序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 Airflow pressure gradient measurement parameter monitoring system for aircraft JP2008532835 2006-09-21 JP5371432B2 2013-12-18 プレオ,ギヨーム
The system has a detection circuit (1) having a measuring channel (10) which includes static air pressure measuring devices (13, 14) and an aircraft`s side-slip angle measuring device. A measuring device (15) measures a dynamic pressure, a total temperature and an angle of attack of the aircraft, and a data processing device (12) determines anemobaroclinometric parameters based on the measurements. A laser anemometer (50) anemometer is placed in a housing proximal to an external skin of the aircraft and measures a true air speed parameter of the aircraft.
142 Acoustic measuring device and the acoustic measurement method JP2007181146 2007-07-10 JP5187721B2 2013-04-24 幹也 荒木; 祐輔 曽根; 孝之 小島; 秀之 田口; 聖一 志賀; 富夫 小保方
143 Method for measuring and controlling physical quantity of object JP2012147865 2012-06-29 JP2012247427A 2012-12-13 HAYASHI TETSUYA; SASAOKA HIDEYORI; YAMAMOTO YOSHINORI; KATAYAMA MAKOTO; KANIE TOMOHIKO; ISHIKAWA SHINJI; ICHIKAWA KYO
PROBLEM TO BE SOLVED: To provide a method for measuring and controlling the physical quantity of an object existing on or in a fine structure element, through optical sensing technique using Brillouin scattering phenomenon.SOLUTION: A method for measuring the physical quantity of an object existing on or in an element comprises the steps of: preparing an optical waveguide having a light incident end and a light emission end with a continuous shape from the light incident end to the light emission end, of which at least one part is arranged adjacent to the object on or in the element; irradiating the inside of the optical waveguide with light from the light incident end; detecting light emitted from the light emission end after transmission in the optical waveguide; and indirectly measuring the physical quantity of the object on the basis of characteristic changes in detection light resulting from Brillouin scattering occurring in the optical waveguide.
144 Blood flow velocity imaging apparatus JP2008548238 2007-11-28 JP4803520B2 2011-10-26 兼児 岡本; 仁 藤居; 公彦 藤澤
145 Laser Doppler velocimeter JP2011507382 2008-04-30 JP2011519424A 2011-07-07 ガチェル,ピーター; ダキン,エリザベス,エー.; ダキン,ダニエル; チャン,チア,チェン; マミディプディ,プリヤバダン; ルクレール,ランス; ロジャーズ,フィリップ,エル.
A laser Doppler velocimeter is formed using a fiber laser as the lasing medium. Within the velocimeter, all optical signals, transmitted and received, are conveyed by optical fibers. An amplifier amplifies a source laser, which is then transmitted to one or more transceivers. The one or more transceivers, each projecting along a different axis, and each with a single optical fiber input/output interface act as both the transmission device to focus the radiation at a target region, and as the receiving system for collecting reflected radiation. The transceivers each include an amplifier to further amplify the radiation received from the laser source. The one or more transceivers transmit radiation simultaneously to the target region, and may be located remotely from the laser source. The portion of the reflected radiation collected by the receiving system is analyzed to determine the Doppler shift caused by targets at the focal point of the one or more transceivers.
146 System to measure the turbulence remotely JP2007544399 2005-11-22 JP4651679B2 2011-03-16 スピネッリ,チャールズ・ビィ; ティロットソン,ブライアン・ジェイ
A system and method for detecting turbulence includes several mobile platforms, a mobile platform velocity sensor, and several electromagnetic energy transmitters and receivers. The receivers receive the energy transmitted by the transmitter(s) after it has traveled along a path subject to the turbulence. The receivers detect alterations of the energy caused by the turbulence and filter the alterations for effects of the mobile platform velocity (on which either a transmitter or receiver is located). Additionally, the system may create a three-dimensional model of the. In another preferred embodiment, the present invention provides a method of detecting turbulence using a mobile platform. The method includes receiving electromagnetic energy that has traveled along a path subject to the turbulence and determining the alteration to the energy caused by the turbulence. The alterations are filtered of the effects of the velocity of the mobile platform on which the receivers are preferably located.
