序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Optical devices and method involving nanoparticles JP2013140673 2013-07-04 JP2013242577A 2013-12-05 BAMDAD CYNTHIA C
PROBLEM TO BE SOLVED: To provide excellent optical material.SOLUTION: The present invention relates generally to optical material and application of the optical material and, more particularly, to the optical material incorporating particles, such as nanoparticles, methods for forming such material, and the application of such material in various devices, for example, for filters, displays, coatings for glare reduction, and the like. The present invention can provide control over assembly dimensions at very small scale, for example, at a molecular scale rather than at a macroscopic scale. The invention also involves, in some cases, a step for controlling interaction of many wavelengths of electromagnetic radiation with these material. The optical material and devices may be constructed and arranged for response to, control of, and/or interaction with essentially any electromagnetic radiation, electric field, and/or magnetic field.
102 表示素子、表示器及び投射型表示装置 JP2012514844 2011-05-13 JPWO2011142455A1 2013-07-22 昌尚 棗田; 雅雄 今井; 齋藤 悟郎; 悟郎 齋藤; 慎 冨永
本発明は、発光素子(25)からの光の通過と遮断とを切り換える複数のシャッタ機構(14)と、複数のシャッタ機構(14)からの光を透過する基板(16)とを有するライトバルブ部(10)と、ライトバルブ部(10)から入射した光によってプラズモン結合を生じさせるプラズモン結合部(11)とを備える。プラズモン結合部(11)は、ライトバルブ部(10)から入射する光によってキャリアが生成されるキャリア生成層(17)と、キャリア生成層(17)を発光素子(25)の光で励起したときに発生する光の周波数よりも高いプラズマ周波数を有するプラズモン励起層(19)と、プラズモン励起層(19)によって生じた光または表面プラズモンを所定の出射の光に変換して出射する波数ベクトル変換層(23)とを有する。プラズモン励起層(19)は、第1誘電体層(18)と第2誘電体層(22)との間に挟まれている。
103 High-order harmonic generation apparatus using amplified near field of laptop JP2009026298 2009-02-06 JP5103415B2 2012-12-19 キム セウン−ウー; ジン ジョンハン; キム セウンチュル; パク イン−ヨン
104 Optical element JP2005514133 2004-09-17 JP5068457B2 2012-11-07 啓之 大橋; 勝太郎 市原; 玄一 波多腰; 邦彦 石原
105 Surface plasmon optical modulator JP2011522998 2009-08-13 JP2012500409A 2012-01-05 コブヤコフ,アンドレイ; ザクハリアン,アラマイス; ビー スパークス,ケヴィン
ブロッホ表面プラズモン(BSP)効果を利用する光変調器が開示される。 BSP光(BSPO)変調器(10)は、一次元または二次元とすることができる誘電率変調(P-M)格子(20)を備える。 電気光学(EO)基板(30)がP-M格子を挟み込む。 EO基板はその上に配置された電極(64)を有し、変調器をスイッチングする変調電圧信号(SM)を介して印加電圧(V 30 )を供給するために、電極に接続された電圧源(60)が用いられる。 有害な反射効果を軽減するために屈折率整合層(40)を用いることができる。 BSPO変調器により、表面プラズモンを励起するために入光(100I)に斜め入射を生じさせる必要なしに、垂直入射入力光を直接に変調することが可能になる。
106 Optical element JP2011087397 2011-04-11 JP2011192381A 2011-09-29 ISHIHARA KUNIHIKO; HATAGOSHI GENICHI; OHASHI HIROYUKI; ICHIHARA KATSUTARO
<P>PROBLEM TO BE SOLVED: To improve utilization efficiency of light in transmission of light through an aperture having diameter of a wavelength or less formed in a conductive thin film. <P>SOLUTION: First and second periodic surface shapes 40a and 40b having different period lengths are formed at least one of first and second surfaces of a conductive thin film 20 which has first and second surfaces 20a and 20b in which at least one aperture 30 communicating with the second surface from the first surface is provided. Period length P2 of the second periodic surface shape is made substantially equal to odd times 1/2 of period length P1 of the first periodic surface shape. Thereby, surface plasmon-polariton excited by the first periodic surface shape is odd-order-Bragg-reflected by the second periodic surface shape, intensity of light made incident on the first surface and transmitted to the second surface side through the aperture is reinforced with high efficiency. <P>COPYRIGHT: (C)2011,JPO&INPIT
107 Optical element and optical device JP2009238114 2009-10-15 JP2011040141A 2011-02-24 HONGO KAZUYASU
<P>PROBLEM TO BE SOLVED: To increase output intensity and improve optical power utilization efficiency of incident light, in an optical element that utilizes a surface plasmon. <P>SOLUTION: The optical element 10 is provided with a substrate 1 that has optical transparency with respect to the incident light 100, and a first conductive film 2 formed on one surface of the substrate 1. The first conductive film 2 has a concave and convex pattern 5 of a predetermined cycle formed on the surface of the substrate 1 side, and the shape of a side portion that defines an edge portion 2a to be irradiated with the incident light 100 of the first conductive film 2 is convex or linear as seen from the incident light 100 incident side. <P>COPYRIGHT: (C)2011,JPO&INPIT
