序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 用于上行链路覆盖范围的最小化路测 CN201280049559.2 2012-11-07 CN104012138A 2014-08-27 黄建华; 蔡孟颖; 波·乔·麦可·康森恩
发明提供一种使用额外UL测量用于MDT UL覆盖范围的方法。在无线通信网络中基站与UE建立RRC连接。该基站以及该UE配置用于MDT。该基站从该UE接收对应PUSCH的PHR,以及将该PHR转发给MDT服务器。该基站在该PUSCH中分配的DM-RS上实施UL测量。该UL测量也包含测量与PUSCH相关的UL RIP。该基站然后将UL测量结果上报给MDT服务器。该MDT服务器能够基于该PHR以及该UL测量结果决定UL覆盖范围。
2 真空废物收集系统及其操作方法 CN201080068682.X 2010-06-23 CN103189285A 2013-07-03 戴维·冈萨雷斯·阿拉巴尔; 尼卡斯·福里斯特
真空废物收集(1a)系统通过按一顺序连续选择多条分支排空及运送废物,其中顺序中每条下一分支的交点(1,2,3,4)与中央废物收集点之间的运送距离和顺序中每条前一分支的交点(1,2,3,4)与中央废物收集点(6)之间的运送距离一样或较短;通过连续操作相应分支的空气入口(av1,av2,av3,av4,av5),从所选择的分支集体运送累积的废物到中央废物收集点(6)。在除了最后一条分支外的每条所选择分支,通过打开相应的空气入口阀(av1,av2,av3,av4,av5)直到运输管道系统中的废物侦测器(WO)侦测到废物已经经过交点(1,2,3,4)前往下一分支,然后再转换到下一分支继续,以运送累积废物至中央废物收集点(6)。在最后一条分支,运送累积废物至中央废物收集点(6)。
3 真空废物收集系统及其操作方法 CN201080068682.X 2010-06-23 CN103189285B 2016-03-30 戴维·冈萨雷斯·阿拉巴尔; 尼卡斯·福里斯特
真空废物收集(1a)系统通过按一顺序连续选择多条分支排空及运送废物,其中顺序中每条下一分支的交点(1,2,3,4)与中央废物收集点之间的运送距离和顺序中每条前一分支的交点(1,2,3,4)与中央废物收集点(6)之间的运送距离一样或较短;通过连续操作相应分支的空气入口(av1,av2,av3,av4,av5),从所选择的分支集体运送累积的废物到中央废物收集点(6)。在除了最后一条分支外的每条所选择分支,通过打开相应的空气入口阀(av1,av2,av3,av4,av5)直到运输管道系统中的废物侦测器(WO)侦测到废物已经经过交点(1,2,3,4)前往下一分支,然后再转换到下一分支继续,以运送累积废物至中央废物收集点(6)。在最后一条分支,运送累积废物至中央废物收集点(6)。
4 用于在以不同的循环速度运行的两个相继的加工工位之间传递物体的方法和设备 CN201180060139.X 2011-12-16 CN103260862A 2013-08-21 S·赫尔曼; H·朔特; R·比埃尔
发明公开了一种用于在两个相继的加工工位之间传递物体的方法,包括以下步骤:-从前加工工位移除物体,其中所述物体以第一循环速度前移,-将所述被移除的物体输送到后加工工位,所述后加工工位包括多个相继地设置的容器(1-10),所述容器(1-10)以比所述第一循环速度快的第二循环速度前移通过所述后加工工位,其中,所述输送步骤包括经由至少一个给送管(12,13)输送所述物体,各给送管在相应传递管嘴(14,15)中终止,所述相应传递管嘴设置在所述容器(1-10)中的对应一个容器附近且其与所述容器(4,5;4,6)的入口对准,所述相应传递管嘴(14,15)能够与所述对应容器的前移同步地并沿所述对应容器的前移方向移动。
5 用于在以不同的循环速度运行的两个相继的加工工位之间传递物体的方法和设备 CN201610344209.9 2011-12-16 CN105881942A 2016-08-24 S·赫尔曼; H·朔特; R·比埃尔
公开了一种用于在两个相继的加工工位之间传递物体的方法,包括以下步骤:?从前加工工位移除物体,其中所述物体以第一循环速度前移,?将所述被移除的物体输送到后加工工位,所述后加工工位包括多个相继地设置的容器(1?10),所述容器(1?10)以比所述第一循环速度快的第二循环速度前移通过所述后加工工位,其中,所述输送步骤包括经由至少一个给送管(12,13)输送所述物体,各给送管在相应传递管嘴(14,15)中终止,所述相应传递管嘴设置在所述容器(1?10)中的对应一个容器附近且其与所述容器(4,5;4,6)的入口对准,所述相应传递管嘴(14,15)能够与所述对应容器的前移同步地并沿所述对应容器的前移方向移动。
6 用于在以不同的循环速度运行的两个相继的加工工位之间传递物体的方法和设备 CN201180060139.X 2011-12-16 CN103260862B 2016-06-22 S·赫尔曼; H·朔特; R·比埃尔
公开了一种用于在两个相继的加工工位之间传递物体的方法,包括以下步骤:-从前加工工位移除物体,其中所述物体以第一循环速度前移,-将所述被移除的物体输送到后加工工位,所述后加工工位包括多个相继地设置的容器(1-10),所述容器(1-10)以比所述第一循环速度快的第二循环速度前移通过所述后加工工位,其中,所述输送步骤包括经由至少一个给送管(12,13)输送所述物体,各给送管在相应传递管嘴(14,15)中终止,所述相应传递管嘴设置在所述容器(1-10)中的对应一个容器附近且其与所述容器(4,5;4,6)的入口对准,所述相应传递管嘴(14,15)能够与所述对应容器的前移同步地并沿所述对应容器的前移方向移动。
