序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 REFLECTIVE DISPLAY EP09852395.4 2009-12-18 EP2513716A1 2012-10-24 GEISOW, Adrian; KITSON, Stephen
A reflective display includes a display cell (100, 200, 300, 400, 500, 520) having a light incident wall (105) and a second wall (140, 437). A cholesteric liquid crystal fluid (115) disposed within the display cell (100, 200, 300, 400, 500, 520) and a plurality of pigment particles (145) are movably suspended within the cholesteric liquid crystal fluid (115). A reflective layer (125, 225, 365, 470, 650, 655, 660) is opposite the light incident wall (105) of the display cell (100, 200, 300, 400, 500, 520).
182 Displays with integrated backlighting EP12166214.2 2007-06-14 EP2485075A1 2012-08-08 Levola, Tapani

The specification and drawings present a new apparatus and method for designing and using display devices with integrated backlight layer structure utilizing separate color diffractive out-coupling (e.g., diffraction out-coupling). A lower substrate of the display can be used to integrate the backlight component (or the backlight layer structure), thus enabling a thin module with the integrated backlighting.

183 LIQUID CRYSTAL DISPLAY DEVICE AND DRIVING METHOD THEREOF EP06812569.9 2006-11-13 EP1949177B1 2012-02-22 HWANG, Hyun Ha; KIM, Jang Ho
An embodiment of the present invention provides a method of driving a liquid crystal display device including a liquid crystal panel, and a backlight assembly providing light to the liquid crystal panel by a field sequential driving method, the method includes: displaying an image, at the liquid crystal panel and the backlight assembly, by time-dividing two frames into five sub-frames, wherein when images are displayed in the two frames, images of a first frame and a second frame of the two frames share one blue light.
184 PHOTO-LUMINESCENCE COLOR LIQUID CRYSTAL DISPLAY EP07835992.4 2007-07-06 EP2047324B1 2012-02-01 LI, Yi-Qun; DONG, Yi; SHAN, Wei
A photo-luminescence liquid crystal (LCD) display comprises: a display panel and a radiation source for generating excitation radiation for operating the display. The display panel comprises transparent front and back plates; a liquid crystal disposed between the front and back plates; a matrix of electrodes (array of thin film transistors TFTs) defining red, green and blue pixel areas of the display and operable to selectively induce an electric field across the liquid crystal in the pixel areas for controlling transmission of light through the pixel areas. A red phosphor material which emits red (R) light in response to excitation radiation is provided on the back plate corresponding to red pixel areas and green phosphor material which emits green light in response to excitation radiation is proved on the back plate corresponding to green pixel areas.
185 PHOTOLUMINESCENT LIGHT SOURCE EP08781467.9 2008-07-07 EP2174180A1 2010-04-14 KANADE, Udayan; KULKARNI, Gaurav; SRIDHARAN, Karthikk; ALEKAR, Manas; JOSHI, Manohar; GANU, Sanat; GANAPATHY, Balaji
An apparatus for providing a photoluminescent light source is disclosed. In one embodiment, the apparatus comprises a light source that emanates light of a particular spectrum, photoluminescent material which converts light from the light source to light of another spectrum, and a selective mirror which reflects light generated by the light source and transmits light generated by the photoluminescent material. The photoluminescent material may be arranged so as to provide a plurality of light sources that emanate light of various colors.
186 FLÜSSIGKRISTALLANZEIGE ELEMENT EP05822307 2005-11-23 EP1865370A4 2010-04-07 TZVETKOV VALENTIN ALEKSEYEVICH; TZVETKOV OLEG VALENTINOVICH
187 IN-PLANE SWITCHING ELECTROPHORETIC COLOUR DISPLAY EP07849264.2 2007-11-27 EP2122412A2 2009-11-25 LENSSEN, Kars-Michiel H.; BAESJOU, Patrick J.; VAN DELDEN, Martinus, H. W. M.; ROOSENDAAL, Sander J.; STOFMEEL, Leon W. G.; VERSCHUEREN, Alwin R. M.
In-plane switching type colour electrophoretic display. The electrophoretic layer consists of cavities (18ab) containing a suspension, which define the pixels (10, 12). Adjacent to each cavity, two control electrodes (20a, 20b) are arranged outside the field of view (26) of the pixel, to initiate in-plane motion of the particles. Two particle types (24a, 24b) differing in colour (yellow, cyan) and optionally: (i) particle mobility or threshold electrical field for initiating motion as well as (possibly charge polarity) or (ii) an additional control electrode also arranged outside the field of view, are arranged in a suspension in the pixel cell. This 'arrangement allows a composite colour scheme for each pixel to be obtained ^in a controllable way. The control electrodes may be arranged at the bounding ends of the cavity, i.e. normal to the layer plane, or in the layer plane at the edges of the cavity. Since they are also covered by a light shielding layer, the electrodes and the particles collected on them, do not impinge on the field of view of the pixel. In addition only a small part of the cavity area is covered by electrode material, so that the total transmission (brightness) of the pixel can be optimized. Two such cells (18ab, 18cd) may be stacked on top of each other. Particles in the second cell (yellow, cyan) have different colours than those in first cell (magenta, black), but their other properties are arranged according to option (i). One of the cells determines mainly the luminance of the display, the other its colour. A white reflector allows a reflective CMY or CMYK subtractive colour display to be achieved. A transmissive variant with a backlight is also disclosed.
188 COLOR SUBTRACTIVE DISPLAY EP07849270.9 2007-11-27 EP2089765A2 2009-08-19 ROOSENDAAL, Sander J.; VAN DELDEN, Martinus H. W. M.
The present invention relates to a display (10) comprising a vertical stack of at least two different color absorbing layers (14) of pixels (18). The display is characterized in that the pixel resolution of at least two of the layers is different. The present invention also relates to a display system (50) comprising such a display and a method for controlling such a display.
189 PHOTO-LUMINESCENCE COLOR LIQUID CRYSTAL DISPLAY EP07835992.4 2007-07-06 EP2047324A2 2009-04-15 LI, Yi-Qun; DONG, Yi; SHAN, Wei
A photo-luminescence liquid crystal (LCD) display comprises: a display panel and a radiation source for generating excitation radiation for operating the display. The display panel comprises transparent front and back plates; a liquid crystal disposed between the front and back plates; a matrix of electrodes (array of thin film transistors TFTs) defining red, green and blue pixel areas of the display and operable to selectively induce an electric field across the liquid crystal in the pixel areas for controlling transmission of light through the pixel areas. A red phosphor material which emits red (R) light in response to excitation radiation is provided on the back plate corresponding to red pixel areas and green phosphor material which emits green light in response to excitation radiation is proved on the back plate corresponding to green pixel areas.
190 Method for Forming an Electronic Paper Display EP08156772.9 2008-05-22 EP1995628A3 2009-02-25 Lin, Pinyen; Pan, David H.; Chopra, Naveen; Kazmaier, Peter M.

