序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 闪烁器面板和放射线检测器 CN201380048062.3 2013-09-17 CN104769681A 2015-07-08 外山真太郎; 楠山泰; 山下雅典; 大泽弘武; 铃木克彦
一种用于将放射线转换为闪烁光的闪烁器面板,包括:具有表面和背面的基板;以相互分离的方式在上述基板的上述表面上形成、具有上表面和从上述上表面向上述基板的上述表面延伸的侧面的多个闪烁器部;以覆盖上述闪烁器部的上述上表面和上述侧面的方式在上述闪烁器部的上述上表面和上述侧面上形成的溶剂渗透阻止膜;和在上述溶剂渗透阻止膜之上形成、用于遮蔽上述闪烁光的光遮蔽层,上述闪烁器部由闪烁器材料的多个柱状晶体构成,上述溶剂渗透阻止膜以不填满彼此相邻的上述闪烁器部的上述侧面彼此的间隙的方式形成,上述光遮蔽层以填充上述间隙的方式在上述闪烁器部的上述侧面上的上述溶剂渗透阻止膜上形成。
2 X射线摄像管 CN94103207.8 1994-03-24 CN1093830A 1994-10-19 户波宽道; 四川隆久; 竹本隆之; 木材雄太郎; 藤原菊男
一种将透射X射线转换成电信号的X射线摄像管,其靶结构包括:接收二维分布的透射X射线并将其转换成二维分布的可见射线的荧光元件;光耦合至荧光元件表面,并承受高电压的半透明导电膜;和层叠在半透明导电膜上、含有非晶半导体层的光敏膜;非晶半导体层能将透射的可见射线转换成二维分布的电荷,并在由所述高电压形成的电场下倍增电荷。该摄像管还包括能读出作为电信号的光敏膜上二维电势分布的信号读出装置。
3 闪烁器面板以及放射线检测器 CN201380038628.4 2013-04-18 CN104488039A 2015-04-01 上西秀典; 式田宗功; 楠山泰
在本发明所涉及的闪烁器面板(2A)中,通过厚度为150μm以下的玻璃基板(11)成为支撑体从而就能够获得优异的放射线透过性以及可挠性题。另外,在该闪烁器面板(2A)中以覆盖玻璃基板(11)的表面整体的形式形成有机树脂层(12)。由此,玻璃基板被补强并且能够抑制边缘部分缺损或龟裂的发生。再有,除了能够防止来自玻璃基板(11)的侧面(11c)的杂散光之外,还变得能够通过将有机树脂层(12)形成于表面整体从而抑制由于形成了闪烁器层(13)之后的内部应引起的玻璃基板(11)的翘曲
4 双屏数字X射线照相的成像检测器阵列 CN200910135012.4 2009-04-14 CN101561505B 2013-09-04 T·J·特雷威尔; R·S·克尔; R·W·库尔平斯基; J·约克斯顿; T·J·沃奇克; K·-L·叶
一种X射线照相成像装置包括具有第一厚度的第一闪烁荧光屏和具有第二厚度的第二闪烁荧光屏。在第一屏和第二屏之间设置透明基底。基底一侧上形成的成像阵列包括多个光电传感器和读出元件阵列。
5 非对称双屏数字X射线照相装置 CN200780026414.X 2007-07-12 CN101506905A 2009-08-12 J·约克斯顿; K·叶; T·沃奇克
发明涉及用于对对象摄取X射线图像的X射线照相成像装置。各种双屏X射线照相成像装置配置中,正面屏和背面屏均具有基板信号检测元件和读出器件的阵列,以及钝化层。正面屏和背面屏均具有闪烁荧光层,其响应通过对象的X射线而产生光,该光对信号检测元件进行照射从而提供表示X射线图像的信号。该X射线装置具有用于将各X射线图像的信号组合以生成复合X射线图像的装置。此外,闪烁荧光层的成分和厚度被彼此相对选择以改善复合X射线图像的诊断功效。
6 闪烁器面板和放射线检测器 CN201380048062.3 2013-09-17 CN104769681B 2017-08-29 外山真太郎; 楠山泰; 山下雅典; 大泽弘武; 铃木克彦
一种用于将放射线转换为闪烁光的闪烁器面板,包括:具有表面和背面的基板;以相互分离的方式在上述基板的上述表面上形成、具有上表面和从上述上表面向上述基板的上述表面延伸的侧面的多个闪烁器部;以覆盖上述闪烁器部的上述上表面和上述侧面的方式在上述闪烁器部的上述上表面和上述侧面上形成的溶剂渗透阻止膜;和在上述溶剂渗透阻止膜之上形成、用于遮蔽上述闪烁光的光遮蔽层,上述闪烁器部由闪烁器材料的多个柱状晶体构成,上述溶剂渗透阻止膜以不填满彼此相邻的上述闪烁器部的上述侧面彼此的间隙的方式形成,上述光遮蔽层以填充上述间隙的方式在上述闪烁器部的上述侧面上的上述溶剂渗透阻止膜上形成。
7 闪烁器面板和放射线图像传感器 CN201180027617.7 2011-05-16 CN102934173A 2013-02-13 外山真太郎; 楠山泰; 山下雅典; 大泽弘武; 式田宗功
提供能够谋求高分辨率化和高辉度化的闪烁器面板(1)以及放射线图像传感器(10)。闪烁器面板(1)具备:放射线透过基板(3),具有放射线的入射面(3a)和出射面(3b),并使放射线透过;闪烁器(4),由在出射面(3b)上结晶生长而成的多个柱状体构成,通过放射线的入射而产生光;FOP(6),相对于闪烁器(4)配置在与出射面(3b)的相反侧,使在闪烁器(4)产生的光传播;以及两面胶带(5),设置在闪烁器(4)与FOP(6)之间,将闪烁器(4)和FOP(6)粘结固定,并且使在闪烁器(4)产生的光透过。
