首页 / 国际专利分类库 / 物理 / 测量 / 无线电定向;无线电导航;采用无线电波测距或测速;采用无线电波射或再辐射的定位或存在检测;采用其它波的类似装置 / 以发射信号具有一个或几个特征可被无方向性接收机检测到并确定与信标发射机密切相关的方向、位置或位置线为特征的信标与信标系统;与其配合的接收机(通过确定多个方向或位置线配合定位的入G01S 5/00)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
221 BEACON ARRAY US15661642 2017-07-27 US20170322284A1 2017-11-09 YuBo Li; Yonghua Lin; Qing Wang; Wei Dong Wang; Chao Xue
A method comprises receiving a first received signal strength indicator (RSSI) of a first beacon in an array of beacons and receiving a second RSSI of a second beacon in an array of beacons, calculating a RSSI of the array (r) as a function of the first RSSI and the second RSSI, retrieving a calibrated RSSI value of the array (r′) from a memory, determining whether r>r′, and outputting a signal to a user device responsive to determining that r>r′.
222 VEHICLE POSITIONING BY VISIBLE LIGHT COMMUNICATION US15583112 2017-05-01 US20170317748A1 2017-11-02 Arno Krapf
A vehicle optical wireless data communication system includes a plurality of light sources disposed at a structure where vehicles travel. Each of the light sources emits visible light to illuminate the building or structure. Each of the light sources emits optical signals indicative of a location of the respective light source. A sensor is disposed at a vehicle and is operable to sense optical signals emitted by the light sources when the vehicle is in the vicinity of the light sources. Responsive to sensing by the sensor of optical signals emitted by at least one of the light sources, the sensor generates an output to a processor disposed at the vehicle. The processor processes the output of the sensor to determine a location of the vehicle relative to at least one of the light sources.
223 Secure communication connection formation US14974993 2015-12-18 US09775042B2 2017-09-26 Michael John Nicholls; Nathan Adler
In some examples, method includes positioning a first electronic device in a target orientation with respect to a second electronic device and moving the first and second electronic devices in at least two degrees of freedom of motion while the first electronic device is maintained in the target orientation with respect to the second electronic device. The method may also include operating the first electronic device while the first and second electronic devices share a secure communication connection that is based on a first numerical value and a second numerical value. The first numerical value may be based on data that describes the movement of the first electronic device while maintained in the target orientation, and the second numerical value may be based on data that describes the movement of the second electronic device while the first electronic device is maintained in the target orientation.
224 RELIABILITY IN MOBILE DEVICE POSITIONING IN A CROWDSOURCING SYSTEM US15074481 2016-03-18 US20170272900A1 2017-09-21 Ju-yong DO; Meghna AGRAWAL; Gengsheng ZHANG
Methods and systems are disclosed for improving reliability in mobile device positioning. A mobile device generates position data for a device, receives a first access point position reliability state associated with the first access point, determines a reliability of the position data based on the first access point position reliability state and an estimated location of the first access point, determines a threshold reliability requirement of an application associated with the mobile device, compares the reliability of the position data to the threshold reliability requirement of the application, and provides the position data of the device based on the comparison. A network entity determines access point characteristics associated with an access point, generates a position reliability state for the access point, sends the position reliability state to a mobile device, receives position data associated with the mobile device, and determines a trustworthiness of the position data.
225 Infrastructure for location discovery US14805870 2015-07-22 US09759800B2 2017-09-12 Miodrag Potkonjak
Techniques are generally described for determining locations of a plurality of communication devices in a network. In some examples, methods for creating a location discovery infrastructure (LDI) for estimating locations of one or more of a plurality of communication nodes may comprise one or more of determining a plurality of locations in the terrain to place a corresponding plurality of beacon nodes, determining a plurality of beacon node groups for the placed beacon nodes, and determining a schedule for the placed beacon nodes to be active. Additional variants and embodiments are also disclosed.
226 Beacon array US14748463 2015-06-24 US09759799B2 2017-09-12 YuBo Li; Yonghua Lin; Qing Wang; Wei Dong Wang; Chao Xue
A method comprises receiving a first received signal strength indicator (RSSI) of a first beacon in an array of beacons and receiving a second RSSI of a second beacon in an array of beacons, calculating a RSSI of the array (r) as a function of the first RSSI and the second RSSI, retrieving a calibrated RSSI value of the array (r′) from a memory, determining whether r>r′, and outputting a signal to a user device responsive to determining that r>r′.
227 Node and method for radio measurement handling US14435967 2015-03-24 US09756602B2 2017-09-05 Iana Siomina
Example embodiments presented herein are directed towards a first node, and corresponding methods therein, for obtaining an available radio measurement associated with a wireless device. Example embodiments presented herein are also directed towards a second node, and corresponding methods there, for providing an available radio measurement associated with the wireless device.
