • 제7항에 있어서,
    하기 화학식 IA를 갖는 중합체:
    (화학식 IA)

    상기 화학식 IA에서 x+y=1이다.
  • 제8항에 있어서,
    상기 화학식 IA에서 x는 1이고 y는 0, 또는 x가 0.65이고 y가 0.35, 또는 x가 0.44이고 y가 0.56인 중합체.
  • 제1항의 방법에 따라 제조된 하기 화학식 Ⅲ의 중합체:
    (화학식 Ⅲ)
    상기 화학식 Ⅲ에서, Ar은 방향족 화합물이고, R"은 이고, r은 100 내지 1,000,000이고, m은 0 내지 20이다.
  • 하기 화학식 Ⅰ에 따른 중합체:
    (화학식 Ⅰ)
    상기 화학식 Ⅰ에서, Ar은 방향족 화합물이고, r은 100 내지 1,000,000이고, R 2 는 이고, R은 알킬기이고, n은 1 내지 20이다.
  • 제11항에 있어서,
    상기 방향족 화합물은 , , , , , , 및 으로 이루어진 군에서 선택되는 어느 하나인 중합체.
  • 제11항에 있어서,
    하기 반응식에 따라서 화학식 Ⅱ의 브로모알킬화된 전구중합체로부터 제조된 중합체:
    (화학식 Ⅱ)

    상기 화학식 Ⅱ에서, R 1 은 이다.
  • 제11항에 있어서,
    상기 화학식 Ⅱ의 브로모알킬화된 전구중합체는 하기 반응식을 통해 제조되는 중합체:
    (화학식 Ⅱ)
    .
  • 제14항에 있어서,
    상기 강산(strong acid)은 트리플루오로메탄술폰산(trifluoromethane sulfonic acid)인 중합체.
  • 제11항에 있어서,
    하기 화학식 IA를 갖는 중합체:
    (화학식 IA)

    상기 화학식 IA에서, x+y=1이다.
  • 제16항에 있어서,
    상기 화학식 IA에서, x는 1이고 y는 0, 또는 x가 0.65이고 y가 0.35, 또는 x가 0.44이고 y가 0.56인 중합체.
  • 하기 화학식 Ⅲ에 따른 중합체:
    (화학식 Ⅲ)
    상기 화학식 Ⅲ에서, Ar은 방향족 화합물이고, R"은 이고, r은 100 내지 1,000,000이고, m은 0 내지 20이다.
  • 제18항에 있어서,
    상기 방향족 화합물은 , , , , , 으로 이루어진 군에서 선택되는 어느 하나인 중합체.
  • 제18항에 있어서,
    하기 반응식을 통해 화학식 IV의 브로모알킬화된 전구중합체로부터 제조된 중합체:
    (화학식 IV)

    상기 반응식에서, R'은 이고, n은 1 내지 20 이고, R은 알킬기이다.
  • 说明书全文

    신규 중합체 및 이의 제조 방법{NOVEL POLYMERS AND METHODS FOR THEIR MANUFACTURE}

    본 출원은 2014년 11월 18일자로 출원된 동시 계류중인 미국 가출원 제 62/081,144 호의 이익을 주장하며, 이는 본 명세서에서 완전히 개시된 것처럼 본원에 통합된다.

    본 발명은 신규 중합체 및 이의 제조방법에 관한 것이다.

    전기화학 반응에서 알칼리 교환막 또는 음이온 교환막(Anion exchange membranes, AEMs)은 음극(cathode)으로부터 양극(anode)으로 음이온(예를 들어, OH - , Cl - , Br - )을 전달시킨다. 음이온 교환막(AEMs)은 산소와 수소를 통해 전기를 생성하고 부산물로 물을 생성하는 AEM 연료 전지의 중요한 구성요소이다. 음이온 교환막은 또한 전기분해에 사용되며, 전기로 물을 수소와 산소로 분리한다. AEM 연료전지 및 전기분해 모두에 있어서, 수산화 이온(OH - )들은 물 분자들과 함께 상기 음이온 교환막을 통해 수송된다. 예를 들어, 음이온 교환막은 배터리, 센서 및 액추에이터(actuators)에도 사용될 수 있다.