Methods form a multi-color electrophoretic display. The methods include providing microcapsules, wherein the microcapsules have an electrostatic charge, and wherein the microcapsules comprise, a shell that is transparent and a display medium within the shell, wherein the display medium is comprised of either (a) at least two sets of differently colored particles in a substantially clear fluid, or (b) at least one set of colored particles in a differently colored fluid. The methods include transferring the microcapsules to a substrate, wherein the electrostatic charge of the microcapsules attracts the microcapsules to the substrate, wherein a display layer of microcapsules is formed on the substrate. The methods include positioning a conductive substrate adjacent to the substrate, wherein the substrate is located between the display layer and the conductive substrate. In use, the conductive substrate applies an electric field to the display layer, and wherein the sets of particles within each microcapsule in the display layer are movable within the microcapsule by the electric field.

191 Method for forming an electronic paper display EP08156773.7 2008-05-22 EP1995629A2 2008-11-26 Lin, Pinyen; Pan, David H.; Chopra, Naveen; Kazmaier, Peter M

Methods form multi-color electrophoretic displays. The method includes providing a solution containing microcapsules, wherein the microcapsules comprise:

a shell that is transparent and a display medium within the shell, wherein the display medium comprised of either (a) at least two sets of differently colored particles in a substantially clear fluid, or (b) at least one set of colored particles in a differently colored fluid. The method includes dispensing the solution onto a substrate, wherein a display layer of microcapsules is formed on the substrate. The method includes positioning a conductive substrate adjacent to the substrate, wherein the substrate is located between the display layer and the conductive substrate, wherein the conductive substrate applies an electric field to at least one microcapsule of the display layer, wherein the sets of particles of each microcapsule in the display layer are movable within the microcapsule by the electric field to be displayed.

192 Method for Forming an Electronic Paper Display EP08156772.9 2008-05-22 EP1995628A2 2008-11-26 Lin, Pinyen; Pan, David H.; Chopra, Naveen; Kazmaier, Peter M.

Methods form a multi-color electrophoretic display. The methods include providing microcapsules, wherein the microcapsules have an electrostatic charge, and wherein the microcapsules comprise, a shell that is transparent and a display medium within the shell, wherein the display medium is comprised of either (a) at least two sets of differently colored particles in a substantially clear fluid, or (b) at least one set of colored particles in a differently colored fluid. The methods include transferring the microcapsules to a substrate, wherein the electrostatic charge of the microcapsules attracts the microcapsules to the substrate, wherein a display layer of microcapsules is formed on the substrate. The methods include positioning a conductive substrate adjacent to the substrate, wherein the substrate is located between the display layer and the conductive substrate. In use, the conductive substrate applies an electric field to the display layer, and wherein the sets of particles within each microcapsule in the display layer are movable within the microcapsule by the electric field.