228 REMOTE SENSING CALIBRATION, VALIDATION, AND SIGNATURE CHARACTERIZATION FROM UNMANNED AIRCRAFT SYSTEMS US15423372 2017-02-02 US20170219376A1 2017-08-03 Francis PADULA; Aaron PEARLMAN
A method, computer program product and system where a processor(s) configures sensor(s) on an unmanned aircraft system, to capture data related to a surface of a defined geographic area. The processor(s) navigate the unmanned aircraft system in a repeatable defined travel path proximate to the defined geographic area, such that the sensor(s) capture surface data related to the defined geographic area during the navigating, wherein a position of the unmanned aircraft system in the travel path is within a satellite view geometry of a satellite. The processor(s) maintain the unmanned aircraft system at a distance from the surface at which atmosphere does not obscure the data and obtain the data collected by the sensor(s). The processor(s) compares the data collected by the sensor(s) to data collected by one or more instruments on the satellite related to the defined geographic area to determine is the instrument(s) of the satellite are calibrated.
229 Calibration of a distance sensor on an agricultural vehicle US14760844 2014-01-14 US09699968B2 2017-07-11 John H. Posselius; Pieter Vanysacker; Didier Verhaeghe; Joachim Boydens
Calibrating a distance sensor on an agricultural vehicle provided for measuring the distance between the sensor and a set of points on a ground surface in front of the agricultural vehicle, includes: performing a reference measurement when the agricultural vehicle is standing on a paved and substantially flat ground surface; processing the results of the reference measurement to reference data for use as reference during further measurements; storing the reference data in a memory.
230 Method and device for improving configuration of communication devices in a video projection system comprising multiple wireless video projectors US13828749 2013-03-14 US09686516B2 2017-06-20 Lionel Tocze; Pierre Visa; Pascal Lagrange
The present invention relates to improving configuration of wireless communication paths between devices in a video projection system comprising multiple wireless video projectors. When an initial radio communication setup is required between a managing node, e.g. a node comprising a master projector, and a node comprising a slave projector, for example following the powering up of the video projection system, the slave node receives setup information by radio communication means according to a sweeping sequence and transmits information by projecting sub-images. Sub-images advantageously comprise information relative to settings of the master node allowing reception in the corresponding slave node of a radio signal transmitted by the master node.
231 METHOD AND SYSTEM FOR DYNAMIC REASSIGNMENT OF AN IDENTIFICATION CODE IN A LIGHT-BASED POSITIONING SYSTEM US15332410 2016-10-24 US20170139033A1 2017-05-18 Stephen H. Lydecker; Konstantin Klitenik; Daniel Ryan; Emanuel Paul Malandrakis; Mitri J. Abou-Rizk
In a visual light communication (VLC) or other light based positioning system, a mobile device can detect modulated light emitted by one or more localized artificial lighting devices to obtain an identification (ID) label or code of each lighting device, e.g. that is visible in an image captured by the mobile device camera. The mobile device uses the detected ID code for a lookup in a self-stored or remotely stored table that associates light-source-location information with ID codes, to obtain an estimate of mobile device position. To mitigate against hacking by a third party detecting the ID codes and observing locations to compile its own lookup table, the disclosed examples dynamically alter the assignments of particular ID codes to the lighting devices, while minimizing potential disruption of position determination service for mobile devices due to the changes to ID code assignments.
232 Method and system for dynamic reassignment of an identification code in a light-based positioning system US14944774 2015-11-18 US09600983B1 2017-03-21 Stephen H. Lydecker; Konstantin Klitenik; Daniel Ryan; Emanuel Paul Malandrakis; Mitri J. Abou-Rizk
In a visual light communication (VLC) or other light based positioning system, a mobile device can detect modulated light emitted by one or more localized artificial lighting devices to obtain an identification (ID) label or code of each lighting device, e.g. that is visible in an image captured by the mobile device camera. The mobile device uses the detected ID code for a lookup in a self-stored or remotely stored table that associates light-source-location information with ID codes, to obtain an estimate of mobile device position. To mitigate against hacking by a third party detecting the ID codes and observing locations to compile its own lookup table, the disclosed examples dynamically alter the assignments of particular ID codes to the lighting devices, while minimizing potential disruption of position determination service for mobile devices due to the changes to ID code assignments.
233 GEOLOCATION USING GUIDED SURFACE WAVES US14850056 2015-09-10 US20170074969A1 2017-03-16 James F. Corum; Kenneth L. Corum; James D. Lilly; Michael J. D'Aurelio
Disclosed are various approaches for navigation identifying one's current position. A navigation device receives a guided surface wave using a guided surface wave receive structure. The navigation device then receives a reflection of the guided surface wave using the guided surface wave receive structure. The navigation device calculates an amount of time elapsed between receiving the guided surface wave and receiving the reflection of guided surface wave. The navigation device then measures an angle between a wave front of the guided surface wave and a polar axis of the Earth. Finally the navigation device determines a location of the guided surface wave receive structure based at least in part on the angle between the wave front of the guided surface wave and the polar axis of the Earth the amount of time elapsed between receiving the guided surface wave and receiving the reflection of guided surface wave.