7 多层流体学鞘流结构 CN200480034891.7 2004-11-01 CN1886315B 2012-11-28 约翰·R·吉尔伯特; 马尼施·德施潘德; 伯纳德·邦纳
一种用于形成鞘流的微制造鞘流结构,其包括用于输送鞘流体的主鞘流通道,用于将样品注入主鞘流通道中的鞘流体内的进样口,用于聚焦鞘流体内样品的第一聚焦区,和用于对鞘流体内样品进行另外聚焦的第二聚焦区。该第二聚焦区可以由流动通道与主鞘流通道相交而成,以将另外的鞘流体以选择的方向注入主鞘流通道内。鞘流系统可以包括在微流芯片上并联工作的多个鞘流结构。
8 多层流体学鞘流结构 CN200480034891.7 2004-11-01 CN1886315A 2006-12-27 约翰·R·吉尔伯特; 马尼施·德施潘德; 伯纳德·邦纳
一种用于形成鞘流的微制造鞘流结构,其包括用于输送鞘流体的主鞘流通道,用于将样品注入主鞘流通道中的鞘流体内的进样口,用于聚焦鞘流体内样品的第一聚焦区,和用于对鞘流体内样品进行另外聚焦的第二聚焦区。该第二聚焦区可以由流动通道与主鞘流通道相交而成,以将另外的鞘流体以选择的方向注入主鞘流通道内。鞘流系统可以包括在微流芯片上并联工作的多个鞘流结构。
9 アップリンクリンクカバレッジの運転テストの最小化 JP2014530090 2012-11-07 JP5934365B2 2016-06-15 ワン, チェン−ワ; テサイ, メン−ユイン; ジョハンソン, パー ヨハン マイケル
10 アップリンクリンクカバレッジの運転テストの最小化 JP2014530090 2012-11-07 JP2014530529A 2014-11-17 チェン−ワ ワン,; メン−ユイン テサイ,; パー ヨハン マイケル ジョハンソン,
【課題】MDT ULカバレッジの追加アップリンク測定を用いる方法を提供する。【解決手段】MDT ULカバレッジの追加アップリンク測定を用いる方法が提供される。移動通信ネットワークにおいて、基地局 (eNodeB)は、ユーザー装置 (UE)と無線リソース制御 (RRC)接続を構築する。eNodeBとUEが運転テスト (MDT)の最小化に設定される。eNodeBは、UEから、物理アップリンク共有チャネル (PUSCH)に対応する電ヘッドルーム報告 (PRH)を受信し、PHRをMDTサーバに伝送する。eNodeBは、PUSCHで割り当てられるデータ復調用参照信号 (DM-RS)のアップリンク測定を実行する。アップリンク測定は、PUSCHに関連するアップリンク受信干渉電力 (RIP)を測定する工程も含む。その後、eNodeBは、アップリンク測定結果をMDTサーバに報告する。MDTサーバは、PHRとアップリンク測定結果に基づいて、アップリンクカバレッジを決定することができる。【選択図】図1
11 Hydrodynamic multilayer sheath flow structure JP2006538448 2004-11-01 JP5138223B2 2013-02-06 ジョン アール. ギルバート; マニッシュ デシュパンデ; バーナード バナー
A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
12 Hydrodynamic multilayer sheath flow structure JP2006538448 2004-11-01 JP2007514522A 2007-06-07 ジョン アール. ギルバート; マニッシュ デシュパンデ; バーナード バナー
シースフローを生成するための、微細加工されたシースフロー構造は、シース流体を運ぶための一次シースフローチャネル、一次シースフローチャネル内のシース流体に試料を注入するための試料注入口、シース流体中の試料を集束させるための一次集束領域、および、シース流体中の試料のさらなる集束を提供するための二次集束領域を含む。 二次集束領域は、追加のシース流体を選択された方向で一次シースフローチャネルに注入するため、一次シースフローチャネルと交差するフローチャネルにより形成されてもよい。 シースフローシステムは、マイクロ流体チップ上で並列に作動する複数のシースフロー構造を含んでもよい。
13 LEERGUT-TRANSPORTSYSTEM UND LEERGUT-RÜCKNAHMESYSTEM ZUR ABSAUGUNG VON GEBINDEN EP17171280.5 2017-05-16 EP3249619A1 2017-11-29 SCHRÖDER, Berthold