108 Display device and display method JP2009028919 2009-02-10 JP2010185970A 2010-08-26 MIYAZAKI TAKASHI; HASEGAWA TSUTOMU; YAMAGUCHI HAJIME; NAGATO KAZUSHI; OKA SEIJITSU; UCHIKOGA SHUICHI
<P>PROBLEM TO BE SOLVED: To provide practical display device and display method by enlarging amount of shift of plasmon resonance wavelength. <P>SOLUTION: This display device is provided with an optical cell 60 having a first electrode 10, a second electrode 20, an ion transmission layer 30 provided by opposing to the first electrode 10 and the second electrode 20 and including movable ion 31 and a nanostructural body 40 connected electrically with the first electrode, provided between the first electrode and the ion transmission layer 30, having plasmon resonance wavelength in a visible light zone, and containing a metallic element. Amount of metallic compound layer formed in at least a part of a surface of the nanostructural body by applying different voltages to the first electrode and the second electrode, containing the metallic element included in the nanostructural body, and having a refractive index being different from that of the ion transmission layer differs. <P>COPYRIGHT: (C)2010,JPO&INPIT
109 Mixed coupling structure of short-range surface plasmon polariton and general dielectric waveguide, coupling structure of long-range surface plasmon polariton and dielectric waveguide, and its application JP2009283891 2009-12-15 JP2010145399A 2010-07-01 FANG LIU; WAN RUIYUAN; HUANG YIDONG; FENG XUE; ZHANG WEI; PENG JIANGDE; ONISHI MASARU; NIWA DAISUKE; MIURA YOSHIKATSU
<P>PROBLEM TO BE SOLVED: To achieve a high-level mixed integration between a surface plasmon polariton based device and a dielectric-based device and to achieve a photoelectric integrated device capable of a large number of types of control. <P>SOLUTION: A mixed coupling structure of a short-range surface plasmon polariton and a general dielectric waveguide includes: a dielectric substrate layer; a dielectric waveguide layer positioned on the dielectric substrate layer; a combination matching layer positioned on the dielectric waveguide layer; and a short-range surface plasmon waveguide part for propagating a short-range surface plasmon polariton formed on the combination matching layer. A coupling structure of a long-range surface plasmon polariton and a dielectric waveguide includes: a dielectric substrate layer; a dielectric waveguide layer; a combination matching layer; and a long-range surface plasmon waveguide part from below upward. <P>COPYRIGHT: (C)2010,JPO&INPIT
110 光位相変調素子およびこれを用いた光変調器 JP2009500074 2007-12-25 JPWO2008102511A1 2010-05-27 大典 岡本; 正文 中田; 藤方 潤一; 潤一 藤方
小型の光位相変調素子およびこれを用いた光変調器を提供する。本発明の光位相変調素子は、使用波長において複素誘電率の実部が負である金属材料をクラッドとし、複素誘電率の実部が正である誘電体材料をコアとするプラズモン導波路とを備える。このプラズモン導波路には、複素誘電率の実部が正である誘電体材料をクラッドおよびコアとする光導波路が接続されている。プラズモン導波路のコアと光導波路のコアの少なくとも一部が、同一の半導体材料で構成されている。そして、プラズモン導波路が電圧印加により入射光を位相変調する機能を有する。
111 Using radial deflection radiation, apparatus and method for improving the permeability of light through the small opening JP2007547759 2005-12-19 JP2008525838A 2008-07-17 ホーフト,ヘルト ウェー ト; エル エム バリストレリ,マルセロ; エフ エム ヘンドリクス,ロベルト
放射線の透過性を高める機器であって、少なくとも一つの放射線源(12)と、第1(20)および第2の(22)表面を有する金属板(18)であって、該金属板(18)に設けられ、前記第1の表面(20)から前記第2の表面(22)まで延伸する少なくとも一つの開口(24)を備える金属板と、を有し、前記金属板(18)は、前記第1(20)および前記第2の(22)表面のうち少なくとも一つに設置された、周期的な表面凹凸構造(26)を有し、前記放射線源(12)から進行し、前記金属板(18)の前記一つの表面に入射された放射線(13)は、前記金属板(18)の少なくとも一つの前記表面(20、22)上で表面プラズモンモードと相互作用し、これにより、前記金属板(18)の前記少なくとも一つの開口(24)を通る放射線の透過性が高められる。 光透過性を高める当該機器は、放射状偏向放射線(16)を発生する手段(15)を有し、前記放射状偏向放射線は、表面凹凸構造(26)を有する前記金属板(18)の前記表面(20、22)の一方に入射され、前記放射線の、前記プラズモンに対する効率的な結合がなされ、これにより、前記光透過性がさらに向上する。
112 Image display apparatus JP2006335713 2006-12-13 JP2007188067A 2007-07-26 LEE HONG-SEOK; LEE SU-MI
PROBLEM TO BE SOLVED: To improve display characteristics by improving the color contrast ratio. SOLUTION: The image display apparatus 1000 includes a prism 300 and a pixel section 400 on one side of the prism. The pixel section includes a reflective electrode and dielectrics disposed at a predetermined distance from the reflective electrode. The dielectrics are in contact with the reflective electrode, when a voltage is applied, and the effective refractive index changes according to the image signal. The effective refractive index of the section of the reflective electrode in contact with the dielectrics changes, and accordingly, the reflectivity of the reflective electrode changes, corresponding to the image signal. In particular, the pixel section is able to regulate the surface plasmon resonance, by regulating the reflective electrode and is able to display the black mode by using the surface plasmon resonance. COPYRIGHT: (C)2007,JPO&INPIT