147 Measuring device JP2008239445 2008-09-18 JP4600555B2 2010-12-15 靖章 桑田; 克典 河野; 義雄 西原
Provided is a measuring apparatus that includes: a semiconductor laser device that emits a laser light beam to an object to be measured; a driving unit that provides a driving signal for modulation drive of the semiconductor laser device; a first detection unit that detects a first electrical signal that corresponds to the intensity of the laser light beam modulated due to the self-coupling effect, in a first half-cycle of the driving signal; a second detection unit that detects a second electrical signal that corresponds to the intensity of a second laser light beam modulated due to the self-coupling effect, in a second half-cycle of the driving signal being in an opposite phase of the first half-cycle; a calculation unit that calculates a difference between the first and second electrical signals; and a measuring unit that measures a change in the state of the object based on the calculated difference.
148 Optical image measuring device and an optical image measuring method JP2005109247 2005-04-05 JP4597744B2 2010-12-15 キンプイ チャン; 康文 福間; 正博 秋葉
An optical image measuring apparatus capable of speedily measuring a velocity distribution image of a moving matter. Including a broad-band light source, lenses for increasing a beam diameter, a polarizing plate converting the light beam to linearly porlarized light, and a half mirror, a wavelength plate converting the reference light to circularly polarized light, the half mirror superimposing the signal light whose frequency is partially shifted by the moving matter in the object and the reference light is circularly polarized light to produce superimposed light including interference light, CCDs for receiving different polarized light components of the interference light, and outputting detection signals including interference frequency components corresponding to beat frequencies of the interference light, and a signal processing portion for forming velocity distribution image based on interference frequency component corresponding to a beat frequency equal to an intensity modulation frequency of the light beam.
149 対象物の物理量測定方法及び制御方法 JP2008552086 2007-12-19 JPWO2008081719A1 2010-04-30 林 哲也; 林  哲也; 笹岡 英資; 英資 笹岡; 義典 山本; 片山 誠; 誠 片山; 蟹江 智彦; 智彦 蟹江; 石川 真二; 真二 石川; 経 市川
この発明は、ブリルアン散乱減少を利用し、微細構造物上又は微細構造物中に存在する対象物の物理量を測定及び制御するための光センシング技術に関する。当該測定方法は、マイクロ化学チップやICチップなどの素子上又は素子中に一次元乃至三次元的に光導波路を用意し、この光導波路中で発生するブリルアン散乱光の特性変化に基づいて、対象物の物理量を測定する。
150 Measuring apparatus JP2008239445 2008-09-18 JP2010068999A 2010-04-02 KONO KATSUNORI; NISHIHARA YOSHIO; KUWATA YASUAKI
<P>PROBLEM TO BE SOLVED: To provide a measuring apparatus that uses the self-coupling effect of the semiconductor laser for readily and accurately measures a change in the state of an object to be measured. <P>SOLUTION: A blood flow sensor includes: a semiconductor laser device that emits a laser light beam to an object to be measured; a driving unit 120 that provides a driving signal for modulation drive of the semiconductor laser device; a beat signal detection portion 132 that detects a first electrical signal that corresponds to the intensity of the laser light beam modulated due to the self-coupling effect, in a first half-cycle of the driving signal, and that detects a second electrical signal that corresponds to the intensity of a second laser light beam modulated due to the self-coupling effect, in a second half-cycle of the driving signal being in a phase opposite to that of the first half-cycle; a difference calculation circuit 136 that calculates a difference between the first and second electrical signals; and a measuring circuit 138 that measures the change in the state of the object to be measured based on the calculated difference. <P>COPYRIGHT: (C)2010,JPO&INPIT