Ein Leergut-Transportsystem weist auf eine Luftstrom-Transportvorrichtung (3) mit einer Leergut-Transportrohrleitung (9), welche eine erste Anschlussstelle (13-1, 13-2) zum Anschluss an den Leergutrücknahmeautomaten (15-1, 15-2) und eine zweite Anschlussstelle (17) zum Anschluss an den Leergut-Sammelbehälter (19) aufweist, und eine Luftstrom-Erzeugungsvorrichtung (11), welche an die Leergut-Transportrohrleitung (9) angeschlossen und eingerichtet ist, um in der Leergut-Transportrohrleitung (9) einen Transport-Luftstrom (L) bereitzustellen, mittels dessen das Leergut, das über die erste Anschlussstelle (13-1, 13-2) vom Leergutrücknahmeautomaten (15-1, 15-2) in die Leergut-Transportrohrleitung (9) gelangt, zum Leergut-Sammelbehälter (19) zu bewegen, eine Luftschleuseneinrichtung (5-1, 5-2), welche an der ersten Anschlussstelle (13) angeordnet ist und über welche das Leergut vom Leergutrücknahmeautomaten (15-1, 15-2) an die Leergut-Transportrohrleitung (9) überführbar ist.

14 MINIMIZATION OF DRIVE TESTS FOR UPLINK LINK COVERAGE EP12847724 2012-11-07 EP2661923A4 2013-11-20 HWANG CHIEN-HWA; TSAI MENG-YING; JOHANSSON PER JOHAN MIKAEL
An adhesive melt system includes a hopper, a feed system, a valve, and a releasable coupling. The hopper stores hot melt pellets and the valve regulates movement of the pellets from the hopper to the feed system. The feed system delivers the hot melt pellets from the hopper. The releasable coupling allows for connection and disconnection of the hopper to and from the feed system. In one embodiment, the hopper is interchangeable with a second hopper. Both hoppers have a coupling that allows for quick connection to and disconnection from the feed system
15 MULTILAYER HYDRODYNAMIC SHEATH FLOW STRUCTURE EP04810241.2 2004-11-01 EP1682438A2 2006-07-26 GILBERT, John, R.; DESHPANDE, Manish; BUNNER, Bernard
A microfabricated sheath flow structure for producing a sheath flow includes a primary sheath flow channel for conveying a sheath fluid, a sample inlet for injecting a sample into the sheath fluid in the primary sheath flow channel, a primary focusing region for focusing the sample within the sheath fluid and a secondary focusing region for providing additional focusing of the sample within the sheath fluid. The secondary focusing region may be formed by a flow channel intersecting the primary sheath flow channel to inject additional sheath fluid into the primary sheath flow channel from a selected direction. A sheath flow system may comprise a plurality of sheath flow structures operating in parallel on a microfluidic chip.