    공지된 음이온 교환막들은 일반적으로 음이온 교환막 연료 전지 또는 물 전기분해에 사용하기에 적합하지 않다. 상업적으로 이용 가능한 많은 음이온 교환막들은 폴리스티렌(polystyrene)을 기반으로 하고 있으며, 이는 일반적으로 음이온 교환막 연료 전지 또는 물 전기 분해에 부적절한 선택으로 간주된다.

    다른 음이온 교환막 소재로는 폴리술폰(polysulfone), 폴리(페닐렌옥사이드)(poly(phenylene oxide)), 폴리(페닐렌)(poly(phenylene)), 폴리(벤즈이미다졸)(poly(benzimidazolium)), 폴리(아릴렌 에테르 케톤)(poly(arylene ether ketone)) 및 폴리(아릴렌 에테르 술폰)(poly(arylene ether sulfone))이 있다. 이러한 중합체들은 중간 사슬에 아릴렌 에테르 결합(-O-) 및 측쇄에 벤질 트리메틸 암모늄기(benzyltrimethyl ammonium group)를 포함하고 있다. 그러나 이 조합은 화학적으로 불안정하고 고알칼리성 조건하에서 쉽게 분해되는 것으로 밝혀졌다. 공지된 폴리아릴렌은 특히 전형적으로 부산물인 염화수소를 생성하는, 디올 단량체들(diol monomers)과 디할라이드 단량체들(dihalide monomers)간의 염기성 축합 반응에 의해 합성되기 때문에, 제조된 중합체의 주쇄에 에테르 결합을 포함할 것이다.

    또한, 이들 중합체의 제조과정에 포함된 클로로 메틸화 반응은 독성 시약의 사용, 긴 반응시간, 그리고 소망하는 기능화된 수준에 도달하기 위한 광범위한 최적화를 필요로 한다. 부반응(예를 들어, 겔화(gelation))은 긴 반응 시간에 걸쳐 빈번히 발생하며, 2.5 mequiv/g를 초과하는 이온 교환 용량(Ion-exchange capacity, IEC)을 수득하는 것을 어렵게 만든다.

    본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 화학적 안정성이 개선된 신규 중합체 및 이의 제조 방법을 제공하는데 목적이 있다.

    또한, 본 발명은 본 발명에 따른 이온 교환 용량이 개선된 음이온 교환막으로 사용할 수 있는 중합체를 제공하는데 다른 목적이 있다.

    또한, 본 발명은 본 발명에 따른 금속-공기 전지 기술에 응용 될 수 있는 중합체를 제공하는데 또 다른 목적이 있다.

    또한 본 발명은 본 발명에 따른 다양한 제품의 향균 코팅에 사용될 수 있는 중합체를 제공하는데 또 다른 목적이 있다.

    일 실시예에서, 본 발명은 중합체(polymer)를 형성하는 방법을 제공하고, 상기 방법은 브로모알킬화된 전구중합체(precursor polymer)를 형성하기 위하여 강산의 존재 하에서 방향족 화합물과 트리플루오로알킬케톤을 반응시키는 단계; 및 에테르 결합이 없는 주쇄를 갖는 폴리아닐린을 형성하기 위하여 상기 브로모알킬화된 전구중합체와 트리알킬아민 및 수산화나트륨을 반응시키는 단계;를 포함한다.

    다른 실시예에서, 본 발명은 화학식 Ⅰ에 따른 중합체를 제공하며,

    (화학식 Ⅰ), 상기 화학식Ⅰ에서 Ar은 방향족 화합물이고, r은 100 내지 1,000,000이고, R

    2 는 이고, R은 알킬기이고, n은 1 내지 20이다.

    또 다른 실시예에서, 본 발명은 화학식 Ⅲ에 따른 중합체를 제공하며,

    (화학식 Ⅲ), 상기 화학식 Ⅲ에서 Ar은 방향족 화합물이고 R"는 이고, r은 100 내지 1,000,000이고, m은 0 내지 20이다.