8 双屏数字X射线照相的成像检测器阵列 CN200910135012.4 2009-04-14 CN101561505A 2009-10-21 T·J·特雷威尔; R·S·克尔; R·W·库尔平斯基; J·约克斯顿; T·J·沃奇克; K·-L·叶
一种X射线照相成像装置包括具有第一厚度的第一闪烁荧光屏和具有第二厚度的第二闪烁荧光屏。在第一屏和第二屏之间设置透明基底。基底一侧上形成的成像阵列包括多个光电传感器和读出元件阵列。
9 페로브스카이트 결정을 포함하는 검출층 KR1020177012259 2015-11-26 KR1020170066571A 2017-06-14 피셔,레네; 카니츠,안드레아스; 슈미트,올리버; 테드,샌드로프란시스코
본발명은 ABX-타입및/또는 ABX-타입페로브스카이트결정을포함하는, 기판상의검출층에관한것으로서, 여기서, A는주기율표에서제4 주기또는보다높은주기로부터의적어도하나의 1가, 2가또는 3가원소, 바람직하게, Sn, Ba, Pb, Bi이며; B는 1가양이온으로서, 이의체적매개변수는페로브스카이트격자를형성시키기위해원소 A에대해충분하며; X는할라이드음이온및 유사-할라이드음이온중으로부터, 바람직하게, 음이온클로라이드, 브로마이드및 요오다이드및 이들의혼합물중으로부터선택된다. 본발명은또한, 검출층을제조하는방법, 페로브스카이트결정을포함하는코팅된입자, 및기술된검출층을포함하는검출기에관한것이다.
10 신틸레이터 패널 및 방사선 이미지 센서 KR1020127025646 2011-05-16 KR1020130080425A 2013-07-12 도야마신타로; 구스야마유타카; 야마시타마사노리; 오사와히로타케; 시키다무네노리
고해상도화 및 고휘도화를 도모할 수 있는 신틸레이터 패널(1) 및 방사선 이미지 센서(10)를 제공한다. 신틸레이터 패널(1)은 방사선의 입사면(3a) 및 출사면(3b)을 가지고, 방사선을 투과시키는 방사선 투과 기판(3)과, 출사면(3b)에 결정 성장된 복수의 기둥 형상체로 이루어지고, 방사선의 입사에 의해 광을 생성시키는 신틸레이터(4)와, 신틸레이터(4)에 대해서 출사면(3b)과 반대측에 배치되고, 신틸레이터(4)에서 생성된 광을 전파시키는 FOP(6)와, 신틸레이터(4)와 FOP(6)의 사이에 마련되고, 신틸레이터(4)와 FOP(6)를 점착 고정함과 함께, 신틸레이터(4)에서 생성된 광을 투과시키는 양면 테이프(5)를 구비한다.
11 Scintillator panel and radiation detector US14878651 2015-10-08 US09562980B2 2017-02-07 Keiko Itaya; Makoto Iijima
A scintillator panel includes: a flexible substrate; a phosphor arranged on the flexible substrate; and a thermal expansion compensation layer disposed between the flexible substrate and the phosphor, wherein a linear expansion coefficient of the thermal expansion compensation layer is greater than a thermal expansion coefficient of the phosphor, and surfaces, of the thermal expansion compensation layer and of the flexible substrate, in contact with each other each contain an organic substance.
12 STRUCTURE HAVING METAL HALIDE LAYER, RADIATION DETECTION ELEMENT, RADIATION DETECTOR, AND METHOD FOR MANUFACTURING THE STRUCTURE US15100964 2014-12-01 US20160291173A1 2016-10-06 Ryoko Ueyama; Toru Den; Tatsuya Saito; Tatsuya Iwasaki
A radiation detection element has a detection layer 52 containing metal halide and a pair of electrodes 51 and 53 disposed on the detection layer 52 containg metal halide. At least one of the pair of electrodes has a surface 56 containing graphite and the surface 56 containing graphite and the detection layer 52 are in contact with each other.