151 血流速度画像化装置 JP2008548238 2007-11-28 JPWO2008069062A1 2010-03-18 仁 藤居; 兼児 岡本; 公彦 藤澤
【課題】時系列血流マップ上に得られる血流速度から、動脈、静脈を自動判別することができる血流速度画像化装置を提供する。【解決手段】本発明の血流速度画像化装置は、血球を有する生体組織にレーザ光を照射するレーザ光照射系(1)と、生体組織からの反射光を検出する多数の画素からなる受光部(5)を有する受光系(2)と、受光部(5)からの信号に基づき、1心拍以上の所定時間で連続的に複数の画像を取り込む画像取込部(12)と、複数の画像を記憶する画像記憶部(15)と、記憶された複数画像の対応する各画素の出信号の時間的変化から、生体組織内の血流速度を演算する演算部(16)とからなる血流速度測定装置であり、前記演算部は前記一心拍以上の複数画像から動脈・静脈を検出する検出部を有し、血流マップ上に動脈性の拍動部分と静脈性の拍動部分を表示する。【選択図】図1
152 The method and apparatus of speed measurement due to the Doppler effect JP2001500885 2000-05-17 JP4433653B2 2010-03-17 フィリップ バリコ; ジャン−ミシェル マテ; アンドレ ミノシ; クリスティーヌ ランペルー
153 All-fiber architecture for the built-in flight sensor with respect to aviation propulsion applications JP2008542498 2006-11-15 JP2009516855A 2009-04-23 ディー. サペイ,アンドリュー; パトリック マスターソン,バーナード
レーザと、上記レーザと光通信する一個以上の飛行センサと、上記飛行センサと光通信するデータ処理デバイスとを有する内蔵型飛行センサ・システム。 上記飛行センサは、光学的検出器と組み合わされたファイバ・ブラッグ格子;分光学的格子および検出器;および;捕捉側光学機器と光学的に組み合わされた光学的検出器;などの、レーザ式の光学的構成要素とされ得る。 上記飛行センサにより検知されたパラメータは、任意の飛行パラメータを決定するために使用され得る。 代表的な飛行パラメータとしては、限定的なものとしてではなく、機体もしくは外側表面の温度、空気流の速度、燃焼領域の温度、エンジン取入口の温度、気体の濃度、または、衝撃波面の位置が挙げられる。
154 Apparatus and method for measuring sound JP2007181146 2007-07-10 JP2009019911A 2009-01-29 ARAKI MIKIYA; SONE YUSUKE; KOJIMA TAKAYUKI; TAGUCHI HIDEYUKI; SHIGA SEIICHI; OBOKATA TOMIO
PROBLEM TO BE SOLVED: To provide a measurement system for correctly obtaining the position of the acoustic source of jet noise (screech) produced by a supersonic jet stream. SOLUTION: High-speed sampling is performed while shifting a measurement point by the use of a high-speed optical sensor in a schlieren-optical system. Changes in values acquired by the sampling are produced as a result of bending of an optical path by a density gradient produced in an arc shape from the center of the jet stream. Discrete Fourier transform is applied to these values, to decompose the noise into frequency components constituting it. Subsequently, Abel conversion is applied concerning data belonging to a specific frequency to obtain a density gradient in a radial direction from the center of the jet stream. The position of the acoustic source and the state of the stream can be acquired in detail by visualizing the obtained density gradient by graphic display. COPYRIGHT: (C)2009,JPO&INPIT
155 System to measure the turbulence remotely JP2007544399 2005-11-22 JP2008522191A 2008-06-26 スピネッリ,チャールズ・ビィ; ティロットソン,ブライアン・ジェイ
乱気流を検知するシステム及び方法は、数台の移動プラットフォームと、移動プラットフォーム速度センサと、数台の電磁エネルギー送信器及び受信器とを含む。 受信器は、送信器によって送信されたエネルギーを、乱気流を被る経路沿いに進んだ後に、受信する。 受信器は、乱気流によって生じるエネルギーの変化を検知し、(送信器または受信器のいずれかが配置された)移動プラットフォームの速度の効果を変化から選別する。 加えてシステムは、の3次元モデルを作成できる。 別の実施形態において、本発明は移動プラットフォームを使って乱気流を検知する方法を提供する。 方法は、乱気流を被る経路に沿って進んだ電磁エネルギーを受信することと、乱気流によって生じたエネルギーの変化を判定することとを含む。 好ましくは受信器が配置される移動プラットフォームの速度の効果は変化から選別される。
156 Block optical element constitution for lidar JP2008005157 2008-01-15 JP2008134257A 2008-06-12 JAMIESON JAMES R; RAY MARK D; MENEELY CLINTON T