    본 발명에 의하면 화학적, 열적 안정성이 개선된 신규 중합체를 제공할 수 있다. 또한, 이를 통해 음이온교환막의 이온전도도가 현저히 개선될 수 있으므로 연료 전지 또는 전기 분해 분야 등에 널리 응용될 수 있다.

    본 발명의 이들 및 다른 특징은 본 발명의 다양한 실시예를 도시하는 첨부 된 도면과 관련하여 취해진 본 발명의 다양한 양상에 대한 다음의 상세한 설명으로부터 더욱 쉽게 이해될 것이다.
    도 1은 본 발명의 실시예에 따른 3개의 예시적인 브로모알킬화된 전구중합체의 1 H 및 19 F NMR 스펙트럼을 나타낸다.
    도 2는 본 발명의 실시예에 따른 3개의 예시적인 폴리아릴렌의 1 H 및 19 F NMR 스펙트럼을 나타낸다.
    도 3은 본 발명의 실시예에 따른 예시적인 도 2의 3가지 폴리아릴렌의 알칼리 안정성 평가 전과 후의 1 H NMR 스펙트럼을 나타낸다.
    도 4는 도 2의 3가지 폴리아릴렌 중 어느 하나의 알칼리 안정성 평가 전과 후의 1 H NMR 스펙트럼을 나타낸다.
    도 5는 (a) 본 발명의 실시예에 따른 3가지의 폴리아릴렌의 응력-스트레인 곡선 및 (b) 상기 3가지의 폴리아릴렌 중 어느 하나의 H 2 /O 2 분극, 고주파 저항 및 출력밀도 곡선을 나타낸다.
    본 발명의 도면은 축척된 것이 아니라는 점에 유의해야 한다. 상기 도면은 본 발명의 통상적인 양태만을 도시하기 위한 것이며, 따라서 본 발명의 범위를 제한하는 것으로 간주되어서는 안 된다.

    본 발명의 일 실시예는 신규 부류의 4차 수산화암모늄(quaternized ammonium hydroxide)을 포함하는 폴리아릴렌 중합체 및 이의 제조 방법에 관한 것이다. 출원인은 최초로 산 촉매가 있는 중축합 반응을 이용하여 알칼리 불안정 CO 결합이 없는 고분자량, 4차 암모늄이 결합된 폴리아릴렌(폴리(바이페닐 알킬렌)(poly(biphenyl alkylene)s) 포함)을 제조하였다.

    또한, 본 출원인은 본 발명의 중합체가 상술한 연료전지 및 물의 전기분해에 사용되는 음이온 교환막의 용도뿐만 아니라 금속-공기 전지 기술에도 유용하게 사용될 수 있음을 알아냈다. 놀랍게도, 본 출원인은 이러한 중합체가 항균 활성을 나타내어, 다양한 제품의 항균 코팅에 사용될 수 있음을 알아냈다.

    하기에서 더 상세히 설명되는 바와 같이, 본 발명의 중합체는 케톤 및 방향족 화합물 간의 산성 축합에 의해 합성될 수 있다. 결과적으로, 부산물은 공지된 폴리아릴렌 합성 방법에서와 같은 염화수소 보다는 물이다.

    본 출원인은 새로운 중합체 제조 방법을 개발하였으며, 일반적으로 상기 제조 방법은 브로모알킬화 전구중합체(precursor polymer)를 제조하기 위해 방향족 화합물과 트리플루오로알킬 케톤을 강산의 존재하에서 반응(acid-catalyzed Friedel-Crafts polycondensation)시키는 단계; 및 에테르 결합이 없는 주쇄를 갖는 폴리아릴렌을 형성하기 위해 상기 브로모알킬화된 전구중합체를 트리알킬아민 및 수산화나트륨과 반응시키는 단계;를 포함한다.

    본 발명의 일 실시예에 따르면, 상기 방향족 화합물은

    , , , , , , 및 으로 이루어진 군에서 선택되는 어느 하나이다.

    본 발명의 다른 실시예에 따르면, 상기 방향족 화합물은

    , , , , , 으로 이루어진 군에서 선택되는 어느 하나이다.

    본 발명의 몇몇 특정 실시예에 따르면, 상기 방향족 화합물은 바이페닐(biphenyl)이다.