193 Electrochemical cell structure and method of fabrication EP06256031.3 2006-11-24 EP1791197A3 2008-08-27 McGregor, Barry M. Cambridge Res. Lab. Epson; Ishida, Masaya Cambridge Research. Lab. Epson

The present invention relates to an electrochemical cell and a method of manufacturing the same. The electrochemical cell comprises: a first conductive layer; a metal oxide layer provided on the first conductive layer, the metal oxide layer comprising a plurality of adjacent metal oxide cells, spaced from one another; a functional dye layer provided on the metal oxide layer; a second conductive layer; an electrolyte layer provided between the functional dye layer and the second conductive layer, wherein at least one of the first and second conductive layers is transparent; and wherein the functional dye layer is formed from an organic solvent ink.. In another embodiment, the electrochemical cell comprises: a first conductive layer; a metal oxide layer provided on the first conductive layer; a functional dye layer provided on the metal oxide layer; a second conductive layer; and an electrolyte provided between the functional dye layer and the second conductive layer, wherein at least one of the first and second conductive layers is transparent; and wherein the functional dye layer is formed from a binary solvent ink, comprising a first solvent and a second solvent.

194 LIQUID CRYSTAL DISPLAY DEVICE AND DRIVING METHOD THEREOF EP06812569.9 2006-11-13 EP1949177A1 2008-07-30 HWANG, Hyun Ha; KIM, Jang Ho
An embodiment of the present invention provides a method of driving a liquid crystal display device including a liquid crystal panel, and a backlight assembly providing light to the liquid crystal panel by a field sequential driving method, the method includes: displaying an image, at the liquid crystal panel and the backlight assembly, by time-dividing two frames into five sub-frames, wherein when images are displayed in the two frames, images of a first frame and a second frame of the two frames share one blue light.
195 Super bright color filter module for liquid crystal displays EP07109944.4 2007-06-09 EP1868027A1 2007-12-19 Li, Tong

A module for a liquid crystal display includes a beam condenser (21) separating an extended light beam (24) from the light source (18) into discrete unpolarized micro beams (26), beam displacer (22) for separating the discrete unpolarized beams into polarized micro beams, a color displacer (23) separating white polarized micro light beams from the beam displacer into orthogonally polarized primary color beams and directing the orthogonally polarized primary color to different locations for display panel, and a beam diffuser directing axial beam into different viewing angles.

196 FLÜSSIGKRISTALLANZEIGE ELEMENT EP05822307.4 2005-11-23 EP1865370A1 2007-12-12 Tzvetkov, Valentin Alekseyevich; Tzvetkov, Oleg Valentinovich

Die Erfindung bezieht sich auf ein Element eines Flüssigkristall-Displays mit einer Eingangsmaske mit Spalten, einem Raster-Linsenkondensator sowie einer zwischen zwei transparenten Trägern eingebetteten Schicht des Flüssigkristalls. Die Träger sind mit transparenten Elektroden und Orientierungsschichten versehen, einem Raster-Linsenobjektiv, einer Ausgangsmaske mit Spalten, deren Lage mit der Lage der Spalten der Eingangsmaske abgestimmt ist. Die Fläche des Elements ist in drei Teilbereiche derart aufgeteilt, dass eine Phasen-Beugungsstruktur in der Schicht des Flüssigkristalls möglich ist. Die Orientierungsschichten sind dadurch gekennzeichnet, dass sie aus einem Fotopolymer bestehen und dass die Phasen-Beugungsstruktur durch die Bereiche des Flüssigkristalls mit unterschiedlicher Ausgangsorientierung gebildet ist, die durch eine unterschiedliche Richtung der Polarisationsebene bei der Belichtung des Fotopolymers bedingt ist. Die Periode der Bereiche mit verschiedener Orientierung ist in jedem der Teilbereiche gleich und die gegenseitige Spaltenlage der Ausgangsmaske ist bezüglich der Spalten der Eingangsmaske innerhalb jedes Teilbereichs unterschiedlich, wobei der Durchlass einer in jedem Teilbereich unterschiedlichen Farbe von drei primären Farben innerhalb jedes Teilbereichs gewährleistet ist.