234 VEHICLE-LOCATION SYSTEM FOR AN AUTOMATED VEHICLE US14838762 2015-08-28 US20170060135A1 2017-03-02 NATHAN A. PENDLETON; MICHAEL H. LAUR; JONATHAN L. WIESKAMP
A system to determine a vehicle-location of an automated vehicle includes a light-source, a sensor, and a controller. The light-source is located at a light-location that is observable from a roadway. The light emitted by the light-source is modulated to broadcast the light-location of the light-source. The sensor is mounted on a vehicle. The sensor is operable to detect the light in order to receive the light-location and determine a direction of the light relative to the vehicle and/or the roadway. The controller is configured to determine a vehicle-location of the vehicle based on the direction and the light-location.
235 MAGNETIC FIELD LOCALIZATION AND NAVIGATION US14799319 2015-07-14 US20160377688A1 2016-12-29 Alexander D. Kleiner; Nikolai Romanov; Frederic D. Hook
A mobile robot includes a body movable over a surface within an environment, a calibration coil carried on the body and configured to produce a calibration magnetic field, a sensor circuit carried on the body and responsive to the calibration magnetic field, and a controller carried on the body and in communication with the sensor circuit. The sensor circuit is configured to generate calibration signals based on the calibration magnetic field. The controller is configured to calibrate the sensor circuit as a function of the calibration signals, thereby resulting in a calibrated sensor circuit configured to detect a transmitter magnetic field within the environment and to generate detection signals based on the transmitter magnetic field. The controller is configured to estimate a pose of the mobile robot as a function of the detection signals.
236 WIRELESS POWER TRANSMITTER AND METHODS FOR USE THEREWITH US14790831 2015-07-02 US20160365737A1 2016-12-15 Marius Ionel Vladan
Aspects of the subject disclosure may include, for example, a wireless power transmitter that includes a coil assembly configured to transmit a power signal to a power receiving unit of at least one wireless power client. The coil assembly includes a first coil and a second coil configured to generate the power signal via a combined magnetic field. A first driver is configured to generate a first current signal on the first coil. A second driver is configured to generate a second current signal on the second coil at a first controllable phase relative to the first current signal to control the combined magnetic field. Other embodiments are disclosed.
237 EXCITATION AND USE OF GUIDED SURFACE WAVES US14728507 2015-06-02 US20160359336A1 2016-12-08 James F. Corum; Kenneth L. Corum
Disclosed are various embodiments for transmitting and receiving energy conveyed in the form of a guided surface-waveguide mode along the surface of a lossy medium such as, e.g., a terrestrial medium excited by a guided surface waveguide probe.
238 LOW POWER WIDE AREA NETWORK US15093969 2016-04-08 US20160345265A1 2016-11-24 Brian Lee; Hyoseok Yi
A long range, low power, low cost, wireless communication system that has a location determination capability (location fix) and optionally a direct control capability (“On Demand” control) at optimal power and communication resource overhead. The system can be used for device initiated (DI) communications and for network initiated (NI) communications. The location fix can be an assisted location fix, using a GPS-assisted device, a WiFi-assisted device, or both a GPS- and a WiFi-assisted device. For situations when neither WiFi nor GPS are available, a network-based location fix provides location information, which can be augmented by home cell (HC) ranging information. Various embodiments of the system and methods related to the systems are provided.
239 Method and device for identifying sensors housed in tyres US12741229 2008-11-12 US09469168B2 2016-10-18 Philippe Lefaure
The invention relates to a method of identifying sensors (C1, C2, C3, C4) of an information system for a vehicle (V1) of the type that links a plurality of sensors housed in the wheels and equipped with a subassembly for transmitting the collected data to a module (100) for transmitting and receiving said collected data, which is equipped with at least one transmission/reception antenna (110), in which each axle end is fitted with twin wheels, an inner wheel and an outer wheel, each wheel accommodating an equipped sensor (Ci or Ce) of a transmission subassembly, said method being noteworthy in that it consists in varying the power of the transmission antenna (110) in such a way that the transmission field of the antenna varies and includes or excludes the sensor(s) (Ci, Ce) located within its radius of action. The invention also relates to the device for implementing the method described above. Applications: detection and transmission of parameters from vehicle tires.
240 Node and Method for Radio Measurement Handling US14435967 2015-03-24 US20160278040A1 2016-09-22 Iana Siomina
Example embodiments presented herein are directed towards a first node, and corresponding methods therein, for obtaining an available radio measurement associated with a wireless device. Example embodiments presented herein are also directed towards a second node, and corresponding methods there, for providing an available radio measurement associated with the wireless device.
QQ群二维码
意见反馈