    본 발명의 몇몇 실시예에 따르면, 상기 트리플루오로알킬 케톤은 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-bromo-1,1,1-trifluoroheptan-2-one) 및 메틸트리플루오로메틸 케톤(methyl trifluoromethyl ketone)으로 이루어진 군에서 선택되는 어느 하나 이상이다.

    본 발명의 몇몇 실시예에 따르면, 중합체는 하기 반응식 1에 따라 제조된다.

    (반응식 1)

    상기 반응식 1에서, Ar은 폴리아릴렌이고, r은 100 내지 1,000,000이고, R 1

    이고, R

    2 는 이고, R은 알킬기이고, n은 1 내지 20이다.

    상기 반응식 1에 사용하기 적합한 강산(strong acid)은 트리플루오로메탄술폰산(trifluoromethane sulfonic acid)을 포함할 수 있으나, 비록 다른 적합한 산일지라도 당업자에게 명백할 것이다.

    본 발명의 다른 실시예에 있어서, 하기 반응식 1A에 나타낸 바와 같이, 방향족 기(aromatic group)는 다수의 트리플루오로알킬 케톤과 결합될 수 있다.

    (반응식 1A)

    상기 반응식 1A에서, Ar은 방향족 화합물이고, r은 100 내지 1,000,000이고, R 1

    이고, R

    2 는 이고, R은 알킬기이고, n은 1 내지 20이다.

    본 발명의 실시예에 따른 3가지의 폴리(바이페닐 알킬렌)(poly(biphenyl alkylene)s)의 제조에 대해 하기에 기술한다. 상기 폴리(바이페닐 알킬렌)은 하기 화학식 IA로 표기될 수 있다.

    (화학식 IA)

    상기 화학식 IA에서, R 2

    이고, x+y=1이고, r은 100 내지 1,000,000이다.

    PBPA+로 지칭되는 제 1 폴리(바이페닐 알킬렌)에서, x는 1이고 y는 0이다.

    PBPA1+로 지칭되는 제 2 폴리(바이페닐 알킬렌)에서, x는 0.65이고 y는 0.35이다.

    PBPA2+로 지칭되는 제 3 폴리(바이페닐 알킬렌)에서, x는 0.44이고 y는 0.56이다.

    <실시예1> PBPA+

    바이페닐(Biphenyl)(0.70 g, 4.53 mmol), 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-bromo-1,1,1-trifluoroheptan-2-one)(1.12 g, 4.53 mmol), 염화메틸렌(3.0 mL) 및 트리플루오로메탄술폰산(trifluoromethanesulfonic acid, TFSA)를 상온, 질소분위기에서 마그네틱 바를 이용하여 교반하였다. 10시간 후에 반응혼합용액은 매우 점도가 높아졌고 추가적으로 2시간 더 교반하였다. 생성된 암갈색의 겔 형태의 덩어리를 초음파 처리로 파쇄하고 메탄올에 천천히 부어 백색 섬유를 형성시킨 다음 여과하고 뜨거운 메탄올로 세척 하였다. 상기 백색 섬유를 진공 건조시켜 백색 섬유 형태의 고체를 1.70 g (97% 수율) 수득하였으며, 상기 백색 섬유 형태의 고체는 본원에서 PBPA로 언급되는 브로모알킬화된 전구중합체이다. 도 1은 PBPA를 포함하는 3가지의 브로모알킬화된 전구체에 대한 1 H 및 19 F NMR 스펙트럼을 나타낸 것이다.

    19 F NMR 스펙트럼을 나타낸 것이다.

    PBPA(200 mg)를 테트라하이드로퓨란(THF, 2 ml)에 용해시키고, 트리메틸아민 수용액(1 ml)을 첨가하고, 상온에서 교반하였다. 상기 PBPA의 용해도가 점차 감소하고, 이온화 중합체가 6시간 후에 침전되었다.