197 Farb-Flüssigkristallanzeigeeinrichtung EP07105599.0 2007-04-04 EP1852739A1 2007-11-07 Bayrle, Reiner; Bitter, Thomas; Bader, Otto

Es wird eine Farb-Flüssigkristallanzeigeeinrichtung angegeben, die eine verbesserte Auflösung besitzt. Die Farb-Flüssigkristallanzeigeeinrichtung umfasst eine erste und eine zweite cholesterische Flüssigkristallschicht (2, 10). Die erste Flüssigkristallschicht enthält nebeneinander angeordnete Grundfarbpixel (14) einer ersten und einer zweiten Grundfarbe (14-B, 14-G). Die zweite Flüssigkristallschicht enthält nebeneinander angeordnete Grundfarbpixel (14) der ersten und einer dritten Grundfarbe (14-B, 14-R). Die Grundfarbpixel der ersten Grundfarbe (14-B) in der ersten und zweiten Flüssigkristallschicht (2, 10) sind in Beobachtungsrichtung (8) hintereinander angeordnet. Die Grundfarbpixel der zweiten Grundfarbe (14-G) in der ersten Flüssigkristallschicht (2) und die Grundfarbpixel der dritten Grundfarbe (14-R) in der zweiten Flüssigkristallschicht (10) sind in Beobachtungsrichtung (8) hintereinander angeordnet. Jeweils zwei Grundfarbpixel der ersten Grundfarbe (14-B), die in der ersten und zweiten Flüssigkristallschicht (2, 10) hintereinander angeordnet sind, wirken mit dem benachbarten Grundfarbpixel der zweiten Grundfarbe (14-G) in der ersten Flüssigkristallschicht (2) und dem benachbarten Grundfarbpixel der dritten Grundfarbe (14-R) in der zweiten Flüssigkristallschicht (10) zur Darstellung eines Anzeigepixels (18-i) zusammen. Dadurch, dass zur Darstellung eines Anzeigepixels sowohl nebeneinander als auch hintereinander liegende Grundfarbpixel herangezogen werden, werden in einer Ebene bzw. in einer Flüssigkristallschicht nur die Flächen für zwei statt der üblichen drei Grundfarbpixel pro Anzeigepixel benötigt. Hierdurch ergibt sich die verbesserte Auflösung. Zusätzlich wird auch die Ablesbarkeit der Anzeige bei hellem Sonnenlicht oder in sonstiger heller Umgebung verbessert.

198 Cholesteric liquid crystal color filter and process for producing the same EP02255846.4 2002-08-21 EP1286188A3 2005-11-30 Kawabata, Kouya, c/o Fuji Photo Film Co., Ltd.

The present invention provides a cholesteric liquid crystal color filter including partition walls that are formed at pixel boundaries, produced by: forming a liquid crystal layer comprising a cholesteric liquid crystal composition including at least a liquid crystal compound, a photoreactive chiral agent and a polymerization initiator; and irradiating the liquid crystal layer with UV light having wavelengths to which the polymerization initiator is photosensitive through a photomask to form the partition walls at areas corresponding to the pixel boundaries while the liquid crystal layer is in an isotropic liquid state or in a cholesteric state not exhibiting selective reflection of light in the visible range. The invention also provides a process for producing a cholesteric liquid crystal color filter including openings that are formed at positions corresponding to at least contact holes and/or electrode lead-out portions.

199 DISPLAY AND ITS DRIVING METHOD EP02762851.0 2002-08-26 EP1457812A1 2004-09-15 NOSE, Masaki, c/o Fujitsu Limited; TOMITA, Junji, c/o Fujitsu Limited

A display device displaying a color by mixing light reflected by a first reflection element 22 and light reflected by a second reflection element 26 by additive color mixture, in which the light of a first wavelength reflected by the first reflection element and light of a second wavelength reflected by the second reflection element have a mutually complementary color relationship. Thus, the display device, which can make good black and white display by a simple structure and can be driven by a simple method, can be realized.

200 SWITCHABLE COLOR FILTER EP01975958.8 2001-11-01 EP1330677A1 2003-07-30 FÜNFSCHILLING, Jürg; SCHMITT, Klaus; SCHADT, Martin
The liquid crystal switchable color filter switches between three color bands and is preferably used for time-sequential color devices, as for example projection devices, direct view displays and video cameras. The color filter employs circularly polarizing selective reflection bands of at least four cholesteric filters (cfb1 cfr2) together with three liquid crystal switches (sw1, sw2, sw3) and related retarder layers. The handedness of the second cholesteric filter (cfg1) is equal to the handedness of the third cholesteric filter (cfg2) and opposite to the handedness of the first and fourth cholesteric filter (cfb2, cfr1), and for the blocking state of a color band the optic axis of the corresponding liquid crystal switch is parallel or perpendicular to the polarization direction. This concept leads to an improved, excellent color saturation and requires less stringent production tolerances than in the prior art. Moreover, it advantageously allows overlapping color transmission bands thus improving the light efficiency.
QQ群二维码
意见反馈