<P>PROBLEM TO BE SOLVED: To provide block optical element constitution used as a transceiver for a light detection and ranging (LIDAR) system. <P>SOLUTION: This block optical element constitution is provided with a plurality of glass modules aligned each other as a block to form a plurality of optical paths in an inside, and fixed each other to maintain the alignment, a collimated light source for generating a coherent light beam on at least one of the optical paths in the block for guiding the coherent light beam to an outlet point of the block, and a light detector fixed onto the block. The block receives a reflected coherent light beam and transmits the reflected coherent light beam to the light detector through at least one of the other optical paths formed in the block. <P>COPYRIGHT: (C)2008,JPO&INPIT
157 Laser Doppler radar device JP2004507863 2002-05-29 JP3872082B2 2007-01-24 俊平 亀山; 俊行 安藤; 嘉仁 平野; 公雄 浅香
158 Means for performing a measurement in the tube JP2006520954 2004-07-13 JP2006528508A 2006-12-21 サシャ クルゲル; ヨルン ボルゲルト
本発明は、特に、血管の流れ状態を測定するために用いることができる装置に関する。 本発明の装置はカテーテル(16)を有し、当該カテーテルは、ボディの外にある制御および測定装置(20)をカテーテルの先端にある光ユニット(10)と接続する光導波路の束(15)を有する。 キャビテーション光レーザ源(30)によって生成される光(λ )は、カテーテル(16)および光ユニット(10)を介して管内腔の焦点領域(2)に照射され、キャビテーションバブル(3)を生成する。 血流にのったキャビテーションバブル(3)の動きは、例えば、位相ドップラー流速計および/またはドップラーシフトにもとづく粒子測定ユニット(20)によって求められる。 光ユニット(10)の適切な設計の結果として、焦点領域(2)は管内を望むように半径方向および回転方向に変位させることができ、その結果、管断面を空間分解して走査することができる。 また、例えば、この領域における化学組成を分析するために、焦点領域(2)からきた光のスペクトル分析が可能である。 管の壁(1)への到達は、焦点領域(2)を動かすことによって検出することができ、管測定および/またはキャビテーション光レーザのスイッチオフのために用いることができる。
159 Optical image measuring apparatus and optical image measurement method JP2005109247 2005-04-05 JP2006153838A 2006-06-15 CHAN KINPUI; AKIBA MASAHIRO; FUKUMA YASUFUMI
<P>PROBLEM TO BE SOLVED: To provide an optical image measuring apparatus for rapidly measuring a speed distribution image inside an object to be measured. <P>SOLUTION: The optical image measuring apparatus comprises a wide-band light source 2 for outputting puls-shaped light beams periodically; lenses 4, 5 for widening the diameter of the light beams; a polarizing plate 3 for linearly polarizing the light beams; a half mirror 6 for dividing the light beams into signal light S and reference light R; a wave plate 7 for circularly polarizing the reference light R; a half mirror 6 for generating superimposed light M, containing interference light by superposing linearly polarized signal light S, where the frequency is shifted partially by a mobile unit in an object O to be measured to a circularly polarized reference light; and CCDs 21, 22 for outputting a detection signal containing an interference frequency component, corresponding to the beat frequency of interference light, by receiving different polarization components in interference light contained in the superposition light M; and a signal processing section 20 for forming a speed distribution image, based on interference frequency components that correspond to a beat frequency equal to the intensity modulation frequency of the light beams. <P>COPYRIGHT: (C)2006,JPO&NCIPI
160 Loas and lidar combination system of JP2003525320 2002-07-18 JP2005502055A 2005-01-20 ジェミーソン,ジェームズ・アール; メニーリー,クリントン・ティー; レイ,マーク・ディー
LOAS及びLIDARシステムの組合せシステムは、第1所定波長で第1コヒーレント光ビームを生成するLIDAR光学要素構成と、第2所定波長で第2コヒーレント光ビームを生成するLOAS光学要素構成と、ビームエクスパンダの開口部へ向けてほぼ第1共通光路上に第1および第2コヒーレント光ビームを指向させる二色性フィルタ光学要素と、該システムから拡大された第1および第2コヒーレント光ビームの両方を指向させる少なくとも1つの出光学要素と、を備え、該少なくとも1つの出力光学要素はまた、第1および第2コヒーレント光ビームの反射を受け取り、該反射をビームエクスパンダへ指向させ、そこで該ビーム反射が収集され、二色性フィルタ光学要素は、第1コヒーレントビームに対応する収集された光を分離し、流速の決定において使用するためにLIDAR光学要素構成へ戻るように指向させ、第2コヒーレントビームに対応する収集された光を分離し、少なくとも1つの物体の検出において使用するためにLOAS光学要素構成へ戻るように指向させる。
QQ群二维码
意见反馈