    탈이온수(1ml)를 상기 용액에 첨가하여 침전물을 용해시켰다. 테트라하이드로퓨란을 첨가하여 상온에서 6시간 동안 교반하고, 탈이온수를 첨가하여 침전물을 용해시키는 과정을 반복하였다. 휘발성 용액을 회전식 증발기를 이용하여 증발시키고, 잔류물을 소량의 메탄올(약 2ml)에 용해시켰다. 이온성 중합체에 에테르를 첨가하여 정제하고, 여과한 후에 진공 건조시켜 97% 수율(227mg)로 폴리(바이페닐 알킬렌)(PBPA+)을 수득하였다. 도 2는 PBPA+를 포함하는 3가지의 폴리(바이페닐 알킬렌)에 대한 1 H 및 19 F NMR 스펙트럼을 나타낸 것이다.

    <실시예 2> PBPA1+

    바이페닐(biphenyl) (0.70 g, 4.53 mmol), 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-bromo-1,1,1-trifluoroheptan-2-one)(0.73 g, 2.95 mmol), 메틸 트리플루오로메틸 케톤)(methyl trifluoromethyl ketone)(0.18 g, 1.60 mmol), 염화메틸렌(methylene chloride)(3.0 mL) 및 TFSA (2.0 mL)를 마그네틱 바를 사용하여 상온, 질소분위기에서 교반하였다. 5시간 후에 반응혼합용액은 매우 점도가 높아졌고 추가적으로 2시간 더 교반하였다. 생성된 암갈색의 겔 형태의 덩어리를 초음파 처리로 파쇄하고 메탄올에 천천히 부었다. 백색 섬유를 형성시킨 다음 여과하고 뜨거운 메탄올로 세척하였다. 상기 백색 섬유를 진공 건조시켜 백색 섬유 형태의 고체를 1.4 g (96% 수율) 수득하였으며, 상기 백색 섬유 형태의 고체는 본원에서 PBPA1로 언급되는 브로모알킬화된 전구중합체이다. 도 1은 PBPA1를 포함하는 3가지의 브로모알킬화된 폴리(바이페닐 알킬렌) 전구체에 대한 1 H 및 19 F NMR 스펙트럼을 나타낸 것이다.

    PBPA1(200 mg)을 테트라하이드로퓨란(2ml)에 용해시키고, 트리메틸아민 수용액(1ml)을 첨가하고, 상온에서 교반하였다. 상기 PBPA1의 용해도가 점차 감소하고, 이온화 중합체가 6시간 후에 침전되었다.

    탈이온수(1ml)를 상기 용액에 첨가하여 침전물을 용해시켰다. 테트라하이드로퓨란을 첨가하여 상온에서 6시간 동안 교반하고, 탈이온수를 첨가하여 침전물을 용해시키는 과정을 반복하였다. 휘발성 용액을 회전식 증발기를 이용하여 증발시키고, 잔류물을 소량의 메탄올(약 2ml)에 용해시켰다. 이온성 중합체에 에테르를 첨가하여 정제하고, 여과한 후에 진공 건조시켜 폴리(바이페닐 알킬렌)(PBPA1+) 98% 수율(219mg)로 수득하였다. 도 2는 PBPA1+를 포함하는 3가지의 폴리(바이페닐 알킬렌)에 대한 1 H 및 19 F NMR 스펙트럼을 나타낸 것이다.

    <실시예 3> PBPA2+

    바이페닐(biphenyl)(0.50 g, 3.24 mmol), 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-bromo-1,1,1-trifluoroheptan-2-one)(0.40 g, 1.62 mmol), 메틸 트리플루오로메틸 케톤(methyl trifluoromethyl ketone)(0.19 g, 1.69 mmol), 염화메틸렌(methylene chloride)(2.5 mL) 및 TFSA (2.3 mL)를 마그네틱 바를 사용하여 상온, 질소분위기에서 교반하였다. 3시간 후에 반응혼합용액은 매우 점도가 높아졌고 추가적으로 2시간 더 교반하였다. 이어서, 생성된 암갈색의 겔 형태의 덩어리를 초음파 처리로 파쇄하고 메탄올에 천천히 부어 백색 섬유를 형성시킨 다음 여과하고 뜨거운 메탄올로 세척하였다. 상기 백색 섬유를 진공 건조시켜 백색 섬유 형태의 고체를 0.94 g 수득하였으며, 상기 백색 섬유 형태의 고체는 본원에서 PBPA2로 언급되는 브로모알킬화된 전구중합체이다. 도 1은 PBPA2를 포함하는 3가지의 브로모알킬화된 전구체에 대한 1 H 및 19 F NMR 스펙트럼을 나타낸 것이다.