113 Exciton polariton optical switch JP2002521644 2001-08-17 JP3817580B2 2006-09-06 照也 石原
114 Optical devices and methods comprising nanoparticles JP2004564046 2003-12-22 JP2006517674A 2006-07-27 シンシア シー. バムダッド,
The present invention relates generally to optical materials and applications of optical materials and, more particularly, to optical materials incorporating particles such as nanoparticles, methods of forming such materials, and applications of such materials in various devices, for example, for filters, displays, coatings for glare reduction, and the like. The present invention can provide control over fabrication dimensions at very small scale, for example, at the molecular scale rather than at a macroscopic scale. The invention also involves, in some cases, controlling the interaction of many wavelengths of electromagnetic radiation with these materials. The optical materials and devices of the invention may be constructed and arranged for a response to, control of, and/or interaction with essentially any electromagnetic radiation, electric field, and/or magnetic field.
115 Surface-type optical modulator and a method for manufacturing JP2003558580 2003-01-07 JP3589662B2 2004-11-17 重雄 吉井; 信之 大塚; 俊哉 横川; 雅弘 鬼頭
116 Light modulation element and the light source and the display device and its driving method using the same JP13358599 1999-05-14 JP3402253B2 2003-05-06 憲一 高取
117 COLOR FILTER-INTEGRATED POLARIZER AND METHOD OF MANUFACTURING THE SAME EP15179831.1 2015-08-05 EP3023833B1 2018-10-10 Son, Jung-Ha; Lee, Joo-Hyung; Yeo, Yun-Jong
Provided are color filter-integrated polarizer and method of manufacturing a color filter-integrated polarizer. A color filter-integrated polarizer includes a conductive material disposed on a substrate. The conductive material includes a polarizer region which comprises a plurality of parallel conductive wire patterns and a color filter region which comprises a plurality of holes arranged in a pattern.
118 SPATIAL POSITIONING OF PHOTON EMITTERS IN A PLASMONIC ILLUMINATION DEVICE EP15724268.6 2015-05-21 EP3149783B1 2018-05-16 VERSCHUUREN, Marcus Antonius; LOZANO BARBERO, Gabriel Sebastian; GOMEZ RIVAS, Jaime
There is provided an illumination device (100) comprising: a substrate (104); an optically transmissive first layer (106) arranged on the substrate; a photon emitting layer (108), arranged on the optically transmissive first layer and comprising a photon emitting material configured to receive energy from an energy source and to emit light having a predetermined wavelength; a periodic plasmonic antenna array, arranged on the substrate and embedded within the first layer, and comprising a plurality of individual antenna elements (114) arranged in an antenna array plane, the plasmonic antenna array being configured to support a first lattice resonance at the predetermined wavelength, arising from coupling of localized surface plasmon resonances in the individual antenna elements to photonic modes supported by the system comprising the plasmonic antenna array and the photon emitting layer, wherein the plasmonic antenna array is configured to comprise plasmon resonance modes such that light emitted from the plasmonic antenna array has an anisotropic angle distribution; and wherein the photon emitting layer is arranged at a distance from the antenna array plane corresponding to a location of maximum field enhancement for light out-coupling resulting from the plasmonic-photonic lattice resonances.
119 Methods of Charging Solid State Plasmonic Electrochromic Smart Window Devices EP16752972.6 2016-02-17 EP3259640A1 2017-12-27 GARCIA, Guillermo; HOLT, Jason; ROSEN, Evelyn; HELMS, Brett
Methods of charging an electrochromic device includes post assembly charging using a sacrificial redox agent, lithium diffusion into an electrode from a lithium layer or salt bridge charging, or pre assembly charging using proton photoinjection into an electrode.
120 DISPLAY DEVICE EP09786723.8 2009-07-27 EP2313810B1 2017-09-13 BATAILLOU, Benoit; SURDEANU, Radu; BANCKEN, Pascal; STEENWINCKEL, David, van; NGUYEN HOANG, Viet
QQ群二维码
意见反馈