13 SCINTILLATOR PANEL AND RADIATION DETECTOR US14878651 2015-10-08 US20160116606A1 2016-04-28 Keiko ITAYA; Makoto Iijima
A scintillator panel includes: a flexible substrate; a phosphor arranged on the flexible substrate; and a thermal expansion compensation layer disposed between the flexible substrate and the phosphor, wherein a linear expansion coefficient of the thermal expansion compensation layer is greater than a thermal expansion coefficient of the phosphor, and surfaces, of the thermal expansion compensation layer and of the flexible substrate, in contact with each other each contain an organic substance.
14 Scintillator panel and radiation detection device US14427433 2013-09-17 US09322932B2 2016-04-26 Shintaro Toyama; Yutaka Kusuyama; Masanori Yamashita; Hirotake Osawa; Katsuhiko Suzuki
A scintillator panel for converting radiation into scintillation light, includes a substrate having a front surface and a back surface, a plurality of scintillator sections formed on the front surface of the substrate so as to be separate from one another, and having upper surfaces and side surfaces extending from the upper surfaces toward the front surface of the substrate, solvent permeation blocking film formed on the upper surfaces and the side surfaces of the scintillator sections so as to cover the upper surfaces and the side surfaces of the scintillator sections, and a light shielding layer formed on the solvent permeation blocking film, that is for shielding the scintillation light, and the scintillator section is composed of a plurality of columnar crystals of a scintillator material, the solvent permeation blocking film is formed so as not to fill gaps between the side surfaces of the adjacent scintillator sections.
15 Scintillator plate US14409828 2013-05-16 US09291722B2 2016-03-22 Manfred Fuchs; Jürgen Korinth
A scintillator plate includes a substrate, a buffer layer, a scintillator layer arranged on the buffer layer, and a protective layer. The buffer layer and/or the protective layer is colored. A method for the production of the scintillator plate is also described.
16 Scintillator Plate US14918904 2015-10-21 US20160042827A1 2016-02-11 Manfred Fuchs; Jürgen Korinth
A scintillator plate includes a substrate, a buffer layer, a scintillator layer arranged on the buffer layer, and a protective layer. The buffer layer and/or the protective layer is colored. The buffer layer and/or the protective layer include a proportion of carbonyl groups of greater than 5000 ppm.
17 RADIOLOGICAL IMAGE DETECTION APPARATUS US13911140 2013-06-06 US20140001366A1 2014-01-02 Yoichi NISHIDA; Yukinori NAKAMURA; Akihiro ANZAI
There is provided a radiological image detection apparatus having excellent sensitivity. A scintillator has a plurality of columnar crystals formed of thallium-activated cesium iodide, and converts X-rays into visible light and emits the visible light from the distal end of the columnar crystal. A photoelectric conversion panel generates electric charges by detecting the visible light emitted from the scintillator. The molar ratio of thallium to cesium iodide in the scintillator is in a range of 0.1 mol % to 0.55 mol %. The half width of the rocking curve of the (200) plane of the columnar crystal is equal to or less than 3°.
18 Radiation image detection method and system US11486042 2006-07-14 US20070012890A1 2007-01-18 Kaku Irisawa
A radiation image detector includes an up-conversion phosphor layer for emitting fluorescence by irradiation with infrared light, a first electrode layer for transmitting the infrared light, the fluorescence and radiation carrying a radiation image, a photoconductive layer for recording, a charge storage portion, a photoconductive layer for readout, and a second electrode layer for transmitting the infrared light and the readout light. Radiation is recorded as latent image charge in the charge storage portion. The electric charge is read out from the charge storage portion by irradiating the photoconductive layer for readout with the readout light from the second electrode layer side. The up-conversion phosphor layer is irradiated with the infrared light from the second electrode layer side and remaining charge in the vicinity of the first electrode layer is erased by fluorescence emitted from the up-conversion phosphor layer by irradiation with the infrared light.
19 Flat storage element for an X-ray image US09869407 1999-11-29 US06974959B1 2005-12-13 Michael Thoms
Storage film (10) serving to produce latent X-ray images in lieu of conventional X-ray film, containing storage particles (20) which are held together by a binding agent (22) and in which metastable electronic excited states can be produced. The refractive index of the binding agent (22) and the storage particles (20) are selected in such a way that they are equally high so that the storage layer (12) formed by the storage particles (20) and the binding agent (22) behave like an optically homogenous body.
20 Radiation image storage panel having a particular layer arrangement US10364477 2003-02-11 US06927404B2 2005-08-09 Rudi Van den Bergh; Thomas Cabes
A radiation image storage panel. The panel has a supported layer of storage phosphor particles dispersed in a binding medium, and adjacent thereto, between the layer and a support having reflective properties, a layer arrangement of intermediate layers inbetween the layer and the support. The layer arrangement consists of an antihalation undercoat layer containing one or more dye(s), the layer being situated more close to the support, and an adhesion improving layer situated more close to the layer of storage phosphor particles, and wherein the adhesion improving layer is hardened to a lesser extent than the antihalation undercoat layer.
QQ群二维码
意见反馈