    PBPA2(200 mg)을 테트라하이드로퓨란(2ml)에 용해시키고, 트리메틸아민 수용액(1ml)을 첨가하고, 상온에서 교반하였다. 상기 PBPA2의 용해도가 점차 감소하고, 이온화 중합체가 6시간 후에 침전되었다.

    탈이온수(1ml)를 상기 용액에 첨가하여 침전물을 용해시켰다. 테트라하이드로퓨란을 첨가하여 상온에서 6시간 동안 교반하고, 탈이온수를 첨가하여 침전물을 용해시키는 과정을 반복하였다. 휘발성 용액을 회전식 증발기를 이용하여 증발시키고, 잔류물을 소량의 메탄올(약 2ml)에 용해시켰다. 이온성 중합체에 에테르를 첨가하여 정제하고, 여과한 후에 진공 건조시켜 폴리(바이페닐 알킬렌)(PBPA2+)을 98% 수율(210 mg)로 수득하였다. 도 2는 PBPA2+를 포함하는 3가지의 폴리(바이페닐 알킬렌)에 대한 1 H 및 19 F NMR 스펙트럼을 나타낸 것이다.

    하기 표 1은 PBPA+, PBPA1+ 및 PBPA2+의 수분 흡수 특성(water uptake, WU) 및 음이온 전도도 데이터를 나타낸 것이다.

    Ionic
    polymer
    WU(%) Cl - ( mS/cm) OH - (mS/cm)
    30℃ 80℃ 30℃ 60℃ 80℃ 30℃ 60℃ 80℃
    PBPA+ 130 145 23 49 68/65 a 62 94 122/124 a
    PBPA1+ 102 110 14 28 47/50 a 41 58 88/92 a
    PBPA2+ 70 76 7 14 24/22 a 15 23 35/35 a
    a 1.0 M NaOH 용액에 30일 동안 침지시킨 후 측정

    3가지의 폴리(바이페닐 알킬렌) 모두 우수한 WU 및 음이온 전도도를 나타냈으며, 특히 PBPA+가 가장 우수한 특성을 나타내었다. 이러한 WU 값에도 불구하고, 3가지의 폴리(바이페닐 알킬렌)은 낮은 팽창비(swelling ratio)(PBPA+에 대해 40%, PBPA1+에 대해 10%, PBPA2+에 대해 5%)를 나타냈고, 이는 견고한 방향족 주쇄 때문일 가능성이 있다.

    하기 표 2는 PBPA+, PBPA1+ 및 PBPA2+의 알칼리 안정성 평가 전 후의 이온교환용량(Ion-exchange capacity, IEC)을 나타낸 것이다.


    Sample
    80℃, 7일 후 80℃, 30일 후
    1 H NMR titration 1 H NMR titration 1 H NMR titration
    PBPA+ 2.61 2.70
    (±0.1)
    2.61 2.74
    (±0.1)
    2.60 2.65
    (±0.03)
    PBPA1+ 1.91 1.94
    (±0.04)
    1.89 1.94
    (±0.03)
    1.93 1.92
    (±0.03)
    PBPA2+ 1.45 1.46
    (±0.01)
    1.49 1.47
    (±0.03)
    1.46 1.48
    (±0.01)

    상기 표 2의 데이터로부터 확인할 수 있는 것과 같이, 3가지의 폴리(바이페닐 알킬렌) 모두는 알칼리 환경(1M NaOH)에서 장시간이 지난 후에도 현저한 IEC 안정성을 나타냈다. 상기 표 2의 결과와 상술한 실시예로부터 명백한 것은 중합체의 IEC는 트리플루오로알킬 케톤의 상대적인 비율 조절에 따라 제어할 수 있다는 점이다.