16 FILTER MONITORING IN PNEUMATIC TRANSPORT SYSTEMS US15983636 2018-05-18 US20180340877A1 2018-11-29 Fredrik Thuman
A pneumatic transport system (10), comprising at least one material transport carrier for transporting a pneumatic transportable material (M) in the pneumatic system (10) by means of a pneumatic device (1a) adapted to operate with negative pressure on the material transport carrier to transport the pneumatic transportable material (M) in the pneumatic system (10) comprising one or more tubes (13) forming a continuous transport path (CL), wherein a pressure-drop monitoring element (3a) is provided and adapted to monitor filter performance of a separating filter (16) provided in the transport path (CL) and adapted to separate the material transport carrier and the transportable material (M) in the transport path (CL).
17 MANUFACTURING PICKUP TOOL US15365381 2016-11-30 US20170152115A1 2017-06-01 ADAM MONTOYA; RAYMUNDO ALATORRE MERCADO
A vacuum powered pickup tool with mechanically moveable discrete nozzles allows for selective activation of the nozzles through the mechanical movement of the nozzles relative to a vacuum manifold. The movement of a nozzle from an inactive position where an inlet port of the nozzle is fluidly decoupled with the vacuum manifold to an active position where the inlet port is fluidly coupled with the vacuum manifold allows for independent activation of discrete nozzles of the pickup tool. Aspects also contemplate varying an associate manifold through movement of the manifolds accessible to the inlet port of the nozzle when in the active position.
18 Method and apparatus for transferring objects between two consecutive processing stations being operated with different cycle speeds US14818570 2015-08-05 US09346224B2 2016-05-24 Swen Herrmann; Roger Biel; Harald Schott
A method for transferring objects such as ophthalmic lenses or contact lenses between two consecutive processing stations, particularly processing stations having differing cycle times or cycle speeds is disclosed, including removing the objects from a preceding processing station, in which the objects are advanced with a first cycle speed, transporting the removed objects to a subsequent processing station including a plurality of consecutively arranged receptacles (1-10), which are advanced through the subsequent processing station with a second cycle speed faster than the first cycle speed. The objects may be transported via at least one feed tube (12, 13), each feed tube ending in a respective transfer nozzle (14, 15) which is arranged in vicinity of a corresponding one of the receptacles (1-10) and which is aligned with an inlet of the receptacle (4, 5; 4, 6). The respective transfer nozzles (14, 15) are capable of being moved synchronously with and in the direction of advancement of corresponding receptacle.
19 Method and Apparatus For Transferring Objects Between Two Consecutive Processing Stations Being Operated With Different Cycle Speeds US14818570 2015-08-05 US20150336339A1 2015-11-26 Swen Herrmann; Roger Biel; Harald Schott
A method for transferring objects such as ophthalmic lenses or contact lenses between two consecutive processing stations, particularly processing stations having differing cycle times or cycle speeds is disclosed, including removing the objects from a preceding processing station, in which the objects are advanced with a first cycle speed, transporting the removed objects to a subsequent processing station including a plurality of consecutively arranged receptacles (1-10), which are advanced through the subsequent processing station with a second cycle speed faster than the first cycle speed. The objects may be transported via at least one feed tube (12, 13), each feed tube ending in a respective transfer nozzle (14, 15) which is arranged in vicinity of a corresponding one of the receptacles (1-10) and which is aligned with an inlet of the receptacle (4, 5; 4, 6). The respective transfer nozzles (14, 15) are capable of being moved synchronously with and in the direction of advancement of corresponding receptacle.
20 Method and apparatus for transferring objects between two consecutive processing stations being operated with different cycle speeds US13328806 2011-12-16 US09102109B2 2015-08-11 Swen Herrmann; Roger Biel; Harald Schott
A method for transferring objects (e.g. ophthalmic or contact lenses) between two consecutive processing stations, e.g. processing stations having differing cycle times or cycle speeds, including removing the objects from a preceding processing station, in which objects are advanced with a first cycle speed, transporting the objects to a subsequent processing station including a plurality of consecutively arranged receptacles (1-10), which are advanced through the subsequent processing station with a second cycle speed faster than the first cycle speed. The objects may be transported via at least one feed tube (12, 13) ending in a respective transfer nozzle (14, 15) arranged in vicinity of a corresponding one of the receptacles (1-10) and which is aligned with an inlet of the receptacle (4, 5; 4, 6). The respective transfer nozzles (14, 15) can be moved synchronously with and in the direction of advancement of corresponding receptacle.
QQ群二维码
意见反馈