    흥미롭게도, PBPA1+는 유사한 IEC를 갖는 공지된 다른 방향족 음이온 교환막들(예를 들면, Quaternized poly(phenylene oxide)s, poly(arylene ether ketone)s 및 and poly(arylene ether sulfone)s))보다 수산화이온의 전도도가 상당히 높았다. 이는 PBPA1+의 상대적으로 높은 WU때문일 가능성이 높으며, 이를 통해 수화된 막이 수산화이온을 보다 효과적으로 확산시켰기 때문이다. 3가지의 중합체 모두 온도가 상승함에 따라 수산화이온 전도도가 증가되며, 이는 온도 상승에 따라 이온의 이동이 빨라지고 확산도가 높아지기 때문이다.

    도 3은 상기 표 2에 기재된 30일 알칼리 안정성 평가(80℃, 1M NaOH) 전과 후의 PBPA+, PBPA1+ 및 PBPA2+에 대한 1 H NMR 스펙트럼을 나타낸다.

    도 4는 다른 알칼리 안정성 평가(1M NaOH, 100℃, 30일)를 수행한 PBPA+에 대한 1 H NMR 스펙트럼을 나타낸다.

    PBPA+, PBPA1+ 및 PBPA2+는 상온에서 물, 테트라하이드로퓨란, 트리클로로메탄(CHCl 3 ) 및 디클로로에탄(CH 2 Cl 2 )에 용해되지 않지만, N, N-디메틸포름아미드(N, N-dimethylformamide), 디메틸술폭시드(dimethylsulfoxide) 및 메탄올에는 용해된다. 이러한 중합체들의 4차 암모늄 기들(quaternary ammounium groups)은 270℃에서 분해되며, 종래의 poly(arylene ether sulfone)의 4차 암모늄 기보다 우수한 열적안정성을 갖는다. 전구중합체(PBPA, PBPA1, PBPA2)는 350℃까지 분해되지 않는 열적안정성을 나타냈다.

    음이온 교환막의 기계적 특성은 연료 전지 응용 분야에서 매우 중요하다. PBPA+, PBPA1+ 및 PBPA2+ 각각의 중합체에 대한 멤브레인이 파단될 때의 인장강도 및 연신율은 20-35 MPa 및 40-140%이며, 이는 연료전지 내 음이온 교환막의 멤브레인 전극 어셈블리(membrane electrode assemblies, MEAs)를 구현하기 위한 요건을 충족시킨다.

    도 5(a)는 PBPA+, PBPA1+ 및 PBPA2+에 대한 응력-스트레인 곡선(stress versus strain curve) 을 나타낸다. 50℃ 및 상대습도 50% 조건에서, 가장 낮은 IEC를 갖는 중합체(PBPA2+)를 포함한 멤브레인의 기계적 강도(35MPa)가 가장 높은 IEC를 갖는 중합체인 PBPA+를 포함하는 멤브레인의 기계적 강도(22MPa)보다 더 컸다. 또한, Diels-Alder poly(phenylene) 음이온 교환막(IEC = 1.7 mequiv/g, 최대강도 32 MPa, 최대 스트레인(strain) 40%)과 비교해보면, 상기 PBPA1+ 중합체를 포함하는 멤브레인은 유사한 인장 강도(IEC = 1.9 mequiv/g, 최대강도 33 MPa, 최대 스트레인 100%)를 나타내었으나, 파단시 현저히 향상된 연신율을 나타냈으며 이는 4차 sp 3 탄소를 갖는 보다 유연한 주쇄 구조 때문이라고 판단된다.

    도 5(b)는 80℃에서 측정된 PBPA1+을 포함하는 연료전지의 H 2 /O 2 분극, 고주파 저항 및 출력밀도 곡선을 나타낸다.

    개방전압(open-circuit voltage)은 수소 공급형 연료전지에서 일반적인 것인1.01 V이었다. 80℃에서 최대 출력 밀도는 155 mW/cm 2 이고, 셀의 고주파 저항(high-frequency resistance, HFR)은 0.1 Ωcm 2 미만이었다.

    고주파 저항으로부터 구한 상기 멤브레인의 전도도는 19.9 S/cm이었으나, 현장 외 측정((ex situ measurement)보다 낮은 수치이며, 이는 막전극 어셈블리(MEA)에 의한 비막저항(nonmembrane resistance)에 기인한 것이며, 상기 고주파 저항은 전형적인 연료전지용 음이온 교환막의 고주파 저항보다 훨씬 더 작은 수치이다.

    상술한 결과들을 통해 다른 음이온 교환막 소재들과 비교하면, 본 발명에 따른 4차 암모늄 폴리(바이페닐 알킬렌)은 우수한 화학적 안정성 및 연료 전지 성능을 갖는 것을 명백하게 알 수 있다.

    상술한 폴리(바이페닐 알킬렌) 이외의 폴리아릴렌은 본 발명의 범위 내에 있고 유사한 방법에 따라 제조될 수 있다.

    예를 들어, 본 발명의 제조방법은 하기 화학식 Ⅲ에 따른 중합체를 제조하는데 사용할 수 있다.

    (화학식 Ⅲ)

    상기 화학식 Ⅲ에서, Ar은 방향족 화합물이고, R"은

    이고, r은 100 내지 1,000,000이고, m은 0 내지 20이다.

    본 발명의 일 실시예에 따르면, 화학식 Ⅲ의 중합체는 하기 반응식 2에 따라 제조될 수 있다.

    (반응식 2)

    상기 반응식 2에서, Ar은 폴리아릴렌이고, R'은

    이고, m은 0 내지 20이고, r은 100 내지 1,000,000이고, R은 아릴기이고, R"는 이다.

    본 발명의 일 실시예에 따르면, 상기 방향족 화합물은

    , , , , , 으로 이루어진 군에서 선택되는 어느 하나일 수 있다. 다른 방향족 화합물도 채용될 수 있다는 것은 당업자에게 당연히 인식되며, 본 발명의 범위 내에 있다.

    마찬가지로, 일 실시예에 있어서,

    는 메틸 트리플루오로메틸 케톤이다.

    다른 트리플루오로알킬 케톤일 수 있다는 것은 당업자에게 명백할 것이며, 본 발명의 범위 내에 있다.

    마지막으로, 비록 상기 실시예들은 브롬화된 방향족 화합물 또는 트리플루오로알킬 케톤을 포함하지만, 다른 할로겐이 채용될 수 있다. 예를 들어, 7-브로모-1,1,1-트리플루오로헵탄-2-온(7-chloro-1,1,1-trifluoroheptan-2-one)은 클로로 알킬화 된 전구중합체를 제조하는데 사용될 수 있으며, 이로부터 본 발명에 따른 중합체는 친핵 치환을 통해 제조된다. 이러한 실시예에서, 암모늄기 이외에 다른 작용기(예를 들어, 알콕시(alkyloxy), 술포네이트(sulfonate), 카르복실레이트(carboxylate), 포스포네이트(phosphonate))가 상기 중합체에 포함될 수 있다.

    본원에서 사용된 바와 같이, 단수 형태의 "하나의(a, an)" 및 "상기(the)"는 문맥 상 다르게 지시하지 않는 한 복수형태를 포함한다. 본 명세서에서 사용되는 "포함하는" 및/또는 "포함하는"이라는 용어는 특징, 정수, 단계, 동작, 구성 요소 및/또는 구성 요소의 존재를 명시하고 있지만, 하나 이상의 다른 특징, 정수, 단계, 동작, 요소, 구성 요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않음으로써 더 이해될 것이다.

    작성된 본 설명은 본 발명을 명확하게 하기 위해 실시예들을 개시하고, 최선의 상태를 포함하고, 임의의 장치 또는 시스템을 제조 및 사용하고, 임의의 관련되거나 통합된 방법을 수행하는 것을 포함하여 당업자로 하여금 본 발명을 실시할 수 있게 한다. 본 발명의 특허 가능한 범위는 청구 범위에 의해 규정되며, 당업자가 생각할 수 있는 다른 실시예를 포함할 수 있다. 이러한 다른 실시예들은 청구 범위의 문자와 상이하지 않은 경우 또는 실질적으로 동등한 구조적 요소를 포함하는 경우, 청구 범위 내에 있는 것으로 간주된다.

    QQ群二维码
    意见反馈